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Abstract. The present paper aims to study about (¢)-LP-Sasakian mani-
folds with the generalized symmetric metric connection. We have an example
satisfying (e)-LP-Sasakian manifolds with the generalized symmetric metric
connection. Further, we studied ®-conformally-flat and &-®-conformally flat
curvature conditions in (€)-LP-Sasakian manifolds with the generalized sym-
metric metric connection.
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1. Introduction

In 1969, T. Takahashi [1] introduced almost contact manifolds equipped with
an associated pseudo-Riemannian metric. In particular, he studied Sasakian
manifolds equipped with an associated pseudo-Riemannian metric. These in-
definite almost contact metric manifolds and indefinite Sasakian manifolds are
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known as (e)-almost contact metric manifolds and (e)-Sasakian manifolds re-
spectively (see [2], [3] and [1]). In 1989, K. Motsumoto [5] replaced the struc-
ture vector field £ by —¢ in an almost para-contact manifold and associated a
Lorentzian metric with the resulting structure and gave a notion of Lorentzian
para-Sasakian manifold. I. Mihai, R. Roska [7] and others [5], [6] studied
Lorentzian para-Sasakian manifolds. Recently, Rajendra Prasad and Vibha
Shrivastava [8] introduced the notion of Lorentzian para-Sasakian manifolds
with indefinite metric. Such manifold is known to be an indefinite Lorentzian
para-Sasakian manifold or (e)-Lorentzian para-Sasakian manifold.

In 1982, Chuman [12] defined the concept of D-conformal curvature tensor.
He studied ®-conformal vector fields in para-Sasakian manifolds. ®-conformal
curvature tensor has been studied by Adati[13], Shah[l1] and others[l4] in
different manifolds.

On a Riemannian manifold 91, a linear connection @ is called the generalized
symmetric connection if its torsion tensor 7 is given by

T(X,Y) =o)X —nX)Y] 4+ B[nY)eX —n(X)eY]. (1.1)

for all vector fields X and Y on 9t , where a and 8 are smooth functions on
M, ¢ is a (1,1)-type tensor and 7 is a 1-form.

Furthermore, the above-mentioned connection is said to be the generalized
metric when a Riemannian metric g in 91 is given as @g = 0, otherwise, it is
non-metric.

The generalized symmetric metric connection reduces to the semi-symmetric
metric and the quarter-symmetric metric connection respectively according as
(o, 8) = (1,0) and (a, 8) = (0,1). Thus, it can be suggested that the gener-
alized symmetric metric connection came from the idea of the semi-symmetric
and the quarter-symmetric connections. S.K. Yadav, O. Bahadir, and S.K.
Chaubey [9, 10] discussed the generalized symmetric metric connection on LP-
Sasakian and (e)-LP-Sasakian manifolds.

In this paper, we have studied some curvature properties of ®-conformal cur-
vature tensor on an (e)-LP-Sasakian Manifold with respect to the generalized
symmetric metric connection.

2. Preliminaries

A differentiable manifold of dimension n is called an (¢)-Lorentzian para-
Sasakian manifold if it admits a (1,1)-tensor field ¢, a contravariant vector
field &, a 1-form 7 and a Lorentzian metric g, which satisfies

X =X+nX)E, 0@ =-1, g =—¢ (2.1)
n(X) = eg(X,§), e&=0,  n(epX)=0, (2.2)

9(pX,9Y) = g(X,Y) + en(X)n(Y), 9(¢X,Y) = g(X, pY), (2.3)
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(Vxe)(Y) = g(X,Y){ + en(Y) X + 2en(X)n(Y)E, (2.4)
Vx&=epX, (2.5)
(Vxn)Y = g(pX,Y), (2.6)

V X, Y € X(9), where X(9M) is the set of all smooth vector fields on M, V
denotes the operator of covariant differentiation and e =1 or — 1 according as
¢ is space-like or time-like.

On an n-dimensional (e)-Lorentzian para-Sasakian manifold with structure
(p,&,m, g) the following results hold.

