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CONFORMAL RICCI SOLITON IN SASAKIAN
MANIFOLDS ADMITTING GENERAL CONNECTION

Raghujyoti Kundu, Ashoke Das and Ashis Biswas

ABSTRACT. The object of the present paper is to study the Con-
formal Ricci soliton in Sasakian manifold admitting general con-
nection, which is induced with quarter symmetric metric connec-
tion, generalized Tanaka Webster connection, Schouten-Van Kam-
pen connection and Zamkovoy connection. Furthermore, we study
CC%-semi symmetric and C'%-semi symmetric Sasakian manifolds
admitting Conformal Ricci Soliton.
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1. INTRODUCTION

In this paper, the symboles V&, V, V4, V* V*, and V7 are denoted
for general connection, Levi-Civita connection, quarter-symmetric met-
ric connection, Zamkovoy connection, Schouten-Van Kampen connec-
tion and generalized Tanaka-Webster connection respectively. In the
context of Sasakian geometry the general connection is introduced by
Biswas and Baishya ([5], [4]) and the general connection V¢ is defined
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(1.1)  VEV =VxY + ki [(Vxn) (V)E—n(Y)VxE] + kon (X) 8,

for all U,V € x (M) and the pair (k1,k2) being real constants. The
beauty of such connection V& lies in the fact that it has the flavour of
(1) quarter symmetric metric connection ([11], [3]) for (ki,k2) =
(03 _1) )
(71) Zamkovoy connection [10] for (k1,k2) = (1,1);
(741) Schouten-Van Kampen connection [8] for (ki, ko) = (1,0) and
(1v) generalized Tanaka Webster connection [9] for (k1,k2) = (1,—1).
The torsion tensor T of the connection V& satisfies

T (U, V)
= VOV -V$U - [U,V]
= 2kig(U,¢V)E+kin (V) U — ki (U) ¢V
(1.2) +kon (U) ¢V — kan (V) ¢U.

In 1982, R. S. Hamilton[6] introduced the idea of Ricci flow to inves-
tigate a canonical metric on a smooth manifold. Then Ricci flow has
become a powerful tool for the study of Riemannian manifolds, especially
for those manifolds with positive curvature. Perelman ([15], [16]) used
Ricci flow and its surgery to prove Poincare conjecture. The Ricci flow
is an evolution equation for metrics on a Riemannian manifold defined
as follows:

0
8t gZ]

In 2004, A. E. Fischer[?] introduced a new idea of conformal Ricci
flow, it is a modified version of the Hamilton’s Ricci flow equation. In
the classical theory of Hamilton’s Ricci flow equation, the unit volume
constraint plays a crucial role. However, the primary distinction between
the classical and conformal Ricci flow equations is the scalar curvature
constraint. This new Ricci flow equation is defined as the conformal
Ricci flow. For an m-dimensional, n > 3, closed connected oriented,
smooth manifold (M, g), the conformal Ricci flow equation is given by

(1.4) 9 4y (Ric+ %) = —pg.

ot
T(g) = _17

where p is a scalar non-dynamical field (time dependent scalar field) and
r(g) is the scalar curvature of the manifold. and n is the dimension of

(1.3) (t) = —2R;;.
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manifold. In 2015, N. Basu and A. Bhattacharyya[!], have introduced
the notion of Conformal Ricci soliton equation and it is given by

(1.5) (£e9) (U, V)+2S (U, V) = [2)\ - <p + 5)] g (U, V),

where £ is the Lie derivative along the vector field &, S is the Ricci
tensor, A is a real-valued smooth function on M.
In an n-dimensional Riemannian manifold (M",g) (n > 3), the con-

formal curvature tensor C[13], projective curvature tensor P[12] are de-
fined respectively by

cuYy)w

1
= R(UY)W — —3 SY, W)U —-S(UW)Y]
1
5 W) QU — g (U, W) QY]
,
1. — g (Y, — Y
and
1

(L.7) PUY)W =R(UY)W — —7 [SY,wW)u —-S(UW)Y].

This paper is structered as follows: After introduction, a short descrip-
tion of Sasakian manifold and general connection are given in section 2.
In section 3, we have highlighted Conformal Ricci Soliton in Sasakian
manifold admitting general connection. Section 4 deals with C'“-semi
symmetric Sasakian manifolds admitting Conformal Ricci Soliton. Fi-
nally in section 5, we discussed P%-semi symmetric Sasakian manifolds
admitting general connection.

