A study of \mathfrak{D} -Conformal curvature tensor on (ϵ) -LP-Sasakian manifolds with the generalized symmetric metric connection

Narendra V. C. Shukla^{a*} and Amisha Sharma^a

 $^a\mathrm{Department}$ of Mathematics and Astronomy, University of Lucknow, Lucknow, India

E-mail: nvcshukla72@gmail.com
E-mail: amishasharma966@gmail.com

Abstract. The present paper aims to study about (ϵ) -LP-Sasakian manifolds with the generalized symmetric metric connection. We have an example satisfying (ϵ) -LP-Sasakian manifolds with the generalized symmetric metric connection. Further, we studied \mathfrak{D} -conformally-flat and ξ - \mathfrak{D} -conformally flat curvature conditions in (ϵ) -LP-Sasakian manifolds with the generalized symmetric metric connection.

Keywords: ϵ -LP-Sasakian manifold, the generalized symmetric metric connection, \mathfrak{D} -Conformal curvature tensor.

1. Introduction

In 1969, T. Takahashi [1] introduced almost contact manifolds equipped with an associated pseudo-Riemannian metric. In particular, he studied Sasakian manifolds equipped with an associated pseudo-Riemannian metric. These indefinite almost contact metric manifolds and indefinite Sasakian manifolds are

^{*}Corresponding Author AMS 2020 Mathematics Subject Classification: 53B40, 53C30

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2024 The Author(s). Published by University of Mohaghegh Ardabili

known as (ϵ) -almost contact metric manifolds and (ϵ) -Sasakian manifolds respectively (see [2], [3] and [4]). In 1989, K. Motsumoto [5] replaced the structure vector field ξ by $-\xi$ in an almost para-contact manifold and associated a Lorentzian metric with the resulting structure and gave a notion of Lorentzian para-Sasakian manifold. I. Mihai, R. Roska [7] and others [5], [6] studied Lorentzian para-Sasakian manifolds. Recently, Rajendra Prasad and Vibha Shrivastava [8] introduced the notion of Lorentzian para-Sasakian manifolds with indefinite metric. Such manifold is known to be an indefinite Lorentzian para-Sasakian manifold or (ϵ) -Lorentzian para-Sasakian manifold.

In 1982, Chuman [12] defined the concept of \mathfrak{D} -conformal curvature tensor. He studied \mathfrak{D} -conformal vector fields in para-Sasakian manifolds. \mathfrak{D} -conformal curvature tensor has been studied by Adati[13], Shah[11] and others[14] in different manifolds.

On a Riemannian manifold \mathfrak{M} , a linear connection $\tilde{\nabla}$ is called the generalized symmetric connection if its torsion tensor $\tilde{\mathcal{T}}$ is given by

$$\tilde{\mathcal{T}}(\mathcal{X}, \mathcal{Y}) = \alpha \left[\eta(Y)X - \eta(X)Y \right] + \beta \left[\eta(Y)\varphi X - \eta(X)\varphi Y \right]. \tag{1.1}$$

for all vector fields X and Y on \mathfrak{M} , where α and β are smooth functions on \mathfrak{M} , φ is a (1,1)-type tensor and η is a 1-form.

Furthermore, the above-mentioned connection is said to be the generalized metric when a Riemannian metric g in \mathfrak{M} is given as $\tilde{\nabla}g=0$, otherwise, it is non-metric.

The generalized symmetric metric connection reduces to the semi-symmetric metric and the quarter-symmetric metric connection respectively according as $(\alpha, \beta) = (1, 0)$ and $(\alpha, \beta) = (0, 1)$. Thus, it can be suggested that the generalized symmetric metric connection came from the idea of the semi-symmetric and the quarter-symmetric connections. S.K. Yadav, O. Bahadir, and S.K. Chaubey [9, 10] discussed the generalized symmetric metric connection on LP-Sasakian and (ϵ) -LP-Sasakian manifolds.

In this paper, we have studied some curvature properties of \mathfrak{D} -conformal curvature tensor on an (ϵ) -LP-Sasakian Manifold with respect to the generalized symmetric metric connection.

2. Preliminaries

A differentiable manifold of dimension n is called an (ϵ) -Lorentzian para-Sasakian manifold if it admits a (1,1)-tensor field φ , a contravariant vector field ξ , a 1-form η and a Lorentzian metric g, which satisfies

$$\varphi^2 X = X + \eta(X)\xi, \qquad \eta(\xi) = -1, \qquad g(\xi, \xi) = -\epsilon, \tag{2.1}$$

$$\eta(X) = \epsilon g(X, \xi), \qquad \varphi \xi = 0, \qquad \eta(\varphi X) = 0,$$
(2.2)

$$g(\varphi X, \varphi Y) = g(X, Y) + \epsilon \eta(X)\eta(Y), \ g(\varphi X, Y) = g(X, \varphi Y), \tag{2.3}$$

$$(\nabla_X \varphi)(Y) = g(X, Y)\xi + \epsilon \eta(Y)X + 2\epsilon \eta(X)\eta(Y)\xi, \tag{2.4}$$

$$\nabla_X \xi = \epsilon \varphi X,\tag{2.5}$$

$$(\nabla_X \eta) Y = g(\varphi X, Y), \tag{2.6}$$

 $\forall X, Y \in \mathfrak{X}(\mathfrak{M})$, where $\mathfrak{X}(\mathfrak{M})$ is the set of all smooth vector fields on \mathfrak{M} , ∇ denotes the operator of covariant differentiation and $\epsilon = 1$ or -1 according as ξ is space-like or time-like.