R(X,Y)E =n(Y)X —n(X)Y, (2.7)
R(&X)Y = eg(X, V)€ —n(Y)X, (2.8)
n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y), (2.9)
S(pX,9Y) = S(X,Y) + (n = 1)n(X)n(Y), (2.10)
S(X,¢) = (n—1)n(X), (2.11)

S(X,Y) = g(QX,Y), (2.12)

Q¢ =¢(n— 1), (2.13)

V X,Y,Z € X(9M), where R is the curvature tensor, S is the Ricci tensor and
Q is the Ricci operator.

We note that if ¢ = 1 and the structure vector field ¢ is space like, then
an (e)-Lorentzian para-Sasakian manifold is a usual Lorentzian para-Sasakian
manifold.

Definition 2.1. An (¢ )-Lorentzian para-Sasakian manifold is called generalized
n-Einstein manifold if the Ricci tensor S of type (0,2) satisfies

S(X,Z)=ag9(X,Z) + n(Z)n(X) + cg(eX, Z). (2.14)

where a, b, c are scalar functions.
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3. The generalized symmetric metric connection in (e¢)-LP-Sasakian
manifolds

Let 7 be the Levi-Civita connection and 57 be a linear connection in (e)-
L P-Sasakian manifold 91. The linear connection v/ satisfying

VxY =vxY +H(X,Y), (3.1)

for all vector fields X, Ye X(9M), is known to be the generalized symmetric
metric connection. Here H is (1, 2)-type tensor such that

~ ~

H(X,Y) = [T(X,Y)+T(X,Y)+T(Y,.X)], (3.2)

DO =

where T is the torsion tensor of @ and

~

Given (1.1), (3.3) and (3.2), we have

~

T(X,Y) = anX)Y — g(X,Y)E] + B[n(X)pY — g(pX,Y)E], (3.4)
and hence
H(X,Y) =a[n(Y)X —eg(X,Y)E] + B[n(Y)pX —eg(pX,Y)E]. (35
Thus we conclude the following:

Corollary 3.1. For an (¢)-LP-Sasakian manifold, the generalized symmetric
metric connection 57 of type («, B) is given as

VxY = UxY +an)X —eg(X, V)] + B[n(Y)eX — eg(pX,Y)E]. (3.6)

The generalized symmetric metric connection reduces to the semi-symmetric
and the quarter-symmetric respectively when («,8)= (1,0) and («,8) = (0,1)
respectively.

Lemma 3.2. In (¢)-LP-Sasakian manifolds, the following relations are ob-
tained with respect to the generalized symmetric metric connection

(Vx@)Y = (1-Beg(X,Y)E+ (e—Bm(Y)X — eag(X, oY )¢
+2(e = BM(X)In(Y )€ — an(Y)$X, (3.7)
Vxé = (e— PB)oX — aX, (3.8)

(Vxn)Y = (1 —€eB)g(¢X.Y) — eag(X,Y). (3.9)
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4. Curvature tensor of (¢)-LP-Sasakian manifolds with respect to
the generalized symmetric metric connection

The curvature tensor R of an (¢)-L P-Sasakian manifold with respect to the
generalized symmetric metric connection 57 in 91 is defined as

ﬁ(X» Y)Z = %X%YZ - %Y%XZ - @[X,Y]Z' (4~1)
By virtue of equations (2.1), (2.2), (2.5), (3.6) and (4.1), we obtain a relation
between the curvature tensor R of the generalized symmetric metric connection
v/ and the curvature tensor R of the Levi-Civita connection 17 as

