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SOME RESULTS ON BAYES ESTIMATION UNDER
LINEX LOSS FUNCTION
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ABSTRACT. In this paper, we introduced straightforward formu-
las for the Bayes risk linked to the Linex loss function, which we
then applied to estimate parameters of the normal, Poisson, and
fractional Weibull distributions. We aimed to investigate the de-
velopment of a linear Bayes estimator using the Linex loss function
and successfully derived it for the normal and Poisson scenarios.
We also demonstrated the process of creating empirical Bayes esti-
mates using Linex loss and applied it to observed frequencies f,(z)
produced by the Poisson-gamma model.
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1. INTRODUCTION

The loss function (6, é) provides a measure of financial consequences
arising from a wrong estimate 6 of the unknown 6. The selection of the
suitable loss function is based solely on financial factors and is unre-
lated to the estimation method to be employed. The Bayes approach
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allows the economic considerations formulated through the loss (or util-
ity) function to be used in a rational manner. A combination of the
chosen loss function and the updated information, which is the poste-
rior density function in Bayesian terms, actually yields the posterior
expectation of the loss, and the value 0 that minimizes the expected loss
is the Bayes estimation of §. The point estimate is, of course, relative
to the loss function. Several authors, for example [5, 7, 8] and [9] have
pointed out that in some situations the use of symmetric loss functions
may be inappropriate. In dam constructions, under estimation of peak
water level is more serious than over estimation. However, in estimation
of reliability function or average failure time over-estimation is more
serious than under estimation. The 1986 disaster of the space shuttle
challenger is attributed to over-estimation of the reliability of key space
shuttle components. Roberts in [10] suggests the use of asymmetric loss
function and, therefore, conservative estimate are generally used to avoid
legal action. Linex loss function is a asymmetric loss functions. Linex
means linear exponential loss function which used in the analysis of sta-
tistical estimation and prediction problem which rises exponentially on
one side of zero and almost linearly on the other side of zero. It is used in
both overestimation and underestimation problems. This loss function
is a popular choice in statistics and machine learning for its ability to
handle asymmetric errors. It is a versatile tool for modeling data and
making predictions with a focus on minimizing the impact of outliers.
This loss function strikes a balance between the mean absolute error and
the mean squared error, offering a flexible approach that can be tailored
to specific modeling needs.

Recently authors in [15] proposed the Linex loss function to determine
optimum process parameters for the product quality. In this paper, we
obtain some results for the Bayes risk based on the Linex loss function
and apply them to estimate parameters of the Poisson, normal,and frac-
tional Weibull distributions in section 3. An exploration in section 4
allows for the creation of a linear Bayes estimator utilizing the Linex
loss function. We then effectively derived it for the normal and Pois-
son distributions. In section 5, we demonstrate a process of creating
empirical Bayes estimates using Linex loss and applying it to observed
frequencies f,(z) produced by the Poisson-gamma model.
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2. LITERATURE REVIEW

A very useful asymmetric loss function known as Linex loss function
is a loss function used in machine learning and statistics. It is similar
to the squared error loss function, but it has the advantage of being
less sensitive to outliers. It is often used in regression problems where
outliers are present in the data. The Linex loss function proposed by [8]
which rises exponentially on one side of zero and almost linear on the
other side of zero. The proposed Linex loss function (LLF) is

I(A) =be®™® —cA—b, a#0,b>0,

where A = — 6. Tt is clear that 1(0) = 0 and for minimum to occur at
A =0, one must have ab = c¢. Thus [(A) can be written as

(2.1) I(A) =b(e®® —aA—1), a#0,b>0.

There are two parameters, a and b, involved in (2.1) with b serving to
scale the loss function and a serving to determine its shape. The sign of
the shape parameter a reflects the direction of the asymmetry (a > 0 is
over-estimation is more serious than under-estimation, and vice-versa)
and the magnitude of a reflects the degree of asymmetry. Authors in
[1] derived the general expressions for the Bayes estimate 0 under LLF
relative to A = 6 — 6, which involves the moment generating function of
the posterior density and one may require numerical methods to eval-
uate it. They also found Linex estimates in closed form for estimation
problems concerning normal models and investigated risk properties of
the obtained estimators. Authors in [141] obtained the Linex estimator
for the mean of a Poisson distribution and investigated the risk prop-
erties of the estimator relative to those of linear transformation of the
sample mean. In a series of papers, Basu and collaborators (see [13])
studied various problems concerning reliability function by considering
a modified form of the Linex loss. Authors in [3] used asymmetric mod-
ified LLF to obtain an estimate of the scale parameters in exponential
and normal families. They obtained best scale-invariant estimators of
the parameters and conjectured their admissibility in the absence of
nuisance parameters. In a study, [6] used LLF in conjunction with Am-
sters modified Bayes look-ahead rule for determining sample size in a
one-armed phase II clinical trial. Linex loss has been found useful for
location parameter estimation, however, it is found to be inconvenient
for the estimation of scale parameter and other quantities. Authors in
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[2] used the general Entropy loss in place of modified Linex loss for
estimation of the scale parameter and other quantities.

