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PYTHON APPROACH ON FUZZY TIME SERIES
ARIMA (1, 1, 1) MODELTO ANALYSE ORIGINAL AND
PREDICT RESULTS FOR ONLINE RETAIL OF FUEL
BOOKING SERVICES

B. Mohamed Harif *“ | M. Karthikeyan and K.Perarasan

ABSTRACT. This paper contributes to modeling and forecasting gas
booking demand in an online retail environment using time series
techniques. Our work demonstrates how historical demand data can
be utilized to estimate future demand and its impact on the supply
chain. The historical demand data were used to create several au-
toregressive integrated moving average (ARIMA) models using the
Box-Jenkins time series procedure. The best model was selected
based on four performance criteria: statistical results, maximum
likelihood, and standard error. The selected model, ARIMA (1, 1,
1), was validated using additional historical demand data under the
same conditions. The results demonstrate that the model can ef-
fectively estimate and forecast future demand for gas booking in an
online retail environment. These findings will provide trustworthy
guidance to the company’s management in decision-making.
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1. INTRODUCTION

In general, there are several techniques for forecasting demand, such
as exponential smoothing. However, to apply these methodologies, we
must first obtain historical data. When historical data is unavailable,
we rely on estimates based on analogous circumstances or the engineer’s
experience. This situation often involves a high degree of ambiguity,
which diminishes over time [1].

Forecasting involves predicting future levels of specific variables. Fore-
casting methods are classified into four types: qualitative, time series,
causal, and simulation. A time series is essentially a sequence of ob-
servations arranged chronologically. Time series forecasting models pre-
dict demand using mathematical methodologies grounded in past data.
These models operate under the assumption that future patterns will
resemble past patterns, allowing us to effectively use historical data to
forecast future demand [2]. Predictive accuracy tends to be high when
the transition patterns are stable and periodic, but may falter when
they exhibit highly irregular patterns. We can model time series using
techniques like autoregressive integrated moving average (ARIMA), as
well as classic statistical models such as moving average, exponential
smoothing, and ARIMA itself. These models are linear because they
predict future values as linear functions of past data. Researchers have
predominantly focused on linear models in recent decades due to their
simplicity and practicality. Time series forecasting models are primarily
employed for demand forecasting [3, 4].

Kurawarwala and Matsuo utilized the autoregressive moving average
hypothesis (ARIMA) to analyze seasonal fluctuations in demand and
validated their models by assessing forecast performance. Meanwhile,
Miller and Williams enhanced forecasting accuracy by incorporating sea-
sonal components into their model using a multiplicative approach.

Hyndman expanded upon the research conducted by Miller and Williams
by exploring alternative correlations between trend and seasonality within
the framework of seasonal ARIMA models. When the seasonal adjust-
ment order is large or diagnostic tests fail to confirm stationarity post-
seasonal adjustment, the traditional ARIMA approach becomes imprac-
tical and often impossible to apply [5, 6].

The The study also compared the predictive performances of ARIMA
and AR models, concluding that the ARIMA model provides the most
accurate forecasts for new cases in India. These models were imple-
mented using the Python programming language [7].
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Karakoyun [8,9] has compared the ARIMA time series model with the
LSTM deep learning algorithm for forecasting Bitcoin prices. In such
cases, the static parameters of the classical ARIMA model are considered
a primary constraint when forecasting highly volatile seasonal demand.
Another limitation of the standard ARIMA approach is that it requires a
large number of observations to achieve the best-fitting model for a given
data series. An ARIMA model is denoted as ARIMA (p, d, q), where
p represents the number of autoregressive components, d represents the
number of differences, and q represents the number of moving average
components.

2. RESEARCH METHODOLOGY

This section discusses the forecasting technique for real-time data of
gas booking in online retail. The approach starts with data selection
and proceeds to forecasting using the autoregressive integrated moving
average (ARIMA) method with parameters (1,1,1).