On an *n*-dimensional (ϵ)-Lorentzian para-Sasakian manifold with structure (φ, ξ, η, g) the following results hold.

$$\mathcal{R}(X,Y)\xi = \eta(Y)X - \eta(X)Y,\tag{2.7}$$

$$\mathcal{R}(\xi, X)Y = \epsilon g(X, Y)\xi - \eta(Y)X, \tag{2.8}$$

$$\eta(\mathcal{R}(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),\tag{2.9}$$

$$S(\varphi X, \varphi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y), \tag{2.10}$$

$$S(X,\xi) = (n-1)\eta(X), \tag{2.11}$$

$$S(X,Y) = g(QX,Y), \tag{2.12}$$

$$Q\xi = \epsilon(n-1)\xi,\tag{2.13}$$

 $\forall X, Y, Z \in \mathfrak{X}(\mathfrak{M})$, where \mathcal{R} is the curvature tensor, \mathcal{S} is the Ricci tensor and \mathcal{Q} is the Ricci operator.

We note that if $\epsilon=1$ and the structure vector field ξ is space like, then an (ϵ) -Lorentzian para-Sasakian manifold is a usual Lorentzian para-Sasakian manifold.

Definition 2.1. An (ϵ) -Lorentzian para-Sasakian manifold is called generalized η -Einstein manifold if the Ricci tensor \mathcal{S} of type (0,2) satisfies

$$S(X,Z) = ag(X,Z) + b\eta(Z)\eta(X) + cg(\varphi X, Z). \tag{2.14}$$

where a, b, c are scalar functions.

3. The generalized symmetric metric connection in (ϵ) -LP-Sasakian manifolds

Let ∇ be the Levi-Civita connection and $\tilde{\nabla}$ be a linear connection in (ϵ) -LP-Sasakian manifold \mathfrak{M} . The linear connection $\tilde{\nabla}$ satisfying

$$\tilde{\nabla}_X Y = \nabla_X Y + \mathcal{H}(X, Y), \tag{3.1}$$

for all vector fields $X, Y \in \mathfrak{X}(\mathfrak{M})$, is known to be the generalized symmetric metric connection. Here \mathcal{H} is (1,2)-type tensor such that

$$\mathcal{H}(X,Y) = \frac{1}{2} \left[\tilde{\mathcal{T}}(X,Y) + \hat{\tilde{\mathcal{T}}}(X,Y) + \hat{\tilde{\mathcal{T}}}(Y,X) \right], \tag{3.2}$$

where $\tilde{\mathcal{T}}$ is the torsion tensor of $\tilde{\bigtriangledown}$ and

$$g(\widehat{T}(X,Y),W) = g(\widetilde{T}(W,X),Y).$$
 (3.3)

Given (1.1), (3.3) and (3.2), we have

$$\widehat{\tilde{\mathcal{T}}}(X,Y) = \alpha \left[\eta(X)Y - g(X,Y)\xi \right] + \beta \left[\eta(X)\varphi Y - g(\varphi X,Y)\xi \right], \tag{3.4}$$

and hence

$$\mathcal{H}(X,Y) = \alpha \left[\eta(Y)X - \epsilon g(X,Y)\xi \right] + \beta \left[\eta(Y)\varphi X - \epsilon g(\varphi X,Y)\xi \right]. \tag{3.5}$$

Thus we conclude the following:

Corollary 3.1. For an (ϵ) -LP-Sasakian manifold, the generalized symmetric metric connection $\tilde{\nabla}$ of type (α, β) is given as

$$\tilde{\nabla}_X Y = \nabla_X Y + \alpha \left[\eta(Y) X - \epsilon g(X, Y) \xi \right] + \beta \left[\eta(Y) \varphi X - \epsilon g(\varphi X, Y) \xi \right]. \quad (3.6)$$

The generalized symmetric metric connection reduces to the semi-symmetric and the quarter-symmetric respectively when $(\alpha,\beta)=(1,0)$ and $(\alpha,\beta)=(0,1)$ respectively.

Lemma 3.2. In (ϵ) -LP-Sasakian manifolds, the following relations are obtained with respect to the generalized symmetric metric connection

$$(\tilde{\nabla}_{X}\varphi)Y = (1 - \beta\epsilon)g(X,Y)\xi + (\epsilon - \beta)\eta(Y)X - \epsilon\alpha g(X,\varphi Y)\xi + 2(\epsilon - \beta)\eta(X)\eta(Y)\xi - \alpha\eta(Y)\phi X,$$
(3.7)

$$\tilde{\nabla}_X \xi = (\epsilon - \beta)\phi X - \alpha X,\tag{3.8}$$

$$(\tilde{\nabla}_X \eta) Y = (1 - \epsilon \beta) g(\varphi X, Y) - \epsilon \alpha g(X, Y). \tag{3.9}$$

4. Curvature tensor of (ϵ) -LP-Sasakian manifolds with respect to the generalized symmetric metric connection

The curvature tensor $\tilde{\mathcal{R}}$ of an (ϵ) -LP-Sasakian manifold with respect to the generalized symmetric metric connection $\tilde{\nabla}$ in \mathfrak{M} is defined as

$$\tilde{\mathcal{R}}(X,Y)Z = \tilde{\nabla}_X \tilde{\nabla}_Y Z - \tilde{\nabla}_Y \tilde{\nabla}_X Z - \tilde{\nabla}_{[X,Y]} Z. \tag{4.1}$$

