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Abstract. In this paper, we study pointwise projectively related Finsler gra-

dient Ricci solitons. We obtain an equation that characterizes the relationship

between two pointwise projectively related Finsler gradient Ricci solitons. Fur-

ther, if two Finsler gradient Ricci solitons (M, F̃ , dVF̃ ) and (M,F, dVF ) satisfy

F̃;k = µ∂[F̃ 2]
∂yk and some extra conditions, where “;” denotes the horizontal co-

variant derivative with respect to F , we characterize their relationships along

the geodesics. In particular, if two Finsler gradient Ricci solitons are both com-

plete, then (M,F, dVF ) is expanding or shrinking and (M, F̃ , dVF̃ ) is shrinking.

Keywords: Finsler metric; Finsler gradient Ricci soliton; projectively related

Finsler metrics; S-curvature; weighted Ricci curvature.

1. Introduction

The study on gradient Ricci solitons is one of the important topics in Rie-

mannian geometry. A complete Riemannian metric g on a smooth manifold M

is called a gradient Ricci soliton if there is a function f so that

Ric+Hess(f) = κ · g,

where κ ∈ R. The gradient Ricci solitons are called shrinking if κ > 0, steady

if κ = 0 and expanding if κ < 0. The Ricci solitons were first introduced by

R. Hamiltons in ([7]) as the self-similar solutions of Ricci flow, which play an
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important role in the proof of Poincaré conjecture by Perelmann. In the past

decades, a significant number of results have been obtained in study of gradient

Ricci solitons in Riemannian geometry. In particular, if f is a constant, the

gradient Ricci soliton becomes an Einstein metric.

It is natural to study and develop the theory of gradient Ricci solitons in

Finsler geometry. However, the study of gradient Ricci solitons in Finsler ge-

ometry becomes more complicated because of some obstructions. In this paper,

we always use (M,F, dVF ) to denote a Finsler manifold (M,F ) equipped with

a volume measure dVF = σF (x)dx
1 · · · dxn which we call a Finsler metric mea-

sure manifold (or Finsler measure space briefly). Let Y be a C∞ geodesic field

on an open subset U ⊂ M and ĝ := gY denote the Riemannian metric induced

by Y . Write

dVF = e−fVolĝ, Volĝ =
√

det (gij(x, Yx))dx
1 · · · dxn.

It is easy to see that f is given by

f(x) = ln

√
det(gij(x, Yx))

σF (x)
= τ(x, Yx),

which is just the distortion of F along Yx at x ∈ M ([6, 11]). Let y := Yx ∈ TxM

(that is, Y is the geodesic extension of y ∈ TxM). Then, by the definitions of

the S-curvature, we have

S(x, y) = Y [τ(x, Y )]|x = df(y),

Ṡ(x, y) = Y [S(x, Y )]|x = Hessf(y),

where Ṡ(x, y) := S;m(x, y)ym and “;” denotes the horizontal covariant deriv-

ative with respect to the Chern connection ([10, 11]). Further, the weighted

Ricci curvatures are defined as follows ([5, 8])

RicN (y) = Ric(y) + Ṡ(x, y)− S2(x, y)

N − n
, (1.1)

Ric∞(y) = Ric(y) + Ṡ(x, y) = Ric(y) + Hessf(y). (1.2)

An n-dimensional Finsler measure space (M,F, dVF ) with volume form dVF is

called a Finsler gradient Ricci soliton if there is a constant λ ∈ R such that the

weighted Ricci curvature Ric∞ of (M,F, dVF ) satisfies the following equation

([3, 13, 14])

Ric∞ = (n− 1)λF 2. (1.3)

The Finsler gradient Ricci soliton is called shrinking if λ > 0, steady if λ = 0

and expanding if λ < 0. Note that a Finsler gradient Ricci soliton is just

an Einstein-Finsler metric when Ṡ(x, y) = 0 for any y ∈ TxM and x ∈ M ,

particularly, when F is of constant S-curvature, S = (n+1)cF for some constant

c ∈ R. For the research on Finsler gradient Ricci soliton, please refer to [1, 2,

13, 14].
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In [12], Shen studies pointwise projectively related Einstein-Finsler metrics.

He shows that pointwise projectively related Einstein-Finsler metrics satisfy

a simple equation along geodesics. In particular, he shows that if two point-

wise projectively related Einstein-Finsler metrics are complete with negative

Einstein constants, then one is a multiple of another.