3. BAYES ESTIMATION

Let X = x be an observation from a population with probability
density function (or probability mass function) f(x | #) with a parameter
0 of the parameter space O. Let p(x | 6) be the posterior density (or

mass) function with respect to the prior p(#). Authors in [1] showed
that the Bayes estimate 67 under LLF is
- 1
b1 = — - B | X)),
a

Provided, of course, the posterior expectation exists and is finite. This
involves evaluation of the moment generating function of the posterior
density function. It is easy to show that as the shape parameter a of
LLF tends to zero, 0y, tends to the Bayes estimate és under the squared
error loss as

lim(—) B | X)] = lim (B | X)/B(e | X))

= E@0]X)=0s.

After the value X has been observed and the Bayes Linex estimate 0,
has been chosen, the risk is

R(01,,0) = bE (*® — aA — 1),

where E7 is the expectation taken with respect to f(z | 6) and A = 6—4.
The Bayes risk of 87, is obtained by

r(m,01) = E™ (R(01.0))
where E™ is the expectation taken with respect to the prior 7(6).
Lemma 3.1. Bayes risk associated with 6y, is given by
r(m,01) = abET[ES (6 — ;)]
Proof. Denote

m(x) = /@ f(x | 0)p(6)do.
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Since
oud ol (ea@—e)) —EmEP (ea(éL—f)))
:Eme“éLEp(e*ag)
:EmeaéLe_a’éL =1,

where E™ is the expectation with respect to the marginal density m(z)
of X, we have

r(n,01) = bE"ES (ea(éL_e) —a(f —0) — 1) = abE" (Ef(O — éL)> .
O
Theorem 3.2. Bayes risk associated with 0r, is given by
r(m,0r) = abE™(Os — 01),
where Og = EP(0) and EP is the expectation taken with respect to p(0 |
X).
Proof. By lemma 3.1, the proof is obvious, since

E"ETg(X,0) = E™EP (¢(X,0)).

Remark 3.3. It is easy to see that
a(fs —0) =In [E(e*a" | X) /e*aE@lX)] :

Then by Jensen inequality for a > 0, we have s > 6, > 0 and for a < 0,
0 > 0s > 0.

Now, we apply the recent results to estimate parameters of some
special distributions such as the normal and Poisson.

Ezample 3.4. Let X, Xo,, X, be a random sample from N(6,1) and
suppose N (0, 1) is the prior density for the unknown mean §. We know
tAhat the posterior densAity of is N (n”—fl,n%rl) Thus 05 = %5 and
0, = s—2— and #, is a conservative estimate of # in comparison
to 95 for a > 0.

nx

n+tl ~ 2(n+1)
On applying theorem 3.2, the Bayes risk under LLF is easily computed
nX nX . a B a®b
n+1l n+1 2(n+1)

r(m, 0r) = abE™ ( St D)
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The Bayes risk under square error loss function (SELF) is r(r,0g) =
1/(n 4+ 1). Note that r(m,0s) = r(m,0r), if b= 5—2,@ # 0.

FEzxzample 3.5. Suppose that X1, Xo,, X, is a random sample from a Pois-
son distribution with unknown mean 6 and let the prior density of 6 be
I'(e, B),a« > 0,8 > 0. The posterior density of 6, given X; = z;,i =
1,2,...,n, is also gamma but with revised parameters a + X7 ;x; and

B 4+ n. The Bayes estimate under SELF is g = % Sadooghi-
Alvandi in [14] gives the Linex Bayes estimate for 6 as

~ o+ X% x,

Op = ——="n[1 + —], > 0.

L " n +ﬁ+n] at+pB+n

The Bayes risk under LLF is, once again, easily obtained by Theorem
3.2, as

r(m,0y) = abE™(0g—0r)

_ m(a+E X a+XX; a
(3.1) = abE ( nt B - 1n[1+6+n])
ba a
(3:2) = 3 <a—(ﬁ+n)ln[1+n+5]>7

since E(X) = E"Ef(X | ) = a/3, which is same as Eq. (2.4) for Bayes
risk from [14].