By virtue of equations (2.1), (2.2), (2.5), (3.6) and (4.1), we obtain a relation between the curvature tensor $\tilde{\mathcal{R}}$ of the generalized symmetric metric connection ∇ and the curvature tensor \mathcal{R} of the Levi-Civita connection ∇ as

$$\tilde{\mathcal{R}}(X,Y)Z = \mathcal{R}(X,Y)Z + \alpha(\epsilon\beta - 1) \left[g(\varphi Y, Z)X - g(\varphi X, Z)Y \right]
+ \alpha(\epsilon\beta - 1) \left[g(Y,Z)\varphi X - g(X,Z)\varphi Y \right]
+ \beta(\epsilon\beta - 2) \left[g(\varphi Y,Z)\varphi X - g(\varphi X,Z)\varphi Y \right]
+ \epsilon\alpha\beta \left[g(\varphi Y,Z)\eta(X) - g(\varphi X,Z)\eta(Y) \right] \xi
+ (\epsilon\alpha^2 + \beta) \left[g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \right] \xi
+ \alpha\beta \left[\eta(Y)\varphi X - \eta(X)\varphi Y \right] \eta(Z)
+ \epsilon\alpha^2 \left[g(Y,Z)X - g(X,Z)Y \right]
+ (\alpha^2 + \epsilon\beta) \left[\eta(Y)X - \eta(X)Y \right] \eta(Z)$$
(4.2)

where $X, Y, Z \in \chi(\mathfrak{M})$.

Taking the inner product with ξ in the above result, we have

$$\begin{split} g(\tilde{\mathcal{R}}(X,Y)Z,\xi) &= \eta(\tilde{\mathcal{R}}(X,Y)Z) &= (1-\epsilon\beta) \left[g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \right] \\ &- \epsilon\alpha \left[g(\varphi Y,Z)\eta(X) - g(\varphi X,Z)\eta(Y) \right] (4.3) \end{split}$$

Let $\{e_1, e_2, e_3, \dots, e_{n-1}, \xi\}$ be a set of orthonormal basis of the tangent space at any point of the manifold. the Ricci tensor \tilde{S} and the scalar curvature $\tilde{\tau}$ of the manifold with the generalized symmetric metric connection are defined by

$$\tilde{\mathcal{S}}(X,Y) = \sum_{i=1}^{n} \epsilon_i g(\tilde{\mathcal{R}}(e_i, X)Y, e_i), \tag{4.4}$$

and

$$\tilde{\tau} = \sum_{i=1}^{n} \epsilon_i \tilde{\mathcal{S}}(e_i, e_i). \tag{4.5}$$

Also, we have

$$g(X,Y) = \sum_{i=1}^{n} \epsilon_i g(X, e_i) g(Y, e_i). \tag{4.6}$$

Contracting (4.2) with respect to X, we have

$$\tilde{S}(Y,Z) = S(Y,Z) + \left[(n-2)(\epsilon\beta - 1)\alpha - \epsilon\alpha\beta + \beta(\epsilon\beta - 2)\psi \right] g(\varphi Y,Z)
+ \left[(n-2)\epsilon\alpha^2 + (1-\epsilon\beta)\beta + \alpha(\epsilon\beta - 1)\psi \right] g(Y,Z)
+ \left[(n-2)\alpha^2 + \beta(n\epsilon - 1) + \alpha\beta\psi \right] \eta(Y)\eta(Z),$$
(4.7)

where $\psi = trace\varphi$ and have value $\psi = \sum_{i=1}^{n} \epsilon_i g(\varphi e_i, e_i)$.

Again contracting (4.7) with Y and Z, we have

$$\tilde{\tau} = \tau + \beta(\epsilon\beta - 2)\psi^2 + \left[2(n-1)\alpha(\epsilon\beta - 1) - 2\epsilon\alpha\beta\right]\psi + (n-1)(n-2)\epsilon\alpha^2 - (n-1)\epsilon\beta^2, \tag{4.8}$$

where τ is the scalar curvature of ∇ .

$$\tilde{Q}\xi = \tag{4.9}$$

We also find the following results using the equations (4.2) and (4.7).

Lemma 4.1. In an n-dimensional (ϵ) -LP-Sasakian manifolds with respect to the generalized symmetric metric connection, the following results hold

$$\tilde{\mathcal{R}}(X,Y)\xi = (1 - \epsilon\beta) [\eta(Y)X - \eta(X)Y] -\epsilon\alpha [\eta(Y)\varphi X - \eta(X)\varphi Y],$$
(4.10)

$$\tilde{\mathcal{R}}(\xi, X)Y = (1 - \epsilon \beta) [\epsilon g(X, Y)\xi - \eta(Y)X] -\epsilon \alpha [\epsilon g(\varphi Y, X)\xi - \eta(Y)\varphi X],$$
(4.11)

$$\tilde{\mathcal{S}}(Y,\xi) = \mathcal{S}(Y,\xi) + \left[(1-n)\epsilon\beta - \epsilon\alpha\psi \right] \eta(Y), \tag{4.12}$$

$$\tilde{\mathcal{S}}(Y,\xi) = \left[(n-1)(1-\epsilon\beta) - \epsilon\alpha\psi \right] \eta(Y), \tag{4.13}$$

$$\tilde{\mathcal{Q}}\xi = [(n-1)(\epsilon - \beta) - \alpha\psi]\xi. \tag{4.14}$$

5. Example

Let us consider the 3-dimensional manifold $\mathfrak{M} = \{(x, y, z) \in \mathbb{R}^3\}, z \neq 0$, with standard coordinates (x, y, z) in \mathbb{R}^3 .

Considering linear independent vector fields

$$e_1 = e^z \frac{\partial}{\partial y}, \quad e_2 = e^z \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right), \quad e_3 = \frac{\partial}{\partial z},$$

independent at each point of \mathfrak{M} .