In this paper, we mainly study pointwise projectively related Finsler gradient

Ricci solitons. We will give an equation that characterizes the relationship

between two pointwise projectively related Finsler gradient Ricci solitons. In

particular, we have the following theorem.

Theorem 1.1. Let F and F̃ be Finsler gradient Ricci solitons on an n-

dimensional manifold M with

Ric∞ = (n− 1)λF 2, R̃ic∞ = (n− 1)λ̃F̃ 2,

where λ, λ̃ ∈ R. Suppose that F̃;k = µ∂[F̃ 2]
∂yk , where “;” denotes the horizontal

covariant derivative with respect to F and µ ̸= 0 is a constant. Let m :=

λ̃ − µ2, b := n+1
n−1 and θ :=

√
λm+ b2c2µ2. Assume that S̃ = S and F is

of constant S-curvature, S = (n + 1)cF for some constant c ̸= 0. Then F̃ is

pointwise projectively related to F and for any unit speed geodesic σ(t) of F ,

the following equalities hold.

(i) If θ ̸= 0 and m ̸= 0,

F̃ (σ̇(t)) =
θ tanh

[
θ
µ t+ tanh−1

(
ma2+bcµ

θ

)]
− bcµ

m
, (1.4)

where a ≥ 0 is a constant.

(ii) If θ ̸= 0 and m = 0,

F̃ (σ̇(t)) =

(
a20 −

λ

2bcµ

)
e−2bct +

λ

2bcµ
, (1.5)

where a0 ≥ 0 is a constant.

(iii) If θ = 0 and m ̸= 0,

F̃ (σ̇(t)) =
µ

m

(
1

t+ t0
− cb

)
, (1.6)

where t0 ∈ {0, µ
ma1

2+bcµ} and a1 ≥ 0 is a constant.

In particular, if F and F̃ are both complete, then F is expanding and F̃ is

shrinking (resp. F is shrinking or expanding and F̃ is shrinking). In this case,

λ < 0, µ2 < λ̃ < µ2
(
1− b2c2

λ

)
(resp. 0 < λ < 2bcµa20 or 2bcµa20 < λ < 0

(a0 ̸= 0), λ̃ = µ2).

It should be pointed out that, when F is of constant S-curvature, S =

(n + 1)cF , the Finsler gradient Ricci soliton F with Ric∞ = (n − 1)λF 2 is

actually an Einstein metric with Ric = (n − 1)λF 2. Further, if c = 0, F̃ and
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F are both Einstein-Finsler metrics under the condition that S̃ = S. Hence, in

the following discussions, we always assume that c ̸= 0.

2. Preliminaries

Let M be an n-dimensional smooth manifold. A Finsler metric on manifold

M is a function F : TM → [0,∞) satisfying the following properties: (1)

F is C∞ on TM\{0}; (2) F (x, λy) = λF (x, y) for any (x, y) ∈ TM and all

λ > 0; (3) F is strongly convex, that is, the matrix (gij(x, y)) =
(
1
2 (F

2)yiyj

)
is

positive definite for any nonzero y ∈ TxM . The pair (M,F ) is called a Finsler

manifold and g := gij(x, y)dx
i⊗dxj is called the fundamental tensor of F . For

a non-vanishing vector field V on M , one introduces the weighted Riemannian

metric gV on M given by

gV (y, w) = gij(x, Vx)y
iwj

for y, w ∈ TxM . In particular, gV (V, V ) = F 2(V ).

Let (M,F ) be a Finsler manifold of dimension n. Let TM0 := TM\{0} and

π : TM0 → M be the natural projective map. The pull-back π∗TM admits

a unique linear connection, which is called the Chern connection. The Chern

connection D is determined by the following equations

DV
XY −DV

Y X = [X,Y ],

ZgV (X,Y ) = gV (D
V
ZX,Y ) + gV (X,DV

Z Y ) + 2CV (D
V
Z V,X, Y )

for V ∈ TM\{0} and X,Y, Z ∈ TM , where

CV (X,Y, Z) = Cijk(x, V )XiY jZk =
1

4

∂3F 2(x, V )

∂V i∂V j∂V k
XiY jZk

is the Cartan tensor of F and DV
XY is the covariant derivative with respect to

the reference vector V .