Theorem 3.6. Let [(A) = b(e"® —aA — 1) and A = 0 — 6. Then, no
Bayes estimator can be unbiased unless its Bayes risk is zero.

Proof. Suppose that for a proper prior 7, the Bayes estimator 0, (x) is
unbiased,

ET(0,(X)) =6, V.

This implies that (7, ;) = 0. The Bayes risk of d,(x) can be calculated
as repeated expectation in two ways

r(m,60) =E"ES (b0 — a(6; — 6) ~ 1))

—EMEP (b(ea@w—@) —a(6y — 0) — 1)) .
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Thus, conveniently choosing either EEf or E™EP and using the prop-
erties of conditional expectation we have
r(m,0x) = bETE! (€97 .e=%) — abE™E/ (6;) + abE™E(0) — b

= bEMEP (e =) — abETEY (6;) + abE™(0) — b

= bE™ (%" EP () — abE™Ef (6;) + abE™(0) — b

= bE™ (%7 .e=%) — abE™(0) + abE™ () — b.

O

Now, we present an identity relating the Bayes risk to bias, which
illustrates that a small bias can help achieve a small Bayes risk. Let
X ~ f(x ] 0) and 6 ~ 7(0). We know that the Bayes estimator under
linex loss function is

1

de(a) =~ B (e | X))
The Bayes risk of d, can be written as

r(m, 0g) = ab/b(@)w(@)d@,
where b(0) = Ef(6,(X)) — 6 is the bias of d,. It is easy to see that

(7, 0x) = D[E"E! (¥ e~ %) — o E"EY(6;) + aE"E’ () — 1].
Since, ETe~%E/(e%7) = 1, then we have
r(m,8,) =b[—aE™Ef (6;) + aETEY ()]
—ab[E™(0) — E"E/(6,))]

—_ ab/(Ef(cSW) — 0)7m(6)db.

Now, we study the Bayesian estimation of parameter 6 of nabla dis-

crete fractional Weibull distribution under linex loss function. A discrete

analogue of Weibull distribution is the nabla discrete fractional Weibull

distribution defined by the probability mass function ([12])
P(X=z2)=~02"  (1-6)"""', 2=N,y>00<6<1,

where N, = {a,a+1,...} and 2" = '(z +~)/T(z) with 07 = 0.

The likelihood function of #, in this case, is given by

L) x 07(1 — 0)%% 7,
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We take a prior distribution given below
6o1(1 — §)P~1e=r0
(a,,@)lFl(ﬁ,Oé + B? —,U)’

with B(a, 8) = T(a)T(B)/T(a + B), 1Fi(a,b,c) = > roya” ¥ /bFk! with
the general form

00 P q
pFyar,az,...;ap,b1,02,...,bg,¢) = Z <H al ck> / (H bf k:)
=1

k=0 \i=1

w(@):B 0<f<1l,a,8>0,u€R,

is called a generalized hypergeometric series. This prior density is known
as Kummer-beta density and denoted by K B(«, 3, ). The posterior
density of 0, corresponding to w (), is given by

ﬂ<ghﬂ(x9n+a—l(1__)Ex?—n+ﬁ—1e—uﬂ
= 9[w~KB(n+a,Zx? —n+ B, uw.

Under LLF, the Bayes estimate 6, corresponding to posterior density
7(0|x), is given by

0 =1ny Fla_1 (Em? —n+ 8,5z, +a+5, —u)
—lmlFI‘f1 (Emj —n+ﬁ,2x? —|—oz—|—5,—u—a).
Since, it is easy to see that
1 (21’? —n—i—ﬁ,Ea:j +a+6,—u—a>

1F (El‘j —’I’L—|—,8,E$? +OZ+B,—/L>

EP(e=%) =

A discrete analogue of Weibull distribution is the delta discrete fractional
Weibull distribution defined by the probability mass function ([12])

y—1

0
PX=x)=—1" 2=N,1,7>0,0<0,

= —
(1+6)= +1
where 27 = T'(z 4+ 1)/T'(z + 1 — 7). The likelihood function of 6, in this
X
case, is given by L(0) oc 0"/(1 + 0)*% ~". We take a prior distribution
given below
ea—l

"0 B o

0,a,8 > 0.
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This prior density is known as beta type II density and denoted by
B!!(a, B). The posterior density of 6, corresponding to (), is given by

ot
m(0 | X) o0t/ (1 4 ) Frrets,

11 *
= 0| X ~B" (n+a,Xz; +p).