We define the Lorentzian metric as

$$g(e_1, e_1) = g(e_2, e_2) = \epsilon, \quad g(e_3, e_3) = -\epsilon,$$

 $g(e_1, e_2) = g(e_2, e_3) = g(e_3, e_1) = 0,$

a (1,1) tensor field φ as

$$\varphi(e_1) = -e_1, \quad \varphi(e_2) = -e_2, \quad \varphi(e_3) = 0$$

and a 1-form η as

$$\eta(Z) = \epsilon g(Z, \xi),$$

then using the linearity of g and φ , for any $Z, W \in \chi(\mathfrak{M})$, we have

$$\eta(e_3) = -1,$$

$$\varphi^2(Z) = -Z + \eta(Z)e_3,$$

$$g(\varphi Z, \varphi W) = g(Z, W) - \eta(Z)\eta(W).$$

Now by direct computation, we get

$$[e_1, e_2] = 0, \quad [e_1, e_3] = -\epsilon e_1, \quad [e_2, e_3] = -\epsilon e_2.$$

By the use of these above equations, we have

$$\nabla_{e_1} e_1 = -\epsilon e_3, \nabla_{e_2} e_2 = -\epsilon e_3, \nabla_{e_3} e_3 = 0,$$

$$\nabla_{e_1} e_3 = -\epsilon e_1, \nabla_{e_2} e_3 = -\epsilon e_2,$$

$$\nabla_{e_2} e_1 = \nabla_{e_1} e_2 = \nabla_{e_3} e_1 = \nabla_{e_3} e_2 = 0.$$
(5.1)

Here we can easily verify the equations (2.4), (2.5) and (2.6). Thus the manifold \mathfrak{M} is an (ϵ) -LP-Sasakian manifold.

Now, the given example deals with the generalized-symmetric metric connection. So use of (3.6) and (5.1) yields

$$\tilde{\nabla}_{e_1} e_1 = (\beta - \alpha - \epsilon) e_3, \tilde{\nabla}_{e_2} e_2 = -\epsilon e_3, \tilde{\nabla}_{e_3} e_3 = 0,$$

$$\tilde{\nabla}_{e_1} e_3 = (\beta - \alpha - \epsilon) e_1, \tilde{\nabla}_{e_2} e_3 = (\beta - \alpha - \epsilon) e_2,$$

$$\tilde{\nabla}_{e_2} e_1 = \tilde{\nabla}_{e_2} e_2 = \tilde{\nabla}_{e_2} e_1 = \tilde{\nabla}_{e_2} e_2 = 0.$$
(5.2)

We know that

$$\mathcal{R}(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{5.3}$$

Using (5.1) and (5.2), we have

$$\mathcal{R}(e_2, e_1)e_1 = e_2, \quad \mathcal{R}(e_3, e_1)e_1 = e_3$$

 $\mathcal{R}(e_1, e_2)e_2 = e_1, \quad \mathcal{R}(e_3, e_2)e_2 = e_3,$
 $\mathcal{R}(e_1, e_3)e_3 = -e_1, \quad \mathcal{R}(e_2, e_3)e_3 = -e_2$ (5.4)

and using (5.2), we get

$$\tilde{\mathcal{R}}(e_2, e_1)e_1 = (\beta - \alpha - \epsilon)^2 e_2, \quad \tilde{\mathcal{R}}(e_3, e_1)e_1 = -\epsilon(\beta - \alpha - \epsilon)e_3
\tilde{\mathcal{R}}(e_1, e_2)e_2 = (\beta - \alpha - \epsilon)^2 e_1, \quad \tilde{\mathcal{R}}(e_3, e_2)e_2 = -\epsilon(\beta - \alpha - \epsilon)e_3,
\tilde{\mathcal{R}}(e_1, e_3)e_3 = \epsilon(\beta - \alpha - \epsilon)e_1, \quad \tilde{\mathcal{R}}(e_2, e_3)e_3 = \epsilon(\beta - \alpha - \epsilon)e_2$$
(5.5)

Using (5.4), we obtain that

$$S(e_i, e_i) = 2, i = 1, 2, \quad S(e_3, e_3) = -2.$$
 (5.6)

And using (4.4) and (5.5), we verify that

$$\tilde{\mathcal{S}}(e_i, e_i) = (\beta - \alpha - \epsilon)(\beta - \alpha - 2\epsilon), i = 1, 2, \quad \tilde{\mathcal{S}}(e_3, e_3) = 2\epsilon(\beta - \alpha - \epsilon). \quad (5.7)$$

Using (5.6) in (4.5) it is verified that $\tau = 6\epsilon$, also we find $\psi = -2$ and thus using (5.7) it is verified that $\tilde{\tau} = 2\epsilon(\beta - \alpha - \epsilon)(\beta - \alpha - 3\epsilon) = 6\epsilon + 2\epsilon\beta^2 + 2\epsilon\alpha^2 - 8\beta + 8\alpha - 4\epsilon\alpha\beta$ which satisfy the equation (4.8).

Again it is verified that $(\nabla_X g)(Y, Z) = 0$. Hence the manifold, considered in the example, is an (ϵ) -LP-Sasakian manifold with respect to the generalized symmetric metric connection.