Given a non-vanishing vector field V on M , the Riemannian curvature RV

is defined by

RV (X,Y )Z = DV
XDV

Y Z −DV
Y DV

XZ −DV
[X,Y ]Z

for any vector fields X,Y, Z on M . For two linearly independent vectors V,W ∈
TxM\{0}, the flag curvature is defined by

KV (V,W ) =
gV (R

V (V,W )W,V )

gV (V, V )gV (W,W )− gV (V,W )2
.

Then the Ricci curvature is defined as

Ric(V ) := F (x, V )2
n−1∑
i=1

KV (V, ei), (2.1)

where e1, · · · en−1,
V

F (V ) form an orthonormal basis of TxM with respect to gV .
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A curve σ = σ(t) is a geodesic if and only if, in local coordinates, its coor-

dinates
(
σi(t)

)
satisfy

σ̈i(t) + 2Gi (σ(t), σ̇(t)) = 0, (2.2)

where

Gi(x, y) =
1

4
gil(x, y)

{
∂gkl
∂xj

(x, y) +
∂gjl
∂xk

(x, y)− ∂gjk
∂xl

(x, y)

}
yjyk,

which are called the geodesic coefficients of F . F is said to be positively com-

plete (resp. negatively complete), if any geodesic on an open interval (a, b) can

be extended to a geodesic on (a,∞) (resp. (−∞, b)). F is said to be complete

if it is positively and negatively complete. Besides, two Finsler metrics on a

manifold are said to be pointwise projectively related if they have the same

geodesics as point sets ([12]).

A vector field Y on an open subset U ⊂ M is called a geodesic field if every

integral curve σ(t) of Y in U is a geodesic of F . In local coordinates, a geodesic

field Y = Y i ∂
∂xi is characterized by DY

Y Y = 0, that is,

Y j(x)
∂Y i

∂xj
(x) + 2Gi(x, Yx) = 0.

For any non-zero vector y ∈ TxM , there is an open neighborhood Ux and a

geodesic field Y on Ux such that Yx = y. Y is called the geodesic extension of

y.

We now consider pointwise projectively related Finsler metrics − those hav-

ing the same geodesics as set points. Given two Finsler metrics F and F̃ on an

n-dimensional manifold M , it is easy to verify that

G̃i = Gi +
F̃;ky

k

2F̃
yi +

F̃

2
g̃il

{
∂F̃;k

∂yl
yk − F̃;l

}
, (2.3)

where F̃;k denotes the covariant derivative of F̃ on (M,F ), that is,

F̃;k :=
∂F̃

∂xk
− ∂Gl

∂yk
∂F̃

∂yl
. (2.4)

By (2.3), we introduce the following important lemma.

Lemma 2.1. ([9]) Let (M,F ) be a Finsler space. A Finsler metric F̃ is point-

wise projective to F if and only if

∂F̃;k

∂yl
yk − F̃;l = 0.

In this case,

G̃i = Gi + Pyi, (2.5)
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where P is called the projective factor and determined by

P =
F̃;ky

k

2F̃
. (2.6)

Let F and F̃ be Finsler metrics on an n-dimensional manifold M . Assume

that F̃ is pointwise projective to F . Then we have ([12])

R̃ic(y) = Ric(y) + (n− 1)Ξ(y), (2.7)

where

Ξ(y) := P 2 − P;ky
k.

Let (M,F, dVF ) be an n-dimensional Finsler manifold with a smooth volume

measure dVF . Write the volume form dVF = σF (x)dx
1 · · · dxn. Define

τ(x, y) := ln

√
det (gij(x, y))

σF (x)
. (2.8)

We call τ the distortion of F . It is natural to study the rate of change of the

distortion along geodesics. For a vector y ∈ TxM\{0}, let σ = σ(t) be the

geodesic with σ(0) = x and σ̇(0) = y. Set

S(x, y) :=
d

dt
[τ(σ(t), σ̇(t))] |t=0. (2.9)

S is called the S-curvature of F . Further, we have ([6, 10])

S =
∂Gm

∂ym
− yi

∂

∂xi
(lnσF (x)). (2.10)

By (2.5) and (2.10), we can get the following important lemma.

Lemma 2.2. ([4]) Let F and F̃ be Finsler metrics on n-dimensional manifold

M . Suppose that F̃ is pointwise projective equivalent to F . Then the projective

factor P is given by

P =
1

n+ 1

(
S̃− S

)
− yi

∂

∂xi
[ln f ] , (2.11)

where f = f(x) is a scalar function on M determined by dVF̃ =
(
1/fn+1

)
dVF ,

that is, f(x) =
(

σF

σ̃F̃

)1/(n+1)

.