2. PRELIMINARIES

Let us consider M be an n-dimensional almost contact metric mani-
fold equipped with an almost contact metric structure (¢, &, 1, g) consist-
ing of a (1, 1) tensor field ¢, a vector field £, a 1-form 1 and a Riemannian
metric g. Then

(21)  ¢°Y Y +n(Y)EnE) =1,n
(2.2) g(U,Y) = g(oU,¢Y) +n(U)n(Y),
(2.3)g(U,8Y) = —g(oU,Y),n(Y)=g(Y,§),for all U,Y € x (M),

(¢U) =0, ¢§ =0,
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where x (M) is set of all vector fields of the manifold M. An almost
contact metric manifold M is said to be (a) a contact metric manifold if

(2.4) g(U,9Y) =dn(U,Y),for all U, Y € x (M);
(b) a K-contact manifold if the vector field ¢ is Killing equivalently
(2.5) Vy§ = —¢Y,

where V is Riemannian connection and (c) a Sasakian manifold if

(2.6) (Vuo)Y =g(U,Y)¢ —n(Y)U,for al U, Y € x (M).

Further, for Sasakian manifold with structure (¢, &, 0, g), the following
relations holds([7],[11]):

(2.7) RWUY)E=n(Y)U—n@U)Y, forall U,Y € x (M),
(2.8) (Von)Y = g(U,¢Y),

(2.9) R U)Y = gUY){—n)U,

(2.10) SU,E = (n-1)n(U),

(2.11) RULY = n(Y)U-g(UY)E,

(2.12) Q¢ = (n—1)¢,

where S and @ are Ricci tensor and Ricci operator.where ), S and r are
the Ricci operator, the Ricci curvature tensor and the scalar curvature
of M™. The Ricci operator @) and the (0,2)-tensor S? are defined as

(2.13) S(U,Y)=g(QU,Y) and S*(U,Y) = S(QU,Y) = ¢(Q*U,Y).

For an n-dimensional Sasakian manifold admitting general connection
and if R, 8¢, r¢. QC are Riemannian curvature tensor, Ricci tensor,
scalar curvature and Ricci operator in general connection, then following
results ([5], [4]) hold.

RY(X,Y)Z
= R(X,Y)Z+ (ki —2k1) [g(Z,¢X) Y + g (Y,0Z) pX]
—2kog (Y, 9X) ¢Z
+ (k1 — kika + ko) [g (X, 2)n (V)€ —n(X) g (Y, Z) €]
(2.14) + (k1 — kika + ko) [n (X)n(2)Y —n(Y)n(Z2) X],
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(215)  SC(YV,2) = S(Y,Z2)-Ag(Y,Z)+Bn(Y)n(2),
(216)  SE(V,6) = —(n—1)Ty(Y),

(217) 89, 2) —(n-1)Cn(2),

(2.18) QY = QY —AY +Bp(Y)E,

(2.19) Q% = —(n-1)C¢,

(2.20) ¢ = r—An+B,

(2.21) RO(X,Y)¢ = Cl(X)Y —n(Y)X],
(2.22) RE(EY)Z = C(2)Y —g(Y.2)¢],
(2.23) RE(X,92 = Clg(X,2)§—n(Z)X],
where

(2.24) A = (k= ki — ko — kika)

(2.25) B (k2 4+ (n — 2) kika — n (k1 + k2)]
(2.26) C = (k1 —kika+ ke —1).

Therefore for quarter-symmetric metric connection
(2.27) A=1B=n;C = -2,

for generalized Tanaka Webster connection

(2.28) A=2,B=3-n;C =0,

for Zamkovoy connection

(2.29) A=-2,B=-1-n;C =0,

and for Schouten-Van Kampen connection

(2.30) A=0;B=1-n;C =0.

3. CONFORMAL RICCI SOLITON IN SASAKIAN MANIFOLD ADMITTING
GENERAL CONNECTION

Conformal Ricci soliton equation is given by (1.5) but in general con-
nection it becomes

(3.1) (£€9) (X, V) +25°(X,Y) = [m — <p + 2)] g(X,Y),

where £¢ is the Lie derivative admitting general connection along the
vector field &.
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Now, we express the Lie derivative along £ on M with respect to
general connection as follows:

(,EG )(X Y)
= £f —g(£LEX)Y) — g (X, £5Y)
(3-2) = £59(X Y) g9(&X],Y) —g(X,[§,Y]).
By the help of (1.1), (2.1), (2.2), (2.5) and (3.2) we obtain
(3-3) (£€9) (X,Y)=29(X,Y) =20 (X)n (Y).
Using (3.3) in (3.1), we get

(3.4)
29(X,Y) =2 (X)n(Y)+25%(X,Y) = [QA — <p+ i)} g(X,Y).