6. D-Conformal Curvature

In 1983, on an n-dimensional manifold, a tensor field \mathfrak{B} , given the name \mathfrak{D} -Conformal curvature tensor, was introduced by Chuman [12] and defined as

$$\mathfrak{B}(X,Y)Z = \mathcal{R}(X,Y)Z$$

$$+\frac{1}{n-3} \left[\mathcal{S}(X,Z)Y - \mathcal{S}(Y,Z)X + g(X,Z)QY - g(Y,Z)QX \right]$$

$$+\mathcal{S}(Y,Z)\eta(X)\xi - \mathcal{S}(X,Z)Y\eta(Y)\xi + (\eta(Y)QX)$$

$$-\eta(X)QY)\eta(Z) + \frac{\mathcal{K}}{n-3} \left[g(X,Z)\eta(Y)\xi \right]$$

$$-g(Y,Z)\eta(X)\xi + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$-\frac{\mathcal{K}-2}{n-3} \left[g(X,Z)Y - g(Y,Z)X \right].$$
(6.1)

where

$$\mathcal{K} = \frac{\mathfrak{r} + 2(n-1)}{n-2}.$$

So, we define \mathfrak{D} -Conformal curvature tensor \mathfrak{T} on (ϵ) -LP-Sasakian manifolds with the generalized symmetric metric connection as

$$\tilde{\mathfrak{B}}(X,Y)Z = \tilde{\mathcal{R}}(X,Y)Z + \frac{1}{n-3} \left[\tilde{\mathcal{S}}(Y,Z)X - \tilde{\mathcal{S}}(X,Z)Y + g(Y,Z)\tilde{\mathcal{Q}}X - g(X,Z)\tilde{\mathcal{Q}}Y \right] + \tilde{\mathcal{S}}(X,Z)\eta(Y)\xi - \tilde{\mathcal{S}}(Y,Z)\eta(X)\xi + (\eta(X)\tilde{\mathcal{Q}}Y - \eta(Y)\tilde{\mathcal{Q}}X)\eta(Z) \right] + \frac{\tilde{\mathcal{K}}}{n-3} \left[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X \right] - \eta(X)\eta(Z)Y \right] + \frac{\tilde{\mathcal{K}} - 2}{n-3} \left[g(X,Z)Y - g(Y,Z)X \right],$$
(6.2)

where

$$\tilde{\mathcal{K}} = \frac{\tilde{\mathfrak{r}} + 2(n-1)}{n-2}$$

and $\tilde{\mathcal{R}}$, $\tilde{\mathcal{S}}$ and $\tilde{\mathcal{Q}}$ are Riemannian curvature tensor, Ricci tensor and Ricci operator with respect to the generalized symmetric metric connection.

7. \mathfrak{D} -Conformally flat (ϵ) -LP-Sasakian manifolds with the generalized symmetric metric connection

An n-dimensional (ϵ) -LP-Sasakian manifold with the generalized symmetric metric connection is said to be \mathfrak{D} -Conformally flat if the \mathfrak{D} -Conformal curvature tensor $\mathfrak{B}(X,Y)Z$ satisfies the condition

$$\tilde{\mathfrak{B}}(X,Y)Z = 0.$$

Using the above in the definition of \mathfrak{D} -Conformal curvature tensor given by the equation (6.2), we have

$$\tilde{\mathcal{R}}(X,Y)Z = \frac{1}{n-3} \left[\tilde{\mathcal{S}}(Y,Z)X - \tilde{\mathcal{S}}(X,Z)Y + g(Y,Z)\tilde{\mathcal{Q}}X - g(X,Z)\tilde{\mathcal{Q}}Y \right. \\ \left. + \tilde{\mathcal{S}}(X,Z)\eta(Y)\xi - \tilde{\mathcal{S}}(Y,Z)\eta(X)\xi + (\eta(X)\tilde{\mathcal{Q}}Y - \eta(Y)\tilde{\mathcal{Q}}X)\eta(Z) \right] \\ \left. + \frac{\tilde{\mathcal{K}}}{n-3} \left[g(Y,Z)\eta(X)\xi - g(X,Z)\eta(Y)\xi + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y \right] \right. \\ \left. + \frac{\tilde{\mathcal{K}} - 2}{n-3} \left[g(X,Z)Y - g(Y,Z)X \right].$$
(7.1)

Taking the inner product with U, equation (7.1) reduces to

$$g(\tilde{\mathcal{R}}(X,Y)Z,U) = \frac{1}{n-3} \left[\tilde{\mathcal{S}}(Y,Z)g(X,U) - \tilde{\mathcal{S}}(X,Z)g(Y,U) \right]$$

$$+g(Y,Z)g(\tilde{\mathcal{Q}}X,U) - g(X,Z)g(\tilde{\mathcal{Q}}Y,U) + \tilde{\mathcal{S}}(X,Z)\eta(Y)g(\xi,U)$$

$$-\tilde{\mathcal{S}}(Y,Z)\eta(X)g(\xi,U) + \left\{ \eta(X)g(\tilde{\mathcal{Q}}Y,U) - \eta(Y)g(\tilde{\mathcal{Q}}X,U) \right\}\eta(Z) \right]$$

$$+\frac{\tilde{\mathcal{K}}}{n-3} \left[g(Y,Z)\eta(X)g(\xi,U) - g(X,Z)\eta(Y)g(\xi,U) \right]$$

$$+\eta(Y)\eta(Z)g(X,U) - \eta(X)\eta(Z)g(Y,U) \right]$$

$$+\frac{\tilde{\mathcal{K}}-2}{n-3} \left[g(X,Z)g(Y,U) - g(Y,Z)g(X,U) \right]. \tag{7.2}$$