3. DATA SELECTION PROCESS

This study selected monthly data for gas booking in online rates from
January 2009 to December 2011. The statistics were gathered from
https://www.kaggle.com.

4. FORECASTING PROCEDURE

This study forecasted the performance of the gas booking rate us-
ing the statistical technique depicted in the following flow chart. The
forecasting procedure begins with identifying the data model using au-
toregressive integrated moving average (ARIMA). When constructing
an ARIMA model, it is essential to analyze the autocorrelation func-
tion (ACF) and the partial autocorrelation function (PACF). The sub-
sequent step in this research involves estimating parameters for the cho-
sen ARIMA model. Diagnostic checks are crucial to validate the model.
The residual is the difference between observed and estimated values of
the quantity of interest (sample mean). The residuals should exhibit no
correlation, with a mean of zero and constant variance. The final steps
include performing forecasting and error checking.


https://www.kaggle.com
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5. MATHEMATICAL DERIVATION OF ARIMA MODEL

This section discusses the mathematical derivation of autoregressive
integrated moving average (ARIMA). ARIMA combines the autoregres-
sive (AR) and moving average (MA) methods, integrating data from a
differencing procedure. Differencing ensures that the data used in this
research exhibit stationary characteristics. Therefore, the combination
of these methods is known as autoregressive integrated moving average.

Firstly, the article explains the development of the autoregressive
(AR) approach. An autoregressive model represents a type of random
process that characterizes time-varying phenomena in time series data.
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The autoregressive model states that the output variable depends lin-
early on its own past values and a stochastic term, thus taking the form
of a stochastic difference equation.

The term AR(p) denotes an autoregressive model of order p. The
AR(p) model is defined as follows:

Xt =c+ <P1Xt—1 + ...+ QOpXt—p + &¢

p
Xi=c+ Z ©iXe—i + et
i=1
Where ¢;, ... ¢, the parameter of the model is, ¢ is constant, and &
is white noise.
The notation MA (gq) refers to the moving average model of order ¢ :

Xe=p+e+bie1+ ...+ 0464

q
Xe=pte+d X

i=1
Where p is the mean of the series, 0;, .. .0, parameters of the model,
and €4,€¢—1,...,€1—q are white noise error terms. The value of ¢ is called

the order of the MA model.
From the above equation can be written as follws,

p q
X = C+Z<PiXt—i +ert+pte +29i5t—i
i=1 i=1

p q
Xi=c+ > @iXii+ Y bier
i=1 i=1

p q
(]. — ZO&ZI/') Xt == <]. + Zele) Et
=1 =1

Where L is Log operator,

P p—d
(1 - ZaiLZ) X, = (1 — Zaﬁ‘) (1-1L)*
=1 =1

An ARIMA (p,d,q) process expresses this polynomial factorization
property with p = p’ — d, is given below,
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(1 —i@-y’) (1-L)= <1+i9iy) &t
(1—Z¢2L1) (1-L)X, =06+ (1+Z€L’)

=1
Which is defined for ARIMA (p,d, q).

4. RESULTS AND DISCUSSION

This article utilizes real data to forecast the demand for gas booking in
an online retail context. Estimating the model’s coefficients involves us-
ing the ARIMA procedure in the Python programming language within
the time series module. This procedure estimates the coefficients of pre-
defined models by specifying the parameters p, q, and d, utilizing a rapid
maximum likelihood estimation algorithm.