3. Projectively Related Finsler Gradient Ricci Solitons

In this section, we first introduce the relations of weighted Ricci curvatures

of projectively related Finsler gradient Ricci solitons. Then we will give an

equation that projectively related Finsler gradient Ricci solitons satisfy.

Assume that F̃ is pointwise projective to F . Let “|” denote the horizontal

covariant derivative with respect to F̃ . From (2.5), (2.10) and (2.11), we have
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S̃|j(x, y) =
∂S̃

∂xj
− ∂G̃i

∂yj
∂S̃

∂yi

=
∂S

∂xj
+ (n+ 1)

(
∂P

∂xj
+

∂ ((ln f);0)

∂xj

)
−
(
∂Gi

∂yj
+ Pyjyi + Pδij

){
∂S

∂yi
+ (n+ 1)

(
∂P

∂yi
+

∂

∂xi
[ln f ]

)}

=

(
∂S

∂xj
− ∂Gi

∂yj
∂S

∂yi

)
+ (n+ 1)

(
∂P

∂xj
− ∂Gi

∂yj
∂P

∂yi

)
+(n+ 1)

(
∂ ((ln f);0)

∂xj
− ∂Gi

∂yj
∂ ((ln f);0)

∂yi

)
−(Pyjyi + Pδij)

{
∂S

∂yi
+ (n+ 1)

(
∂P

∂yi
+

∂ ((ln f);0)

∂yi

)}
= S;j(x, y) + (n+ 1) [P;j + (ln f);0;j ]− S

∂P

∂yj
− (n+ 1)P

∂P

∂yj

−(n+ 1)
∂P

∂yj
(ln f);0 − P

∂S

∂yj
− (n+ 1)P

∂P

∂yj
− (n+ 1)P

∂((ln f);0)

∂yj

= S;j(x, y) + (n+ 1) [P;j + (ln f);0;j ]

− ∂

∂yj
[P (S+ (n+ 1) (P + (ln f);0))] ,

where

(ln f);0 :=

(
∂

∂xi
[ln f ]

)
yi, (ln f);0;j := (ln f);i;jy

i.

Further, we have

˙̃S(x, y) = S̃|j(x, y)y
j

= Ṡ(x, y) + (n+ 1) [P;0 + (ln f);0;0]

−2P {S+ (n+ 1) [P + (ln f);0]} , (3.1)

where

P;0 := P;jy
j , (ln f);0;0 := (ln f);i;jy

iyj .

By the definition of Ric∞, (2.7) and (3.1), we have

R̃ic∞ = R̃ic+ ˙̃S

= Ric+ (n+ 1)Ξ + Ṡ+ (n+ 1) [P;0 + (ln f);0;0]

−2P {S+ (n+ 1)[P + (ln f);0]}
= Ric+ Ṡ+ 2P;0 − (n+ 3)P 2 − 2PS+ (n+ 1)(ln f);0;0

−2(n+ 1)P (ln f);0

= Ric∞ + 2P;0 − (n+ 3)P 2 − 2P [S+ (n+ 1)(ln f);0]

+(n+ 1)(ln f);0;0. (3.2)
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Then we have the following proposition.

Proposition 3.1. Let F and F̃ be Finsler metrics on an n-dimensional man-

ifold M . If F̃ is pointwise projective equivalent to F . Then

R̃ic∞ = Ric∞ +2P;0 − (n+3)P 2 − 2P [S+ (n+ 1)(ln f);0] + (n+1)(ln f);0;0.

(3.3)

Similarly, from (1.1), (2.11) and (3.1), we have the following result.

Proposition 3.2. Let F and F̃ be Finsler metrics on an n-dimensional man-

ifold M . If F̃ is pointwise projective equivalent to F . Then

R̃icN = RicN + 2P;0 −
(n+ 1)2

N − n
((ln f);0)

2 −
(
N(n+ 3)− n+ 1

N − n

)
P 2

−
(
2(N + 1)

N − n

)
SP − 2(n+ 1)

N − n
[(N + 1)P + S] (ln f);0

+(n+ 1)(ln f);0;0. (3.4)

By Proposition 3.1, we immediately obtain the following

Theorem 3.3. Let (M,F, dVF ) and (M, F̃ , dVF̃ ) be two Finsler measure spaces

on M . Assume that F̃ is pointwise projective equivalent to F and Ric∞ =

(n− 1)λF 2. Then R̃ic∞ = (n− 1)λ̃F̃ 2 if and only if

2P;0−(n+3)P 2−2P [S+ (n+ 1)(ln f);0]+(n+1)(ln f);0;0 = (n−1)
(
λ̃F̃ 2 − λF 2

)
.