Putting $U = \xi$ and using (2.1), we get

$$g(\tilde{\mathcal{R}}(X,Y)Z,\xi) = \frac{1}{n-3} \left[\tilde{\mathcal{S}}(Y,Z)g(X,\xi) - \tilde{\mathcal{S}}(X,Z)g(Y,\xi) + g(Y,Z)g(\tilde{\mathcal{Q}}X,\xi) \right] \\ -g(X,Z)g(\tilde{\mathcal{Q}}Y,\xi) - \epsilon \tilde{\mathcal{S}}(X,Z)\eta(Y) + \epsilon \tilde{\mathcal{S}}(Y,Z)\eta(X) \\ + \left\{ \eta(X)g(\tilde{\mathcal{Q}}Y,\xi) - \eta(Y)g(\tilde{\mathcal{Q}}X,\xi) \right\} \eta(Z) \right] \\ + \frac{\tilde{\mathcal{K}}}{n-3} \left[-\epsilon g(Y,Z)\eta(X) + \epsilon g(X,Z)\eta(Y) \right] \\ + \eta(Y)\eta(Z)g(X,\xi) - \eta(X)\eta(Z)g(Y,\xi) \right] \\ + \frac{\tilde{\mathcal{K}} - 2}{n-3} \left[g(X,Z)g(Y,\xi) - g(Y,Z)g(X,\xi) \right].$$
(7.3)

Using (2.2) and (2.12), above equation reduces to

$$g(\tilde{\mathcal{R}}(X,Y)Z,\xi) = \frac{1}{n-3} \left[2\epsilon \eta(X)\tilde{\mathcal{S}}(Y,Z) - \epsilon \eta(Y)\tilde{\mathcal{S}}(X,Z) + \{g(Y,Z) - \eta(Y)\eta(Z)\}\tilde{\mathcal{S}}(X,\xi) - \{g(X,Z) - \eta(X)\eta(Z)\}\tilde{\mathcal{S}}(Y,\xi) \right] + \frac{\tilde{\mathcal{K}}}{n-3} \left[-\epsilon g(Y,Z)\eta(X) + \epsilon g(X,Z)\eta(Y) \right] + \frac{\tilde{\mathcal{K}} - 2}{n-3} \left[g(X,Z)\epsilon \eta(Y) - g(Y,Z)\epsilon \eta(X) \right].$$
(7.4)

Using (4.13), we have

$$g(\tilde{\mathcal{R}}(X,Y)Z,\xi) = \frac{1}{n-3} \left[2\epsilon \eta(X)\tilde{\mathcal{S}}(Y,Z) - 2\epsilon \eta(Y)\tilde{\mathcal{S}}(X,Z) + \left((n-1)(1-\epsilon\beta) - \epsilon\alpha\psi \right) \left\{ g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \right\} \right] - \frac{2\epsilon(\tilde{\mathcal{K}}-1)}{n-3} \left[g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \right].$$
(7.5)

Using (4.3) in the above equation, we get

$$(1 - \epsilon \beta) \left[g(Y, Z) \eta(X) - g(X, Z) \eta(Y) \right]$$

$$-\epsilon \alpha \left[g(\varphi Y, Z) \eta(X) - g(\varphi X, Z) \eta(Y) \right].$$

$$= \frac{1}{n - 3} \left[2\epsilon \eta(X) \tilde{\mathcal{S}}(Y, Z) - 2\epsilon \eta(Y) \tilde{\mathcal{S}}(X, Z) \right.$$

$$+ \left. \left((n - 1)(1 - \epsilon \beta) - \epsilon \alpha \psi - 2\epsilon \tilde{\mathcal{K}} + 2\epsilon \right) \right.$$

$$\times \left\{ g(Y, Z) \eta(X) - g(X, Z) \eta(Y) \right\} \right]. \tag{7.6}$$

Further, we have

$$2\epsilon \left[\eta(X)\tilde{\mathcal{S}}(Y,Z) - \eta(Y)\tilde{\mathcal{S}}(X,Z) \right] = -(n-3)\epsilon\alpha \left[g(\varphi Y,Z)\eta(X) - g(\varphi X,Z)\eta(Y) \right] + \left(-2(1-\epsilon\beta) + \epsilon\alpha\psi + 2\epsilon\tilde{\mathcal{K}} - 2\epsilon \right) \times \left[g(Y,Z)\eta(X) - g(X,Z)\eta(Y) \right]. \tag{7.7}$$

Putting $Y = \xi$ and using (2.1) and (4.13), the above equation reduces to

$$2\epsilon \tilde{\mathcal{S}}(X,Z) = \left(-2(1-\epsilon\beta) + \epsilon\alpha\psi + 2\epsilon\tilde{\mathcal{K}} - 2\epsilon\right)g(X,Z) + \left(-2n\epsilon(1-\epsilon\beta) + 3\alpha\psi + 2\tilde{\mathcal{K}} - 2\right)\eta(Z)\eta(X) - (n-3)\epsilon\alpha \ g(\varphi X,Z).$$
 (7.8)

Thus, we conclude the following:

Theorem 7.1. A \mathfrak{D} -Conformally flat ϵ -LP-Sasakian manifold with the generalized symmetric metric connection is a generalized η -einstein manifold given as

$$\tilde{S}(X,Z) = ag(X,Z) + b\eta(Z)\eta(X) + cg(\varphi X,Z)$$

where

$$a = \frac{1}{2} \left(-2\epsilon (1 - \epsilon \beta) + \alpha \psi + 2\tilde{\mathcal{K}} - 2 \right),$$

$$b = \frac{1}{2} \left(-2n(1 - \epsilon \beta) + 3\epsilon \alpha \psi + 2\epsilon \tilde{\mathcal{K}} - 2\epsilon \right)$$

and

$$c = \frac{-1}{2}(n-3)\alpha.$$

Corollary 7.2. A \mathfrak{D} -Conformally flat ϵ -LP-Sasakian manifold with semi-symmetric metric connection is a generalized η -einstein manifold given as

$$\tilde{\mathcal{S}}_1(X,Z) = a_1 g(X,Z) + b_1 \eta(Z) \eta(X) + c_1 g(\varphi X, Z)$$