7(0) is a natural conjugate prior density. Note that 7(6) is a special
case of inverted hypergeometric function type I density, which is given
by ([1]). Under LLF, the Bayes estimate of #, corresponding to posterior
density 7(6 | X), is given by

fr —In [Fa‘l(zxf +5)]

—In {Fa_l(Em +n+a+ ﬁ)¢“_1(n +a,1— (Exf + /B),a)] ,

(2

since, we have
&0 p
/ e P29 (1 4 az) Ve = a T (q)(g, g+ 1 — 7, L).
0 a

4. LINEAR BAYES ESTIMATION

A point estimator derived using the prior distribution to find the best
estimator within a certain class of estimators can be called an approx-
imate Bayes estimator if it is not the actual Bayes estimator. Meritz
and Lwin in their excellent book on Empirical Bayes Estimation [10]
consider a simple case in which there is just one observation x or X and
the parameter value is 6 to obtain linear Bayes estimator of 6 under the
squared error loss function. They find the class of linear Bayes estima-
tors to be extremely useful in the study of empirical Bayes estimation
(EBE). In this section we propose to explore the construction of a lin-
ear Bayes estimator under the Linex loss function and obtain it for the
normal and Poisson cases. Let us consider the linear estimator of the
form

d(wo, w1, ) = wo + w1,
where wg and wy are chosen to minimize the risk E™ES (1(6, §(wq, w1, x))) .
The terminology linear Bayes is explained by the form of 6 (wg, w1, x) and
the fact that that prior m(#) plays a role in the determination of wy and
wp. The Bayes values wg and w; are easily obtained by differentiating
the risk function with respect to wy and w;, equating the derivatives
to zero and solving the two equations for wy and w;. In the case of
SELF one gets linear simultaneous equations in gy and w; which have
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immediate solution. The solution depends only on the first two moments
of m(x). However, we shall see that in the case of Linex loss, the two
equations may be difficult to solve.

To obtain Bayes value, wy and w; under Linex loss, consider the deriva-
tives of ETETI(A) where A = § — 0, with respect to o and 0. Let

1
d =wo +wix = —(up +urx), a#0,
a

then,
;WE”Efb (ea<5—9> —a(6—0) — 1) —0, i=1,2
gives
ETES (enX—af) = o,

and

E"ES (XemX~—0) = g~wo pm(X),
or

In E™ (e*aewa(ul)) +ug =0,
and

0
In E™ (e_aeamew(Ul)) = —up + In Em7'<)(>7

where Mxg(u1) is the moment generating function for f(z|6).
FEzxample 4.1. Consider the normal example 3.4 of section 3. We want
to obtain the linear Bayes estimator of § under Linex loss. Since m(z)

is (0,2), the two equations (3.1)and (3.2) are to be solved for ug and u;.
We get the two equations as wg and w;

EwEf(eulX—aG) — e—uo’

and
ETE! (XX 90 =,
or
Uy = — (u% + (ug — a)2) /2, up =a/2,
thus

x_2:c—a
==

o |
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In this example, the linear Bayes estimator of 6 under Linex loss is
exactly the actual Bayes estimator under Linex loss. However, if one
uses other than conjugate prior for 0, linear Bayes estimator may be
different than the actual Bayes estimator.

Ezxample 4.2. Let us obtain the linear Bayes estimator for the Poisson
mean 6 under LLF. The marginal probability function of X with respect
to I'(a, B), where a« > 0,8 > 0, prior for  is the negative binomial
distribution given by

INa+x) 1 1
= 1— @
m@) = T AT B
with mean /B3 and variance a(1 + 3)/32.
In order to obtain the linear Bayes estimator, note that

)3;7 ;U:O?l’?

Ef(emX) — 6—0(1—5“1)7
Ep(H)Ef(euleaG) _ Ep(&) (670(14’0{*6“‘1)) _ (6/(1 +a+fB— eul))oz7

and

00 —0 u1\x
Ef(XeulX) _ Ex:le (66 1) _ 9€u1e—9(1—e“1)

(x—1)! B ’

so that,
Ep(@)Ef(Xeulx—a9> — €u1Ep(9) (96—(1—5“1)9—9)
_ %6“1 (B/(1+a+ B —e))l+e,

Then Eq. (3.2) reduced to the pair of equations
aln[f/(1+a+p—e"")] +ug =0,

a I} e « B
lnlﬂe <1+a+ﬂ—e“1) ]_OH[@’]_UO)_Q

Thus 4o = aln[14+3¢5], 41 = aln[l+1{5] and the linear Bayes estimate
of 0 is

and

S(z) = 4 (o + o) nfl + 5],

which is the same as éL forn=1.
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Remark 4.3. In both cases, the Bayes estimate is a linear function of X,
so the linear Bayes estimate should match the actual Bayes estimate.
However, in general, the linear Bayes estimate may not be identical to
the actual Bayes estimate.