Summary Statistics of Imports of data
Quantity Prize | Costumer Id
count | 1.067371le+ 06 | 1.067371e + 06 | 824364.000000
mean | 9.938898e + 00 | 4.649388e + 00 | 15324.638504

std | 1.727058e + 02 | 1.235531e + 02 1697.464450

min | —8.099500e + 04 | —5.359436e + 04 | 12346.000000
25% | 1.000000e + 00 | 1.250000e + 00 | 13975.000000
50% | 3.000000e + 00 | 2.100000e + 00 | 15255.000000
75% | 1.000000e + 01 | 4.150000e + 00 | 16797.000000
max | 8.099500e + 04 | 3.897000e 4+ 04 | 18287.000000

::::

InvoiceDate

Figure 1: Evolution of the final product’s sale of gas booking in online
retail environment

The technique includes adding new time series that indicate the mod-
ified or forecasted values by the model, along with residuals (adjustment
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errors) and 95% confidence intervals for adjustments. The selection of
the best model aims for simplicity while minimizing criteria such as AIC
(Akaike Information Criterion), SBC (Schwarz Bayesian Criterion), vari-
ance, and maximum likelihood. The chosen model in this case is ARIMA
(1,1,1).
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Figure 2:Residuals and Histogram of residuals of gas booking in an
online retail environment
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Figure 3:Representation of Stationary Time Series of gas booking in
online retail environment

ACF of diferenced series

Figure 4: Autocorrelation Function of gas booking in online retail
environment
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Figure 5: Partial Autocorrelation Function of gas booking in online
retail environment
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Figure 6:First Difference Autocorrelation Function of gas booking in
online retail environment

Accuracy The accuracy of the ARIMA (1,1,1) model was evaluated
by comparing experimental and simulated petrol booking data in an
online retail environment over the same period. Figures 1 and 2 depict
this comparison, demonstrating that the selected model exhibits high
accuracy and effectively captures the dynamic behavior of petrol booking
in the online retail context. Therefore, this model can be utilized for
analyzing and forecasting demand in online booking scenarios.

From Figure 6, it is observed that the model validation shows pre-
dicted demand fluctuating around the fitted values. Additionally, the
predicted demand remains within the upper and lower tolerance limits.
Although some variability in error is noticeable, it generally falls within
the tolerance interval. To further minimize this error, we propose a new
approach for future work.



150 B. M. Harif, M. Karthikeyan and K.Perarasan

120000
100000
80000

WMWWMWWMJWWW‘W muwamwwwmMWWWW f

01 01 0 04 ) 1 0
2010-01 2010-04 2010-07 2010-105, o1 Autocorfktn 2011-04 2011-07 2011-10 2012-01

o

Figure 7:Predicted First Difference Autocorrelation Function, Partial
Autocorrelation Function and Autocorrelation Function of petrol book-
ing in online retail environment

After identifying the best demand model for our scenario, the next
step is forecasting. Using Python programming, we predict patterns
and provide forecasts based on our ARIMA (1, 1,1) model. Table 1 and
Figure 8 illustrate the forecasted outcomes for gas booking in an online
retail environment over the next six months. These results demonstrate
that the selected model is
effective for modeling and forecasting future demand in this context. It’s
crucial to continuously update historical data with fresh inputs to refine
the model and improve forecasting accuracy.

The forecasting models have streamlined the gas booking process in
the online retail environment. By accurately predicting demand, the
model enables us to optimize online booking strategies and avoid signifi-
cant cost losses. This capability enhances decision-making regarding fuel
supply and daily online booking operations, thereby mitigating potential
losses across the entire booking process.

Table 1: Predicted price from gas booking in an online retail environ-
ment
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SARIMAX Results
Dep. Variable: value No. Observations: 739
Model: ARIMA(1, 1, 1) Log Likelihood -80836.590
Date: Mon, 22 Jan 2024 AIC 16079.181
Time: @6:54:37 BIC 16892.993
Sample: 12-91-2009 HQIC 16084.5087
- 12-89-2011

Covariance Type: opg

coef std err z P> z| [@.025 8.975]
ar.L1 9.2353 9.e438 4.929 0.000 ©8.142 8.329
ma.Ll -8.9627 9.e14 -71.274 0.000 -9.989 -9.936
sigma2 1.981e+88 §.22e-12 2.41e+19 0 .0e8 1.98e+88 1.98e+88
Ljung-Box (L1) (Q): @.54  Jarque-Bera (JB): 83085.61
Prob(Q): @.46 Prob(1B): 2.80
Heteroskedasticity (H): ®.85 Skew: 2.59
Prob(H) (two-sided): @.19 Kurtosis: 18.66
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Figure 8: Forecasted price and Original price of gas booking in an
online retail environment