where

$$a_1 = \tilde{\mathcal{K}} - \epsilon - 1 + \frac{\psi}{2},$$

$$b_1 = \epsilon(\tilde{\mathcal{K}} - 1) - n + \frac{3}{2}\epsilon\psi,$$

and

$$c_1 = \frac{-1}{2}(n-3).$$

Corollary 7.3. A \mathfrak{D} -Conformally flat ϵ -LP-Sasakian manifold with quartersymmetric metric connection is an η -einstein manifold given as

$$\tilde{\mathcal{S}}_2(X,Z) = a_2 g(X,Z) + b_2 \eta(Z) \eta(X),$$

where

$$a_2 = \tilde{\mathcal{K}} - \epsilon = \frac{1}{(n-2)} \left(\tau + 2(n-1)(1-\epsilon) + \epsilon - (2-\epsilon)\psi^2 \right),$$

and

$$b_2 = n(\epsilon - 1) + \epsilon(\tilde{\mathcal{K}} - 1).$$

8. ξ - \mathfrak{D} -Conformally flat (ϵ) -LP-Sasakian manifolds with generalized symmetric metric connection

An n-dimensional (ϵ)-LP-Sasakian manifold with generalized symmetric metric connection is said to be ξ - \mathfrak{D} -conformally flat if the \mathfrak{D} -conformal curvature tensor $\tilde{\mathfrak{B}}(X,Y)Z$ satisfies the condition

$$\tilde{\mathfrak{B}}(X,Y)\xi = 0. \tag{8.1}$$

Using the definition of \mathfrak{D} -Conformal curvature tensor in equation (6.2), we have

$$\tilde{\mathcal{R}}(X,Y)\xi = \frac{1}{n-3} \left[\tilde{\mathcal{S}}(Y,\xi)X - \tilde{\mathcal{S}}(X,\xi)Y + g(Y,\xi)\tilde{\mathcal{Q}}X - g(X,\xi)\tilde{\mathcal{Q}}Y \right. \\
\left. + \tilde{\mathcal{S}}(X,\xi)\eta(Y)\xi - \tilde{\mathcal{S}}(Y,\xi)\eta(X)\xi + \left(\eta(X)\tilde{\mathcal{Q}}Y - \eta(Y)\tilde{\mathcal{Q}}X\right)\eta(\xi) \right] \\
\left. + \frac{\tilde{\mathcal{K}}}{n-3} \left[g(Y,\xi)\eta(X)\xi - g(X,\xi)\eta(Y)\xi + \eta(Y)\eta(\xi)X \right. \\
\left. - \eta(X)\eta(\xi)Y \right] + \frac{\tilde{\mathcal{K}} - 2}{n-3} \left[g(X,\xi)Y - g(Y,\xi)X \right]. \tag{8.2}$$

Using (2.1) and (2.2), the equation (8.2) becomes

$$\tilde{\mathcal{R}}(X,Y)\xi = \frac{1}{n-3} \left[\tilde{\mathcal{S}}(Y,\xi)X - \tilde{\mathcal{S}}(X,\xi)Y + \tilde{\mathcal{S}}(X,\xi)\eta(Y)\xi - \tilde{\mathcal{S}}(Y,\xi)\eta(X)\xi \right] + \frac{\epsilon+1}{n-3} \left[\eta(Y)\tilde{\mathcal{Q}}X - \eta(X)\tilde{\mathcal{Q}}Y \right] + \frac{(\epsilon+1)\tilde{\mathcal{K}} - 2\epsilon}{n-3} \left[\eta(X)Y - \eta(Y)X \right]. \tag{8.3}$$

Using (4.3) and (4.10), (8.3) reduces to

$$(1 + \epsilon \alpha - \epsilon \beta - \alpha^{2}) \left[\eta(Y)X - \eta(X)Y \right] + (\epsilon \beta - \alpha - \alpha \beta) \left[\eta(Y)\varphi X - \eta(X)\varphi Y \right]$$

$$= \frac{1}{n-3} \left[\left((n-1)(1-\alpha^{2}) + (\epsilon n-1)(\alpha-\beta) + \beta(1-2\epsilon) \right) \left(\eta(Y)X - \eta(X)Y \right) \right]$$

$$+ \frac{\epsilon + 1}{n-3} \left[\eta(Y)\tilde{\mathcal{Q}}X - \eta(X)\tilde{\mathcal{Q}}Y \right] + \frac{(\epsilon+1)\tilde{\mathcal{K}} - 2\epsilon}{n-3} \left[\eta(X)Y - \eta(Y)X \right].$$

On simplifying, we have

$$(\epsilon + 1) [\eta(Y)\tilde{\mathcal{Q}}X - \eta(X)\tilde{\mathcal{Q}}Y] = -(n - 3)\epsilon\alpha [\eta(Y)\varphi X - \eta(X)\varphi Y] + (-2(1 - \epsilon\beta) - 2\epsilon + \epsilon\alpha\psi + (1 + \epsilon)\tilde{\mathcal{K}}) \times [\eta(Y)X - \eta(X)Y]$$
(8.4)

Replacing Y by ξ , we get

$$(\epsilon + 1) \left[\tilde{\mathcal{Q}} X + \eta(X) \tilde{\mathcal{Q}} \xi \right] = -(n - 3) \epsilon \alpha \varphi X$$

$$+ \left(-2(1 - \epsilon \beta) - 2\epsilon + \epsilon \alpha \psi + (1 + \epsilon) \tilde{\mathcal{K}} \right)$$

$$\times \left[X + \eta(X) \xi \right]$$
(8.5)