RIXY)Z = R(X,Y)Z+a(eB—1)[g(Y, 2)X — g(pX, Z)Y]
+a(eB = 1)[g(Y, 2)pX — g(X, Z)pY]
+8(eB = 2)[9(9Y, 2)pX — g(pX, Z)pY |
+eaBlg(¢Y, Z)n(X) — g(pX, Z)n(Y)]€
+(ea® + ) [g(Y, Z)n(X) — g(X, Z)n(Y)]¢
+aB[n(Y)eX —n(X)eY)|n(Z)
+ea?[g(Y, Z2)X — g(X, Z)Y]
+(a® +eB) [n(V)X = n(X)Y]n(2) (4.2)

where X,Y, Z € x(9).
Taking the inner product with ¢ in the above result, we have

gR(X,Y)Z,&) =n(R(X,Y)Z) = (1—e€B)[g(Y, Z)n(X) —g(X, Z)n(Y)]
— ealg(pY, Z)n(X) — g(pX, Z)n(Y)]4.3)
Let {e1,ea,e3....... ,en—1,&} be a set of orthonormal basis of the tangent space

at any point of the manifold. the Ricci tensor S and the scalar curvature 7 of
the manifold with the generalized symmetric metric connection are defined by

Z eig(R(e;, X)Y, e;), (4.4)

and

Z (e, €5). (4.5)

Also, we have
ZQQ (X,e:)g(Y,e;). (4.6)

Contracting (4.2) with respect to X, we have

S(Y,Z) = S(Y,Z)+ [(n—2)(eB—1)a —eaf + B(eB — 2)¢] g(¢Y, Z)
+[(n —2)ea® + (1 — €B)B + aleB — )] g(Y, Z)
+[(n —2)a® + B(ne — 1) + aBY]n(Y)n(2), (4.7)
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where 1) = tracep and have value ¢ = > €;g(pe;, €;).

Again contracting (4.7) with Y and Z, we have
Fo= T4 B(ef -2 + [Q(n —Da(ef—1) — 26@6]1/}
+(n —1)(n —2)ea® — (n — 1)ef?, (4.8)
where 7 is the scalar curvature of 1.
Q¢ = (4.9)
We also find the following results using the equations (4.2) and (4.7).

Lemma 4.1. In an n-dimensional (€)-LP-Sasakian manifolds with respect to
the generalized symmetric metric connection, the following results hold

R(X,Y)E = (1—€B)[n(Y)X —n(X)Y]
—€x [n(Y)ch — n(X)goY], (4.10)
R(EX)Y = (1-eB)leg(X,Y)E—n(Y)X]
—ealeg(pY, X)& —n(Y)pX], (4.11)
S(Y,€) = S(Y,€) + [(1 —n)eB — earp]n(Y), (4.12)
S(Y,6) = [(n—1)(1 - €B) — cap|n(Y), (4.13)
Q¢ = [(n—1)(e — B) — aglé. (4.14)

5. Example

Let us consider the 3-dimensional manifold M = {(z,y,2) € R*},z # 0,
with standard coordinates (z,v,2) in R®.
Considering linear independent vector fields

E*ezﬁ ey = ¢e° £+£ 6*2
1= aya 2 — o ay ) 3_627

independent at each point of 91.
We define the Lorentzian metric as

gler,e1) = glez,e2) =€, gles,es) = —¢,
9(617 62) - 9(62’ 63) = 9(635 61) = Oa
a (1,1) tensor field ¢ as
pler) = —e1, p(e2) = —e2, ¢(ez) =0

and a 1-form n as
n(Z) = eg(Z,§),
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then using the linearity of g and ¢, for any Z, W € x(9), we have
n(es) = -1,
0} (Z) = ~Z +1(Z)es,
9(0Z, W) = g(Z, W) = n(Z)n(W).
Now by direct computation, we get
[e1,e2] =0, [e1,e3] = —eeq, [ea,es3] = —eea.
By the use of these above equations, we have
Ve €1 = —€€3, Ve,€2 = —€€3, Vese3 = 0,
Ve, €3 = —€€1, Ve, €3 = —€€2,

Ve €1 = Ve €2 = Vez€l = Vez€2 = 0.

93

(5.1)

Here we can easily verify the equations (2.4), (2.5) and (2.6). Thus the manifold

M is an (e)-LP-Sasakian manifold.