5. CONCLUSION

Demand forecasting plays a crucial role in supply chain management,
integrating with various business functions to become a pivotal planning
process for the future. In this context, we developed an ARIMA model
to forecast demand for gas booking in an online retail environment us-
ing the Box-Jenkins time series approach. Historical demand data were
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utilized to develop multiple models, and the most suitable model was
selected based on four performance criteria: SBC, AIC, standard er-
ror, and maximum likelihood. The ARIMA (1, 1, 1) model emerged
as the optimal choice, as it minimizes these criteria effectively. The
results obtained demonstrate that this ARIMA model is capable of ac-
curately modeling and forecasting future demand in this online retail
setting. These findings will provide reliable guidance to managers in the
food manufacturing industry, aiding them in making informed decisions
regarding production and supply chain management.

In the future, our plan includes developing new forecasting models
that integrate both qualitative and quantitative methodologies to en-
hance accuracy. We aim to explore neural network techniques and com-
pare them with ARIMA to assess the neural network’s efficacy in online
booking forecasting. Additionally, we intend to consistently explore the
potential of combining ARIMA with radial basis function (RBF) models
to achieve consistently high forecast
accuracy. These efforts will advance our capability to predict and man-
age demand effectively in the online booking environment.

APPENDIX

import numpy as np
import pandas as pd

import plotly.graph_objects as go

import plotly.express as px

from plotly.subplots import make_subplots
import matplotlib.pyplot as plt

import seaborn as sns

import sys

sns.set()
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[l

[ ] path = ‘on.csv’
df = pd.read_csv(path)

df.head()

Invoice StockCode

Description Quantity

0 489434 85048 15CM CHRISTMAS GLASS BALL 20 LIGHTS 12
1 489434 79323P PINK CHERRY LIGHTS 12
2 489434 79323W WHITE CHERRY LIGHTS 12
3 489434 22041 RECORD FRAME 7" SINGLE SIZE 48
4 489434 21232 STRAWBERRY CERAMIC TRINKET BOX 24

cancellation_dataset = df.loc[df['Invoice'].str.contains("C", regex=False, na=False)]

display(cancellation_dataset.sample(15))

Invoice StockCode

Description Quantity

236746 C512300  79323W WHITE CHERRY LIGHTS 7
527445 (536548 22580 ADVENT CALENDAR GINGHAM SACK -4
132727 C501934 22055 MINI CAKE STAND HANGING STRAWBERY 5
363617 C524575 D Discount -1
180629 C506492 22168 ©ORGANISER WOOD ANTIQUE WHITE -1
431630 C530639 22534 MAGIC DRAWING SLATE SPACEBOY 24
182923 (506734 21474 SWEETHEART CREAM STEEL FOLDIN BENCH -1
358589 (524154 22489 PACK OF 12 TRADITIONAL CRAYONS -144
613673 (C543789 M Manual -1
220956 C510831 84755 COLOUR GLASS T-LIGHT HOLDER HANGING 3
184750 C506978 20728 LUNCH BAG CARS BLUE <
829221 (563554 22467 GUMBALL COAT RACK -1
905755 (C569743 850998 JUMBO BAG RED RETROSPOT -140
60777 C494801 21232 STRAWBERRY CERAMIC TRINKET BOX -3
788605 C559939 22847 BREAD BIN DINER STYLE IVORY <

from statsmodels.tsa.stattools import adfuller
from numpy import log

result = adfuller (input_df.value.dropna(inplace=False))

print(f"ADF Statistic: %f" % result[0])
print(f'p-value: %" % result[1])