(3.5)

If the projective transformation preserves S-curvature, that is, S̃ = S, by

(2.11), we know that (ln f);0 = −P . Then (3.3) becomes

R̃ic∞ = Ric∞ − (n− 1)P;0 + (n− 1)P 2 − 2PS. (3.6)

Further, we have the following

Proposition 3.4. Let F and F̃ be Finsler metrics on an n-dimensional man-

ifold M . Suppose that F̃ is pointwise projectively related to F and S̃ = S.

Furthermore, assume that F is of constant S-curvature, S = (n + 1)cF for

some constant c. If Ric∞ = (n− 1)λF 2, then R̃ic∞ = (n− 1)λ̃F̃ 2 if and only

if

λ̃F̃ 2 − λF 2 = P 2 − P;ky
k − 2(n+ 1)c

n− 1
FP. (3.7)

By (2.6), we can rewrite (3.7) as follows.

λ̃F̃ 2 − λF 2 =
3

4

(
F̃;ky

k

F̃

)2

− F̃;k;ly
kyl

2F̃
− (n+ 1)cF

n− 1

F̃;ky
k

F̃
. (3.8)

The equation (3.8) is a starting point for our discussions in next section. We

should point out that the projective transformations considered in Proposition
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3.4 are actually those transformations which change an Einstein-Finsler metric

as a Finsler gradient Ricci soliton.

4. An important class of projective equivalences between Finsler gra-

dient Ricci solitons

In this section, we will discuss in detail a special kind of projective equiva-

lence between two Finsler gradient Ricci solitons. Firstly, we have the following

fundamental lemma.

Lemma 4.1. ([12]) Let F and F̃ be Finsler metrics on an n-dimensional man-

ifold M . Suppose that

F̃;k = µ
∂[F̃ 2]

∂yk
, (4.1)

where µ is a constant. Then F̃ is pointwise projective to F . In this case, P =

µF̃ .

Under the condition (4.1), if S̃ = S, by (3.6), we get

R̃ic∞ = Ric∞ − (n− 1)µ

[
F̃;0 − µF̃ 2 +

2S

n− 1
F̃

]
.

Further, we have the following

Proposition 4.2. Let (M,F ) be a Finsler space of dimension n and F̃ another

Finsler metric on M . Suppose that (4.1) holds for some constant µ ̸= 0 and

S̃ = S. Furthermore, assume that F is of constant S-curvature, S = (n+ 1)cF

for some constant c. If Ric∞ = (n − 1)λF 2, then R̃ic∞ = (n − 1)λ̃F̃ 2 if and

only if

λ̃F̃ 2 − λF 2 = µ2F̃ 2 − µF̃;ky
k − 2(n+ 1)cµ

n− 1
FF̃ . (4.2)

Remark 4.3. When µ = 0, F̃;k = 0. In this case, F is affinely equivalent to F̃ ,

that is, F and F̃ have the same geodesics as parametrized curves ([6]). Hence,

we will not consider the case that µ = 0 in this paper.

Let σ(t) be an arbitrary unit speed geodesic in (M,F ) and

F̃ (t) := F̃ (σ(t), σ̇(t)).

Observe that F̃ ′(t) = F̃;k(σ(t), σ̇(t))σ̇
k(t). Let

g(t) :=

√
F̃ (t).

(4.2) simplifies to(
λ̃− µ2

)
g4(t) +

2(n+ 1)cµ

n− 1
g2(t) + 2µg(t)g′(t) = λ. (4.3)

The equation (4.3) is solvable.
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For simplicity, let

m := λ̃− µ2, b :=
n+ 1

n− 1
, (4.4)

θ :=

√
λ
(
λ̃− µ2

)
+ c2µ2

(
n+ 1

n− 1

)2

=
√
λm+ b2c2µ2 ≥ 0. (4.5)

When θ > 0 and m ̸= 0, the solution of (4.3) with g(0) = a ≥ 0 is determined

by

g(t) =

√√√√θ tanh
[
θ
µ t+ tanh−1

(
ma2+bcµ

θ

)]
− bcµ

m
. (4.6)

The following fact is notable

−1 < tanh

[
θ

µ
t+ tanh−1

(
ma2 + bcµ

θ

)]
< 1.

