تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,740,994 |
تعداد دریافت فایل اصل مقاله | 3,238,444 |
On the flag curvature of left invariant generalized m-Kropina metrics on some Lie groups | ||
Journal of Finsler Geometry and its Applications | ||
دوره 5، شماره 2، اسفند 2024، صفحه 62-69 اصل مقاله (322.85 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2024.15233.1128 | ||
نویسنده | ||
Mahdieh Talebie* | ||
Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran | ||
چکیده | ||
In this paper we study invariant Finsler spaces with generalized m-Kropia metrics. We give an explicit formula for the flag curvature of invariant Finsler spaces with generalized m-Kropina metrics on some Lie groups. | ||
کلیدواژهها | ||
(α؛ β)-metric؛ Flag curvature؛ Kropina metric؛ Generalized m−Kropina metric | ||
مراجع | ||
1. H. An and S. Deng, Invariant (α, β)− metrics on homogeneous manifolds, monatsh.Math., 154 (2008), 89-102. 2. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β) spaces, Int. J.Geom. Methods Mod. Phys. 17(8) (2020), 2050117. 3. P. Bahmandoust and D. Latifi, On Finsler s−manifolds, Eur. J. Pur App. Math. 10(5)(2017) 1113-1125. 4. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry,Springer-Verlag, New-York, 2000. 5. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts inMathematics, Vol. 6 (2005). 6. S. Deng and Z. Hou, On flag curvature of homogeneous Randers spaces, Canad. J. Math.65 (2013), 66-81. 7. S. Deng and Z. Hou, Invariant Finsler metrics on homogeneous manifolds, J. Phys. A:Math Gen., 37 (2004), 8245-8253. 8. M. Ebrahimi and D. Latifi, Homogeneous geodesics on five-dimensional generalized symmetric spaces, Int. J. Geom. 11 (2022), 17-23. 9. M. Ebrahimi and D. Latifi, Geodesic vectors of Randers metric on generalized symmetric spaces, Global J. Adv. Res. Class. Modern. Geom. 10 (2021), 153-165. 10. M. Ebrahimi and D. Latifi, On flag curvature and homogeneous geodesics of left invariant Randers metrics on the semi-direct product a ⊕p r, Journal of Lie Theory 29 (3) (2019)619-627. 11. J. Kaur, G. Shanker and S. Jangir, On the flag curvature of a homogeneous Finsler space with generalized m−Kropina metric, Balkan J. Geom. Appl. 27 (2022), 66-76. 12. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57 (2007) 1421-1433. 13. D. Latifi and A. Razavi, Bi-invariant Finsler metrics on Lie groups, Austral. J. Basic Appl. Sci., 5(12) (2011), 507-511. 14. D. Latifi, Bi-invariant Randers metrics on Lie groups, Publ. Math. Debrecen 76(1-2) (2010), 219-226. 15. D. Latifi, Bi-invariant (α, β)− metrics on Lie groups, Acta. Uni. Apulensis, 65 (2021), 121-131. 16. D. Latifi and M. Toomanian, On Finsler Σ−spaces, J. Cont. Math. Ana., 50 (2015),107-115. 17. D. Latifi and M. Toomanian, On the existence of bi-invariant finsler metrics on Lie groups, Math. Sci. 7 (2013), 37. https://doi.org/10.1186/2251-7456-7-37 18. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math Kyoto Univ., 14 (1975), 477-498. 19. H. R. S. Moghaddam, On the curvature of invariant Kropina metrics, Int. Electron. J. Geom., 4 (2011), 136-140. 20. H. R. S. Moghaddam, Invariant Matsumoto metrics on homogeneous spaces, Osaka J.Math., 51 (2014), 39-45. 21. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β)− metrics, Int. J.Geom. Methods Mod. Phys., 13 (2016), 1650039, 1-11. 22. Y. Seunghun, Unit Killing vectors and homogeneous geodesics on some Lie groups, J.Chungcheong Math. Soc. 19(3) (2006) 291-297. 23. Milad L. Zeinali and D. Latifi , Geodesic vectors of invariant (α, β)− metrics on nilpotent Lie groups of five dimensional, Caspian Journal of Mathematical Sciences, 12(2) (2023),211-223. 24. S. Zolfegharzadeh, D. Latifi and M. Toomanian, Properties on Finsler Σ−spaces, Bull. Iran. Math. Soc. 49:60 (2023), 1-13. | ||
آمار تعداد مشاهده مقاله: 47 تعداد دریافت فایل اصل مقاله: 74 |