Using (4.11), we have

$$(\epsilon + 1)\tilde{\mathcal{Q}}X = (-2(1 - \epsilon\beta) + \epsilon\alpha\psi + (\epsilon + 1)\tilde{\mathcal{K}} - 2\epsilon)X + ((\epsilon - 2 - n\epsilon)(1 - \epsilon\beta) + (\epsilon + 1)\alpha\psi + (\epsilon + 1)\tilde{\mathcal{K}} - 2\epsilon)\eta(X)\xi + (n - 3)\epsilon\alpha \varphi X.$$
 (8.6)

Taking inner product with U

$$\begin{split} (\epsilon+1)\tilde{\mathcal{S}}(X,U) &= \left(-2(1-\epsilon\beta)+\epsilon\alpha\psi+(\epsilon+1)\tilde{\mathcal{K}}-2\epsilon\right)g(X,U) \\ &+\epsilon\Big((\epsilon-2-n\epsilon)(1-\epsilon\beta)+(\epsilon+1)\alpha\psi \\ &+(\epsilon+1)\tilde{\mathcal{K}}-2\epsilon\Big)\eta(X)\eta(U)+(n-3)\epsilon\alpha g(\varphi X,U)(8.7) \end{split}$$

Thus, we can state the following:

Theorem 8.1. A ξ - \mathfrak{D} -Conformally flat (ϵ) -LP-Sasakian manifold with generalized symmetric metric connection is a generalized η -einstein manifold given as

$$\tilde{S}(X,Z) = Ag(X,Z) + B\eta(Z)\eta(X) + Cg(\varphi X, Z)$$

where

$$A = \frac{1}{1+\epsilon} \left(-2(1-\epsilon\beta) + \epsilon\alpha\psi + (\epsilon+1)\tilde{\mathcal{K}} - 2\epsilon \right),$$

$$B = \frac{\epsilon}{1+\epsilon} \left((\epsilon-2-n\epsilon)(1-\epsilon\beta) + (\epsilon+1)\alpha\psi + (\epsilon+1)\tilde{\mathcal{K}} - 2\epsilon \right),$$

$$C = \frac{n-3}{1+\epsilon}\epsilon\alpha.$$

Corollary 8.2. A ξ - \mathfrak{D} -Conformally flat ϵ -LP-Sasakian manifold with semi-symmetric metric connection is a generalized η -einstein manifold given as

$$\tilde{\mathcal{S}}_1(X,Z) = A_1 g(X,Z) + B_1 \eta(Z) \eta(X) + C_1 g(\varphi X, Z)$$

where

$$A_1 = \tilde{\mathcal{K}} - 2 + \frac{\epsilon}{1+\epsilon} \psi, \quad B_1 = \epsilon(\tilde{\mathcal{K}} + \psi - 2) + \frac{1}{1+\epsilon} (1-n),$$

and

$$C_1 = \frac{n-3}{1+\epsilon}\epsilon.$$

Corollary 8.3. A ξ - \mathfrak{D} -Conformally flat ϵ -LP-Sasakian manifold with quartersymmetric metric connection is an η -einstein manifold given as

$$\tilde{\mathcal{S}}_2(X,Z) = A_2 g(X,Z) + B_2 \eta(Z) \eta(X),$$

where

$$A_2 = \tilde{\mathcal{K}} - \frac{2}{1+\epsilon}, \quad B_2 = \epsilon \tilde{\mathcal{K}} + \frac{\epsilon}{1+\epsilon} [(\epsilon-1)(1-n)-2].$$

Acknowledgment: The authors are thankful to the Department of Mathematics and Astronomy, University of Lucknow, Lucknow, for giving full support for this study.

References

- T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 21(1969), 644-653.
- K.L. Duggal, Space time manifolds and contact structures, Int. J. Math. Math. Sci. 13(1990), 3, 545-553.
- K.L. Duggal and B. Sahin, Lightlike submanifolds of indefinite Sasakian manifolds, Int. J. Math. Math. Sci. (2007), Art. ID 57585, 21 pp.
- A. Bejancu and K.L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16(3) (1993), 545-556.
- K. Matsumoto, On Lorentzian para contact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
- I. Mihai and A.A. Shaikh, U. C. De, On Lorentzian para-Sasakian Manifolds, Rend. Sem. Mat. Messina, Ser. II, 1999.
- I. Mihai and R. Rosca, On Lorentzian P-Sasakian Manifolds, Classical Analysis, World Scientific Publ., Singapore, (1992), 155-169.
- 8. R. Prasad and V. Shrivastava, On (ε) -Lorentzian Para-Sasakian Manifolds, Commun. Korean Math. Soc., **27**(2) (2012), 297-306.
- O. Bahadir and S. K. Chaubey, Some notes on LP-Sasakian Manifolds with generalized symmetric metric connection, arXiv1805.00810v2, 17 Oct 2019.

- 10. O. Badadir and S.K. Yadav, Almost Yamabe solitons on LP-Sasakian manifolds with generalized symmetric metric connection of type (α, β) , Balkan J. Geom. Appl. **25**(2) (2020), 124-139.
- R.J. Shah, Some curvature properties of D-Conformal curvature tensor on LP-Sasakian Manifold, Journal of Institute of Science and Technology, 19(1) (2014), 30-34.
- T. Adati and G. Chuman, D-Conformal changes in Riemannian manifolds admitting a concircular vector field. TRU Mathematics. 20(2) (1984), 235-247.
- T. Adati, D-conformal para killings vector fields in spetial para-Sasakian manifolds, Tensor, 47(6) (1988), 215-224.
- 14. U. Yildirim, M. Atceken and S. Dirik, *D-conformal curvature tensor on* $(LCS)_n$ -*Manifolds*, Turk. J. Math. Computer. Sci. **10**(2018), 215-221.

Received: 24.07.2024 Accepted: 05.10.2024