Simlifying above equation

(35) SY(X,Y)= [A— % (p—l—i) —1} g(X,Y)+n(X)n(Y).

Setting X =Y = £ in (3.5) and using (2.15), we have

(3.6) —2(n—-1)C= [2A—<p+i>].

Theorem 3.1. Let (M™, g) be a Sasakian manifold admitting Conformal
Ricci soliton with respect to general connection VC, then M is -Einstein
manifold with general connection.

Theorem 3.2. Let (M™, g) be a Sasakian manifold admitting Conformal
Ricci soliton with respect to general connection V&, then A and p are
related by 3.6.

Theorem 3.3. Let (M™, g) be a Sasakian manifold admitting Conformal
Ricci soliton with respect to quarter-symmetric metric connection V4,
then \ and p are related by

o[- o2

Theorem 3.4. Let (M™, g) be a Sasakian manifold admitting Conformal
Ricci soliton with respect to Zamkovoy connection V7, then X and p are

related by
2
= [2)\— (p+ ﬂ .
n
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Theorem 3.5. Let (M", g) be a Sasakian manifold admitting Conformal
Ricci soliton with respect to generalized Tanaka Webster connection V7,
then \ and p are related by

P 2]

Theorem 3.6. Let (M", g) be a Sasakian manifold admitting Conformal
Ricci soliton with respect to Schouten-Van Kampen connection V¥, then

A and p are related by
2
0= [m - <p+ )} |
n

4. CG—SEMI SYMMETRIC SASAKIAN MANIFOLDS ADMITTING
CONFORMAL RICCI SOLITON

In this section, we assume C'%-semi-symmetric Sasakian manifold,
(4.1) ie. R°(V,X)oC%(Y,2)U = 0.

The conformal curvature tensor[l3] in general connection is given by

CY(X,Y)Z = RY(X,Y)Z-
[ 2)QOX — 4 (X, 2) QY]

(n—1)(n—2) at

for all X, Y & Z € x (M), the set of all vector field of the manifold M.
The equation (4.1) can also be written as

0 = REV,X)CC(Y,2Z)U-CY%RE(V,X)Y,Z)U
(4.3) —CY(Y,RY(V, X)Z)U — CY(Y, Z)R%(V, X)U.
Setting in V' = ¢ in (4.3), we get

0 = RY(X)CY(Y,Z2)U-CC% (RY(¢,X)Y,Z)U
(4.4) ~C%(Y,RC (£,X)Z)U - C° (Y, Z) RY(¢, X)U.
Using (2.21), (2.22) and (2.23) we obtain the following

RY(£,X)CC(Y.Z)U

(4.5) = C[CY, Z,U,§)X — g (X,C9Y, 2)U) ],

— [S¢ (Y, 2)X - 8¢ (X,2)Y]

(4.2) + Y,Z)X —g(X,2)Y],
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CC(RE (¢, X)Y,Z2)U
= C(C(V)X —g(X,Y)E,2)U
(4.6) = Clh(V)CY(X,2)U - g(X,Y)CY (¢, 2)U],

R
Y,Cn(2)X —g(X,2)¢)U

(4.7) = C[n(Z2)CY(Y,X)U - g(X,2)C¢ (Y. &) U],

(4.8) = C )
By the help of (4.5), (4.6), (4.7), (4.8) in (4.4), we have

0 = [M(CCY,2)U)X —g(X,CY(Y,2)U) ¢
Z)U =g (X,Y)C% (¢, 2)U]
L X)U —g(X,2)C% (Y, U]
U)CC(Y,Z2) X —g(X,U)CY(Y,Z)¢],

ie. CY(Y,Z,U,6) X — g(X,CY(Y,2)U) ¢
= n(V)CO X, 2)U-g(X,Y)CY (&, 2)U
+n(2)CY (Y, X)U - g(X,2)C%(YV,§)U
(4.10) +n(U)CY (Y, 2) X —g(X,U)CY (Y, 2)¢.