Now, the given example deals with the generalized-symmetric metric con-

nection. So use of ( 3.6 ) and (5.1) yields
Ve,1= (B —a—e€es, Vo,e2 = —ces, V3 =0,
Vees = (B—a—eer, Ve,es = (B—a—ees,
Vsl = Ve, €2 = Ve, €1 = Ve e2 = 0.
We know that
R(X,Y)Z =VxVyZ —VyVxZ — Vix,y)Z-
Using (5.1) and (5.2), we have
R(ez,e1)er = ea, Rles,e1)er =e3
R(e1,ea)ea = e1, Rles,ez)es = es,
R(e1,e3)es = —e1, Rlea,es)es = —es
and using (5.2), we get
eg,e1)er = (B —a —e)es, Rles,er)er = —e(B—a — €)es
e1,en)es = (B —a —e)er, Ries,ez)es = —e(8 — a — €)es,

Rer,es)es = e(f —a —e)er, Rlea,e3)es = €(f —a —€)ey

R(
R(
(
Using (5.4), we obtain that

Sles,e;) =2,i=1,2, S(es,ez) =—2.

And using (4.4) and (5.5), we verify that

Slee) =B —a—e(f—a—2¢),i=1,2, Sles,es) =2¢(f—a—e)
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Using (5.6) in (4.5) it is verified that 7 = 6e, also we find ¢ = —2 and thus
using (5.7) it is verified that 7 = 2¢(8 — a —¢€)(8 — a — 3€) = 6e +2¢3? + 2ea® —
80 + 8a — 4ea8 which satisfy the equation (4.8).

Again it is verified that (v yg)(Y;Z) = 0. Hence the manifold, considered
in the example, is an (€)-L P-Sasakian manifold with respect to the generalized
symmetric metric connection.

6. ©-Conformal Curvature

In 1983, on an n-dimensional manifold, a tensor field 8, given the name
D-Conformal curvature tensor, was introduced by Chuman [12] and defined as

B(X,Y)Z = R(X,Y)Z
+ﬁ [S(X,2)Y = 8(Y, Z)X + g(X, 2)QY — g(Y, Z)QX
+S(Y, Z)n(X)§ — S(X, Z)Yn(Y )€+ (n(Y)QX
)@ (2)] + o [o(X, (v e

—g(Y, Z)n(X)€ + n(X)n(2)Y —n(Y)n(Z)X]
: Slo(X.2)Y — (v, 2)x]. (6.1)
where
_t+2(n—1)
K= 3

So, we define ©-Conformal curvature tensor B on (¢)-LP-Sasakian manifolds
with the generalized symmetric metric connection as

B(X,Y)Z = R(X,Y)Z

+ [S(Y,2)X - S(X,2)Y +g(Y,Z)QX — g(X,Z)QY

n—3
+S8(X, Z)n(Y)e = S(Y, Z)n(X)é + ((X)QY — n(Y)OX)n(Z)]

K Loy, 2m(0E - g% 2V e+ (Y n(2)X

K—2

—n(X)n(2)Y] + P [9(X, 2)Y - g(Y,2)X], (6.2)
where
= t+2n—1)
k= n—2

and R, § and @ are Riemannian curvature tensor, Ricci tensor and Ricci
operator with respect to the generalized symmetric metric connection.
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7. ©-Conformally flat (¢)-LP-Sasakian manifolds with the generalized
symmetric metric connection

An n-dimensional (€)-LP-Sasakian manifold with the generalized symmetric
metric connection is said to be ®-Conformally flat if the ©-Conformal curvature
tensor B(X,Y)Z satisfies the condition

B(X,Y)Z = 0.

Using the above in the definition of ®-Conformal curvature tensor given by the
equation (6.2), we have

1
n—3
+S(X, Zn(Y)E = S(Y, Z)n(X)& + (n(X)QY — n(Y)OX)n(2)]

+—=[9(V: 2m(X)E = g(X, Z)n(Y)E +n(YIn(Z)X = n(X)n(Z)Y]

R(X,Y)Z = [S(Y,2)X = S(X,2)Y +9(Y. 2)QX — g(X, 2)QY

+K_§[ (X,2)Y —g(Y,2)X]. (7.1)