ADF Statistic: -3.157783
p-value: ©.022562

def autocorrelation(array, lag):
num = @
den = 0
x_bar = np.mean(array)
arvay = array[::-1]
for i in range(len(array)-lag-1):
num += np.sun((array[i] - x_bar) * (array[i+lag] - x_bar))
len += np.sun((array[i] - x_bar)**2)
return num/den

InvoiceDate Price Customer ID

2009-12-01 07:45:00
2009-12-01 07:45:00
2009-12-01 07:45:00
2009-12-01 07:45:00

2009-12-01 07:45:00

InvoiceDate Price Customer ID

2010-06-1415:3000 675 141050
2010-12-0114:3300 595 124720
2010-03-22 11:42:00 145 15523.0
2010-09-29 16:02:00 2852 13408.0
2010-04-30 10:5200 850 15268.0
2010-11-0316:2200  0.42 16147.0
2010-05-04 10:1700 1995 14867.0
2010-09-27 155800  0.36 149110
2011-02-11 17:10:00 190.80 17450.0
2010-06-0320:1000 065 15785.0
2010-05-0513:07:00 165 14680.0
2011-08-17 13:1600 255 16755.0
2011-10-06 10:57:00 179 15769.0
2010-01-18 14:58:00 125 15005.0
2011-07-1410:19:00  16.95 14426.0

6.95
6.75
6.75
210

1.25

13085.0
13085.0
13085.0
13085.0

13085.0

Country

United Kingdom

Germany

United Kingdom

United Kingdom

United Kingdom

United Kingdom

United Kingdom

EIRE

United Kingdom

United Kingdom

United Kingdom

United Kingdom

United Kingdom

United Kingdom

United Kingdom

Country
United Kingdom
United Kingdom
United Kingdom
United Kingdom

United Kingdom
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[ ] go.Figure(data=go.Scatter(x=[i for i in range(1,31)], y=[autocorrelation(input_df.value, i) for i in range(1,31)]), layout=go.Layout(title='Autocorrelation of origin:
I
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[ ] fig, ax = plt.subplots(3,1,Figsize=(30,20))
ax[0].plot (input_df .value.diff())
plot_acf(input_df.value.diff().dropna(), ax = ax[2], lags = 31)
plot_pacf(input_df.value.diff().dropna(), ax = ax[1], lags = 31, method="ywmle')
ax[0].set_title('Differenced series')
ax[1].set_title('PACF of differenced series')
ax[2].set_title('ACF of differenced series')
plt.shou()

= ax(2], lags = 31)
ax = ax[1], lags = 31, method="yumle')

ax[2].set_title("ACF of 2nd order differenced
p1t.show()

[ ] import plotly.figure_factory as ff
df_resid = pd.DataFrame(model_fit.resid, columns=['residuals’])

figl = ff.create_distplot([df_resid.residuals], ['residuals'], ['KDE Plot'], histnorm='probability density’)
fig2 = go.Figure(go.Scatter(x=df_resid.index, y=df_resid.residuals, name='Residuals’, showlegend=False))

fig = make_subplots(rows=1, cols=2, subplot_titles=('Residuals’, 'Histogram of residuals'))
fig.add_trace(figi['data'][0], row=1, col=2)
fig.add_trace(fig2['data'][@], row=1, col=1)

fig.update_layout (height=500, width=1000)
fig.show()

[ ] df_pred = pd. model_fit.predict( ic=False).values, columns=['predictions'])

np.array (¢f_pred. index)

Fig= go.Figure()
fig.add_trace(go. Scatter(x=df_pred. index, y=df_pred.predictions, name='Forecasted price'))
fig.add_trace(go.Scatter(x=df.index, y=input_df.value, name='Original Price')

fig.update_layout(
height=500,
width=1000,
title='Predictions vs Original’,
xaxis_titl

“Time',
yaxis_title='Value')
fig.show()
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