5. LINEAR EMPIRICAL BAYES ESTIMATION FOR POISSON
DISTRIBUTION

In this section, we illustrate the method of constructing empirical
Bayes estimate (EBE) under Linex loss. We use the data given in Table
3.2 from [16]. Table 1 shows the observed frequencies f,(z) generated
by the Poisson distribution mixed by a I'(«, 3) prior, where o = 10 and
B = 2. Here

ﬁa a—1_—p36
= - > .
p(0) i )0 e”, 0>0,a>0,>0

For these data Z = 5.0, s> = 9.12 and the estimates of a and 3 obtained
by the method of moments are o = 6.068 and 8 = 1.214 (see [10], page
84). The linear EBE under SELF is found to be

ds(z) = 2.741 4 0.452z,
and the linear EBE under LLF, given in (13), becomes

a
5214

Table 1 gives the comparative values of dg(x) and 7, (x) fora = —2,—-0.5,0.5
and 2.0.

We note that,

1
op(x) = 5(6.068 +x)In[l +

(I) d1(x) (x) decrease as the value of the shape parameter a in-
crease from a = —2 to a = 2, for all x.

(IT) 6s(x) is close to 01 (x) for | a [< 0.5.

(III) Rate of increase in dr(x) value decreases with an increase
in the value of shape parameter a.
Furthermore, Bayes risk of the linear EBE under SELF is a/5(5 + 1)
and corresponding Bayes risk under LLF is given by Eq. (3.2). Using
the estimates of @ and 3 (obtained by the method of moments) one finds

#(m,0g) = 2.258,
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and 7(m,0g) are tabulated in Table 2 for a = —2,—0.5,0.5 and 2.0.
Table 2 gives the Bayes risk under LLF when b = 1. We see that the
Bayes risk behaves in an asymmetric fashion with respect to a. Bayes
risk when @ = —2 is much larger than the Bayes risk when a = 2.

TABLE 1. Observed frequencies f,(x) generated by the Poisson-
gamma model when a = 10, 8 = 2 Columns headed by (a), (), (c)
and (d) are 61, for a = —2,-0.5,0.5 and 2, respectively

fn(z) s (a) (0) (¢ (4

- 2.741  7.089 3.105 2471 1.954
3 3.193  8.257 3.618 2.878 2.275
8 3.645 9.426 4.130 3.286 2.596
10 4.097 10.594 4.642 3.693 2.918
4.549 11.762 5.154 4.100 3.240
11 5.001 12931 5.666 4.507 3.562
4 5.453 14.099 6.178 4.915 3.884
4 5.905 15.267 6.690 5.322 4.205
6.357 16.436 7.202 5.729 4.527

00 O ULk WIN ~ OIX
\V)

9 1 6.809 17.604 7.714 6.136 4.849
10 2 7.261 18.772 8.226 6.544 5.171
11 4 7.713 19.940 8.738 6.951 5.493
12 - 7.165 21.109 9.250 7.358 5.814
13 1 8.617 22277 9.762 7.765 6.136
14 - 9.069 23.445 10.274 8.173 6.458
15 - 9.521 24.614 10.786 8.580 6.780
16 - 9.973 25.782 11.258 8.987 7.102

TABLE 2. Comparative values of estimated Bayes risk (based on

the data given in Table 1) under Linex loss function forn =1,b=1

a -2 -0.5 0.5 2
Estimated Bayes risk 15.86 0.333 0.246 2.874

6. CONCLUSION

Processes are described for constructing linear Bayes estimators and
empirical Bayes estimators using the Linex loss function. Processes are
described for constructing linear Bayes estimators and empirical Bayes
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estimators using the Linex loss function.The construction of these esti-
mators involves minimizing the Linex loss function with respect to the
unknown parameters. Linear Bayes estimators are obtained by assuming
a prior distribution for the parameters and deriving the posterior distri-
bution using Bayes’ theorem. Empirical Bayes estimators, on the other
hand, use the data itself to estimate the prior distribution, leading to a
more data-driven approach. Both methods aim to find estimators that
balance the bias-variance trade-off by incorporating prior information
and empirical data. Moreover, explicit formulas for Bayes risk under
the Linex loss function are presented. Special distributions are applied
to demonstrate the superiority of the results.
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