Taking the inner product with U, equation (7.1) reduces to

JR(X,Y)Z,0) = ——[8(Y, 2)g(X,U) - §(X, 2)g(¥, 1)
~4—9(Y, 72)9(QX,U) — g(X, Z)QEQYa U) +S(X, ZN)U(Y)Q(ﬁa U)
=S(Y, Z)n(X)g(&, U) + {n(X)g(QY,U) — n(Y)g(QX, U)}n(Z)]
+n’€_3 [9(Y, Z)n(X)g(§,U) — g(X, Z)n(Y)g(&,U)
+n(Y)n(2)9(X,U) = n(X)n(Z2)g(Y,U)]
+% [9(X, 2)g(Y,U) — (Y. Z)g(X,U)].  (7.2)
Putting U = ¢ and using (2.1), we get

g(ﬁ,(X,Y)Z,f) = [S( Z)g ( ) S(X,Z)g(}/,f)—l—g(Y,Z)g(QX,f)
( ,Z)g(QY.€) — eS(X, Z)n(Y) + eS(Y, Z)n(X)
+H{n(X)g(QY, &) —n(Y)g(9X,&)}n(2)]

+nL [—eg(Y, Z)n(X) + eg(X, Z)n(Y)

—3
+n(Y)n(2)g(X, &) —n(X)n(Z)g(Y,€)]
K2 X, 2gvie) - (v, 2)9(X, ). (7.3)

n—3
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Using (2.2) and (2.12), above equation reduces to
SR(XY)ZE = —=Pa(X)8(Y,2) - a(V)S(X,2)
+Hy(Y, Z2) = n(V)n(2)}S(X, €)
—{9(X, Z) = n(X)n(2)}8(Y,€)]
K

+ [V, Zm(X) + eg(X, Z)n(Y)]
K22l D) - gV 2pen(x)]. (1)
Using (4.13), we have
SRXYZ,E = = en(X)S(Y, 2) — 2en(V)S(X, 2)
H((n = 1)(1 = €8) — eaw) (¥ Z0n(X) — g(X, Z)(¥)}]
2D Loy, )~ o(X, 2], (75)

Using (4.3) in the above equation, we get

(1—=eB) [g(Y, Z)n(X) — g(X, Z)n(Y)]
—ealg(pY, Z)n(X) — g(eX, Z)n(Y)].

= - L 5 [2en(X)S(Y, Z) — 2en(Y)S(X, Z)

+((n = 1)(1 — €B) — earp — 26K + 2¢)
x{9(Y, Z)n(X) - g(X, Z)n(Y)}]. (7.6)
Further, we have
2e[n(X)S(Y, Z) —n(Y)S(X, Z)] = —(n = 3)ealg(¢Y, Z)n(X)
—9(0X, Z)n(Y)] + (= 2(1 - €B) + eatp

+2eK — 2€) x [g(Y, Z)n(X) — 9(X, Z)n(Y)]. (7.7)
Putting Y = £ and using (2.1) and (4.13), the above equation reduces to
268(X,Z) = (—2(1—eB)+eap + 26K — 2¢)g(X, Z)
+( = 2ne(1 — €B) + 3arp + 2K — 2)n(Z)n(X)
—(n—3)ea g(¢X, Z). (7.8)

Thus, we conclude the following:

Theorem 7.1. A ©-Conformally flat e-LP-Sasakian manifold with the gener-
alized symmetric metric connection is a generalized m-einstein manifold given
as

S(Xa Z) = a’g(Xa Z) +b77(Z)77(X) +Cg(<an Z)
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where

az%(—2e(l—eﬂ)+a¢+2l€—2),
bZ%(—2”(1—6ﬁ)+360&¢+26’€—26)
and
Sy
c= 2(n Q.

Corollary 7.2. A ©-Conformally flat e-LP-Sasakian manifold with semi-symmetric
metric connection is a generalized n-einstein manifold given as

S1(X, Z) = a19(X, Z) + bin(Z)n(X) + c19(¢X, Z)

where

blze(léf1)fn+;ew,
and
= S n-3)
c1 = B) n .