We can find that if θ = 0 and m = 0, then µ = 0 or c = 0. In this case, the

discussion is trivial, so we omit it. The discussions in Sections 4.1-4.3 are based

on the condition that θ > 0, and the situation when θ = 0 will be discussed in

Section 4.4.

4.1. θ > 0 and m < 0

In this subsection, we study the solution (4.6) when θ > 0 and m < 0. In

this case, λ̃ < µ2.

Case 1: λ < 0. In this case, the solution (4.6) can be rewritten as

g(t) =

√√√√ θ

m

{
tanh

[
θ

µ
t+ tanh−1

(
ma2 + bcµ

θ

)]
− bcµ√

b2c2µ2 + λm

}

and −∞ < λ̃ < µ2. As the result, we have

bcµ√
b2c2µ2 + λm

∈ (−1, 1).

(i) If µ > 0, then g(t) is defined on I = (−∞, τ) and

0∫
−∞

g2(t)dt = ∞ and

τ∫
0

g2(t)dt < ∞.

(ii) If µ < 0, then g(t) is defined on I = (−δ,+∞) and

0∫
−δ

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.
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Case 2: λ > 0. In this case, the solution (4.6) can be rewritten as

g(t) =

√√√√ θ

m

{
tanh

[
θ

µ
t+ tanh−1

(
ma2 + bcµ

θ

)]
− bcµ√

b2c2µ2 + λm

}

and µ2(1− b2c2

λ ) < λ̃ < µ2 and cµ > 0. As the result, we have

bcµ√
b2c2µ2 + λm

∈ (1,∞).

Thus g(t) is defined on I = (−∞,+∞).

(i) If µ > 0, c > 0, then

0∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt < ∞.

(ii) If µ < 0, c < 0, then

0∫
−∞

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.

Case 3: λ = 0. In this case, cµ > 0 and the solution (4.6) can be rewritten

as

g(t) =

√
θ

m

{
tanh

[
θ

µ
t+ tanh−1

(
ma2 + bcµ

θ

)]
− 1

}
and θ = bcµ > 0. Thus g(t) is defined on I = (−∞,+∞).

(i) If µ > 0, c > 0, then

0∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt < ∞.

(ii) If µ < 0, c < 0, then

0∫
−∞

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.

From the above arguments, we obtain the following

Proposition 4.4. Let (M,F ) be a Finsler space of dimension n and F̃ another

Finsler metric on M . Suppose that (4.1) holds for some constant µ ̸= 0 and

S̃ = S. Furthermore, assume that F is of constant S-curvature, S = (n+1)cF

for some constant c ̸= 0. If F and F̃ are Finsler gradient Ricci solitons on M

with

Ric∞ = (n− 1)λF 2, R̃ic∞ = (n− 1)λ̃F̃ 2,
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where λ ∈ R, λ̃ < µ2. Then F̃ is pointwise projectively related to F and along

any unit speed geodesic σ(t) of F ,

F̃ (σ̇(t)) =
θ tanh

[
θ
µ t+ tanh−1

(
ma2+bcµ

θ

)]
− bcµ

m
, (4.7)

where m := λ̃− µ2, b := n+1
n−1 , θ :=

√
λm+ b2c2µ2 > 0.

(i) If λ < 0, then F and F̃ are both not complete. In particular, F is posi-

tively complete (resp. negatively complete) if and only if F̃ is positively

complete (resp. negatively complete).

(ii) If λ ≥ 0, then F is complete.

(iia) If µ > 0, c > 0, then F̃ is negatively complete.

(iib) If µ < 0, c < 0, then F̃ is positively complete.

4.2. θ > 0 and m > 0

In this subsection, we study the solution (4.6) when θ > 0 and m > 0. In

this case, λ̃ > µ2.

Case 1: λ < 0. In this case, the solution (4.6) can be rewritten as

g(t) =

√√√√ θ

m

{
tanh

[
θ

µ
t+ tanh−1

(
ma2 + bcµ

θ

)]
− bcµ√

b2c2µ2 + λm

}
and

µ2 < λ̃ < µ2(1− b2c2

λ
), cµ < 0.

As the result, we have

bcµ√
b2c2µ2 + λm

< −1.

Thus g(t) is defined on I = (−∞,+∞).

(i) If µ > 0, c < 0, then

0∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt = ∞.

(ii) If µ < 0, c > 0, then

0∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt = ∞.