53

Taking covariant derivative with £ in (4.10) and then contracting over

X and Y we get

g(ei,e:) C9 (&, 2,U,€) + g (es, ) C (e1,€, U, €)
+9 (e, U) CC (€3, Z,,€)
= C’G(ei, Z,U,e;)+n(Z) cC¢ (e5,€i,U,8)
(4.11) +0(U)CY (&1, Z, €, €) .
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By the help of (2.9), (2.15), (2.16) and (4.2) we obtain the followings
CO(.Y. 2.¢)

= Clh(Z)n(Y)

(

L[S 2)+ T - )0 (2) (V)

[T -1)g(Y.2)+ Tl =)y (Z)n (V)]

(4.12) +m lg(Y,Z) —n(Z)n(Y)],

9 (Y, 2)]

CG (€i7 Z7 U7 ei)

- 592.0) - —
1

— (9(2,U)r% — 8% (Z,0)]

CEDICES

(nSC (z,U) - 8% (z,U)]

(4.13) + ng (Z,U) —g(Z,U)],

g (eia Z) CG (ei7€7 U?é.)

= Clg(U,2)—n(Z)n(U)]
L[ - )T )n(2) - ¢ (2.0)]

n —
1
n—2

(4.14) + CEDICED) m(Z)n(U) —g(Z,U)],

[ (n=1)Cn(U)n(2Z)+ (n—1)Cg(Z,V)]

CG (eiv Z7 €i,§)

= (n=1)Cn(2) - — [-(n—=1)Cn(2) —rn(2)]
m—g@;nc(@
r(l—n)
(4.15) + mﬁ(z)7

(416) g (62‘, U) CG (eiv Zv 67 f) = 07
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and

(4.17) n(Z)CY (e;,e;,U, &) = 0.

Using (4.12), (4.13), (4.14), (4.15), (4.16) and (4.17) in (4.11), we obtain

nCn(Z)n(Y)—g(Y,2)
— L [SC (Y, 2)+C(n—1)n(Z)n(Y))

n—2
D w2 a2 v)
HCES ) lg (Y, Z) =n(Z)n(Y)]

+Cg (U, Z) —n(Z)n(U)]

_niQ [~ (n—1)Cn(U)n(2) — 5S¢ (2,U)]

_ ”n‘_1;C [=nU)n(2)+9(Z,U)]

T g M@ W©) —9(Z0)

= SG(Z,U)—Z_lsG(Z7U)

_nig [9(Z,U)r¢ = 59(2,U)]

+(n—1)(n—2) ng (Z,U) —g(Z,U)]

+(n—1)Cn(Z)n(U)

_niQ [~ (n=1)Cn(2)n(U) — 9 (2)n (U))
=Dt D 2 w)
_rd-n)

(4.18) T m g @)

By the help of (2.9), (2.15), (2.16) and simplifying (4.18), we obtain
(4.19)

SC(ZU)=—|(A+1) + (Z,U)+[(B+n)—(nr_1) n(Z)nU).

mo) ¢
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Using (3.5) in (4.19), we get

P_1<p+i)—@gwwm+nwwmw

2
= — {(A+1) + (n—l)} g(Z,U)
(4.20) @+ - | @)
Putting Z =U = £ in (4.20), we get
/R 1 2r
(4.21) e e e VR

Thus we can state

Theorem 4.1. If (g,£, A\, p) is an Conformal Ricci soliton admitting
RE . C% = 0 on an Sasakian manifold M with respect to the general
connection VE, then X and p are related by (4.21).

Theorem 4.2. If (g,&,\,p) is an Conformal Ricci soliton admitting
RE . C% = 0 on an Sasakian manifold M with respect to the quarter
symmetric metric connection V4, then A and p are related by

1 2
/\—£:2n+ -

2 H_(n—1)_2‘

Theorem 4.3. If (g,&,\,p) is an Conformal Ricci soliton admitting
RE . C% =0 on an Sasakian manifold M with respect to the Shouten-
Van Kampen connection V?®, then A and p are related by

1 2
PP .
2 n (n-1)
Theorem 4.4. If (g,&,\,p) is an Conformal Ricci soliton admitting
RE . C% = 0 on an Sasakian manifold M with respect to generalized
Tanaka Webster connection VT, then X and p are related by

)\_Qzl_ 2r

2 n (n—1)

Theorem 4.5. If (g,&,\,p) is an Conformal Ricci soliton admitting
RE . C% = 0 on an Sasakian manifold M with respect to Zamkovoy
connection VZ, then \ and p are related by

)\_E_l_ 2r

2 n (n—-1)
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5. PG_SEMI SYMMETRIC SASAKIAN MANIFOLDS ADMITTING
CONFORMAL RICCI SOLITON

The projective curvature tensor PC [12] in general connection is given
by
(5.1)

1
PY(X,Y,Z,U) =R (X,Y,Z,U)—

n —

SS9 2)g (X U) - 59X, 2) g (V. U)].