Corollary 7.3. A ®-Conformally flat e-LP-Sasakian manifold with quarter-
symmetric metric connection is an n-einstein manifold given as

SQ(X’ Z) = a2g(X7 Z) + b2"7(Z)77(X)a

where

(T+2(n— 1)(1—¢€)4+e— (2—6)1/}2),

and

by =n(e—1) 4 €K —1).
8. ¢-©-Conformally flat (¢)-LP-Sasakian manifolds with generalized
symmetric metric connection

An n-dimensional (¢)- L P-Sasakian manifold with generalized symmetric met-
ric connection is said to be £-D-conformally flat if the ©-conformal curvature
tensor B(X,Y)Z satisfies the condition

B(X,Y)E = 0. (8.1)
Using the definition of D-Conformal curvature tensor in equation (6.2), we have
- 1 - - - _

+S(X, On(Y)E = SV, En(X)E + (n(X)QY — n(Y)QX)n(6)]

+——= [9(¥:)n(X)¢ — g(X, (V)& + (Y )n(€)X
XY + 2 (XY — g(V,6)X] (52
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Using (2.1) and (2.2),the equation (8.2) becomes
ROLYE = —[8(,6X - $(X,OY
+S(X,n(Y)E = SV, )n(X)e]
1 - .
+ S [9(V) X — n(X)QY]
n (e + 1K — 2¢
n—3
Using (4.3) and (4.10), (8.3) reduces to

(1+ea—ef—a?)[n(Y)X = n(X)Y] + (ef — a—ap)[n(Y)pX —n(X)pY]
1

= ——[((n = D)1 = a®) + (en — 1)(a = ) + 51 — 20) (1Y) X — n(X)Y)]

[n(X)Y —n(Y)X]. (8.3)

+ L ax e av] + 2 oy ],
On simplifying , we have
(e+DHY)QX —n(X)QY] = —(n—3)ea[n(Y)pX —n(X)pY]
+(=2(1 - €B) — 2¢ + earp + (1 + €)K)
x [n(Y)X — n(X)Y] 8.4)
Replacing Y by &, we get
(e+1)[OX +n(X)0¢] = —(n-—3)eapX
+(—2(1 - €B) — 2e + carp + (1 + €)K)
X [X +n(X)€] (8.5)
Using (4.11), we have
(e+1)OX = (—2(1—€f)+eay+ (e+1)K—2¢)X
+((e=2—ne)(1 —€B) + (e + 1)ay + (e + DK — 2€)n(X)¢
+(n —3)ea pX. (8.6)

Taking inner product with U

(e+1)S(X.U) = (—2(1—€B)+eap+ (e+ 1)K —2¢)g(X,U)
—|—€((6 —2—ne)(l—€B)+ (e+ Day

+(e+ DK = 26)n(X)n(U) + (n = B)eaglpX, U)(8.7)
Thus, we can state the following:

Theorem 8.1. A4 £-©-Conformally flat (¢)-LP-Sasakian manifold with gener-
alized symmetric metric connection is a genaralized n-einstein manifold given
as

S(X, 2) = Ag(X, Z) + Bn(Z)n(X) + Cg(pX, Z)
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where .
A= 1+6(—2(1—eﬁ)—!—eai/)—i—(e—&—l)lé—?e),
B = 1_i_€((€*2—n€)(1—eﬂ)Jr(eJr1)()41/;+(e+1)]€,26)7
c=""3e.
1+e€

Corollary 8.2. A £-©-Conformally flat e-LP-Sasakian manifold with semi-
symmetric metric connection is a generalized n-einstein manifold given as

S1(X,Z) = A1g(X, Z) + Bin(Z)n(X) + C1g(¢X, Z)

where
- € ~ 1
Al=K-24+ — B; =¢(K -2 — (1 —
1 +1+€wa 1 6( +¢ )+1—|—6( n)7
and 3
n—
G = Tteo

Corollary 8.3. A £-©-Conformally flat e-LP-Sasakian manifold with quarter-
symmetric metric connection is an n-einstein manifold given as

SQ(X’ Z) = AQQ(Xa Z) + BQ”(Z)U(X)v

where

- 2 ~ €
AQ—K*m, BQ—E’C‘Fm[(E*l)(l*H)*Q]
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