Case 2: λ > 0. In this case, the solution (4.6) can be rewritten as

g(t) =

√√√√ θ

m

{
tanh

[
θ

µ
t+ tanh−1

(
ma2 + bcµ

θ

)]
− bcµ√

b2c2µ2 + λm

}
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and µ2 < λ̃ < ∞. As the result, we have

bcµ√
b2c2µ2 + λm

∈ (−1, 1).

(i) If µ > 0, then g(t) is defined on I = (−δ,+∞) and

0∫
−δ

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt < ∞.

(ii) If µ < 0, then g(t) is defined on I = (−∞, τ) and

0∫
−∞

g2(t)dt < ∞ and

τ∫
0

g2(t)dt < ∞.

Case 3: λ = 0. In this case, cµ < 0 and the solution (4.6) can be rewritten

as

g(t) =

√
θ

m

{
tanh

[
θ

µ
t+ tanh−1

(
ma2 + bcµ

θ

)]
+ 1

}
and θ = −bcµ > 0. Thus g(t) is defined on I = (−∞,+∞).

(i) If µ > 0, c < 0, then

0∫
−∞

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.

(ii) If µ < 0, c > 0, then

0∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt < ∞.

Proposition 4.5. Let (M,F ) be a Finsler space of dimension n and F̃ another

Finsler metric on M . Suppose that (4.1) holds for some constant µ ̸= 0 and

S̃ = S. Furthermore, assume that F is of constant S-curvature, S = (n+1)cF

for some constant c ̸= 0. If F and F̃ are Finsler gradient Ricci solitons on M

with

Ric∞ = (n− 1)λF 2, R̃ic∞ = (n− 1)λ̃F̃ 2,

where λ ∈ R, λ̃ > µ2. Then F̃ is pointwise projectively related to F and along

any unit speed geodesic σ(t) of F ,

F̃ (σ̇(t)) =
θ tanh

[
θ
µ t+ tanh−1

(
ma2+bcµ

θ

)]
− bcµ

m
, (4.8)

where m := λ̃− µ2, b := n+1
n−1 , θ :=

√
λm+ b2c2µ2 > 0.

(i) If λ < 0, then F and F̃ are both complete.

(ii) If λ > 0, then any geodesic of F̃ has finite length. Hence, F̃ is neither

positively complete, nor negatively complete.
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(iii) If λ = 0, then F is complete.

(iiia) If µ > 0, c < 0, then F̃ is positively complete.

(iiib) If µ < 0, c > 0, then F̃ is negatively complete.

4.3. θ > 0 and m = 0

In this subsection, we will discuss the equation (4.3) with θ > 0 and m = 0.

In this case, λ̃ = µ2 ̸= 0 and c ̸= 0, and then the equation (4.3) can be simplified

to

2bcµg2(t) + 2µg(t)g′(t) = λ. (4.9)

The solution of (4.9) with g(0) = a0 ≥ 0 is determined by

g(t) =

√(
a02 −

λ

2bcµ

)
e−2bct +

λ

2bcµ
. (4.10)

Case 1: λcµ > 0. In this case, e2bct > 1− 2bcµa2
0

λ .

(i)
2bcµa2

0

λ > 1. In this case, g(t) is defined on I = (−∞,+∞) and

0∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt = ∞.

(ii)
2bcµa2

0

λ < 1.

(iia) If c > 0, then g(t) is defined on I = (−δ,+∞) and

0∫
−δ

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.

(iib) If c < 0, then g(t) is defined on I = (−∞, τ) and

0∫
−∞

g2(t)dt = ∞ and

τ∫
0

g2(t)dt < ∞.

Case 2: λcµ < 0. In this case,

e2bct < 1− 2bcµa20
λ

.

(i) If c > 0, then g(t) is defined on I = (−∞, τ) and

0∫
−∞

g2(t)dt = ∞ and

τ∫
0

g2(t)dt < ∞.

(ii) If c < 0, then g(t) is defined on I = (−δ,+∞) and

0∫
−δ

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.
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Case 3: λ = 0. In this case, the solution (4.10) can be rewritten as

g(t) = a0e
−bct.

Thus g(t) is defined on I = (−∞,+∞).

(i) If c > 0, then

0∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt < ∞.

(ii) If c < 0, then

0∫
−∞

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.

Proposition 4.6. Let (M,F ) be a Finsler space of dimension n and F̃ another

Finsler metric on M . Suppose that (4.1) holds for some constant µ ̸= 0 and

S̃ = S. Furthermore, assume that F is of constant S-curvature, S = (n+1)cF

for some constant c ̸= 0. If F and F̃ are Finsler gradient Ricci solitons on M

with

Ric∞ = (n− 1)λF 2, R̃ic∞ = (n− 1)µ2F̃ 2,

where λ ∈ R. Then F̃ is pointwise projectively related to F and along any unit

speed geodesic σ(t) of F ,

F̃ (σ̇(t)) =

(
a0

2 − λ

2bcµ

)
e−2bct +

λ

2bcµ
, (4.11)

where b := n+1
n−1 .

(i) λ ̸= 0.

(ia) If
2bcµa2

0

λ > 1, then F and F̃ are both complete.

(ib) If
2bcµa2

0

λ < 1, then no geodesic of F and F̃ are defined on (−∞,+∞).

Further, F is positively complete (resp. negatively complete) if and

only if F̃ is positively complete (resp. negatively complete).

(ii) λ = 0. In this case, F is complete, but F̃ is not complete.

(iia) If c > 0, then F̃ is negatively complete.

(iib) If c < 0, then F̃ is positively complete.

4.4. θ = 0 and m ̸= 0

In this subsection, we will discuss the equation (4.3) with θ = 0 and m ̸= 0.

In this case, λ = − b2c2µ2

m , and the equation (4.3) can be rewritten as

m2g4(t) + 2bcmµg2(t) + 2mµg(t)g′(t) = −b2c2µ2. (4.12)
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The equation (4.12) is solvable and the solution can be expressed in the follow-

ing form

g(t) =

√
µ

m

(
1

t+ t0
− bc

)
, t0 ∈ R. (4.13)

The following discussions are based on the condition that t0 ̸= 0 or t0 = 0.

Case 1: t0 ̸= 0. In this case, the solution (4.13) with g(0) = a1 ≥ 0 is

determined by t0 = µ
ma1

2+bcµ and cmµ > 0.

(i) If mµ < 0 and c < 0, then t0 < 0, g(t) is defined on I = (−δ,+∞) and

0∫
−δ

g2(t)dt < ∞ and

+∞∫
0

g2(t)dt = ∞.

(ii) If mµ > 0 and c > 0, then t0 > 0, g(t) is defined on I = (−∞, τ) and

0∫
−∞

g2(t)dt = ∞ and

τ∫
0

g2(t)dt < ∞.

Case 2: t0 = 0. In this case, the solution (4.13) can be written as

g(t) =

√
µ

m

(
1

t
− bc

)
. (4.14)

(i) mµ > 0.

(ia) If c > 0, then g(t) is defined on I = (0, τ) and

τ∫
0

g2(t)dt = ∞.

(ib) If c < 0, then g(t) is defined on I = (−∞,−τ) or (0,+∞) and

−τ∫
−∞

g2(t)dt = ∞ and

+∞∫
0

g2(t)dt = ∞.

(ii) mµ < 0.

(iia) If c < 0, then g(t) is defined on I = (−δ, 0) and

0∫
−δ

g2(t)dt = ∞.

(iib) If c > 0, then g(t) is defined on I = (−∞, 0) or (δ,+∞) and

0∫
−∞

g2(t)dt = ∞ and

+∞∫
δ

g2(t)dt = ∞.
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Proposition 4.7. Let (M,F ) be a Finsler space of dimension n and F̃ another

Finsler metric on M . Suppose that (4.1) holds for some constant µ ̸= 0 and

S̃ = S. Furthermore, assume that F is of constant S-curvature, S = (n+1)cF

for some constant c ̸= 0. If F and F̃ are Finsler gradient Ricci solitons on M

with

Ric∞ = −(n− 1)
b2c2µ2

m
F 2, R̃ic∞ = (n− 1)λ̃F̃ 2,

where b := n+1
n−1 and m := λ̃− µ2 ̸= 0. Then F̃ is pointwise projectively related

to F and along any unit speed geodesic σ(t) of F ,

F̃ (σ̇(t)) =
µ

m

(
1

t+ t0
− cb

)
, (4.15)

where t0 ∈ {0, µ
ma1

2+bcµ} with a1 ≥ 0. In this case, no geodesic of F and F̃

are defined on (−∞,+∞). Furthermore, if F is positively complete (resp. neg-

atively complete), then F̃ is positively complete (resp. negatively complete).
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