In this section, we assume PC%-semi-symmetric Sasakian manifold
in general connection admitting a Conformal Ricci soliton (g, V, A, p).
Then, we have

(5.2) RY(V,X)o P (Y,Z)U =0,

for all U, V € x(M), set of all vector fields of the manifold M. The above
equation can also be written as

0 = RE(V,X)PC(Y,2)U — PY(RE(V,X)Y, Z)U
(5.3) —PY(Y,RY(V,X)2Z)U — PS(Y, Z)R%(V, X)U.

Putting in V' = ¢ in (5.3), we get

0 = RYEX)PY(Y,Z2)U - PY(RY(&,X)Y.Z)U
(5.4) —PY(Y,RC (¢,X)Z)U - P° (Y, Z) R°(¢, X)U.

By the help of (2.21), (2.22) and (2.23) we obtain the followings

RY (&, X)PC(Y,2)U
(5.5) = C[PYY,Z,U,§)X —g(X,PE(Y,Z)U)¢],

PC(RY(&,X)Y,2Z)U

= PECH(Y)X —g(X, V)€, Z2)U
(5.6) = c[w(Y)PG<X 2)U —g(X,Y)PC(€,2)U],
PG( (&, X)Z)U

RC
= PY(Y,Cln(Z)X —g(X,2)€))U
(5.7) = Cn(Z) P (Y, X)U—-g(X,Z)PY(Y,9 U],



58 R. Kundu, A. Das and A. Biswas

U)X 9 (X, PC(Y,2)U)¢]

,Z)U = g(X,Y) PC (& 2)U]
YU —g(X,2) P9 (Y,£) U]
)X —g(X,U) P (Y,2)¢],

===
N

iLe. PY(Y,Z,U,6) X — g(X,PY(Y,2)U)¢
= n(V)PY(X,2)U - g(X,Y)PY (¢, 2)U
+n(2) PE(Y, X)U - g(X,Z2) PY (Y, ) U
(5.10) +n (U)PY(Y,Z2) X — g (X,U)PE (Y, Z) €.

Taking covariant derivative with £ in (5.10) and then contracting over
X and Y we get

g(eirei) PY(€,2,U,€) + g (i, Z) P (€4, €, U, €)
+9(ei,U) PY (ei, Z,,€)
= P%(e;, Z,U,&;) +1(Z) PC (ei,;,U, €)
(5.11) +n (U) PY (e, Z, €, €) .

Using (2.9), (2.15), (2.16) and (5.1) we obtain the followings

)
g(ei,e;) P (€,2,U,€)
= ng(Z,U) —nn(Z)n(U)
(ki = kiks + ko) [1(2) 0 (U) = g (2,0)
— [$%(2.0)+ (n =) Tn(2)n (V)]

(5.12)

g(ei’Z) PG (€i7§,U7§)
= n(U)n(Z2) —g(Z,U) + (k1 — kika + k2) [9 (Z,U) —n (U) 0 (Z)]

(5.13) + il [(n—1)Cn(Z2)n(U)+ 5% (2,U)],
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1

n —

(5.14) PY (e;, Z,U,e;) = SY (Z,U) —

: [nS¢ (z,U) - 8¢ (Z,U)],

PC (e;,Z,e;,¢)
= n(Z2) = (Z) + (k1 — k1k2 + k2) [nn (Z) — n (Z)]

(615) [ - 1)T(2) (2],
(5.16) 9(ei,U) P9 (€3, Z,£,€) =0,
(5.17) n(Z) P% (e;,e;,U, &) = 0.

By the help of (5.12), (5.13), (5.14), (5.15), (5.16) and (5.17) in (5.11),
we have

ng(Z,U) —nn(Z)n(U)

+n (k1 — kikg + k2) [ (Z)n (U) — g(Z,U)]
1[5G(Z,U) (n—=1)Cn(Z)nU)] +n(U)n(Z)
=9 (Z,U) + (k1 — kik2 + k2) [9 (Z,U) —n (U) n (2)]

i1[<n—1>0n< ) (U) + 5% (2,0)

= S9(2U) = — [nS9(2,0) = S9(Z,U)] +n(Z)n(U)
+ (k1 — kiky + k) [nn (Z)m ( ) —n(Z)nU)] —nn(Z)nU)
[~ (= )T ()0 () 1 (2)n ()]
By the help of (2.9), (2.15), (2.16) and simplifying (5.18), we get
S9(z,U)
(5.19) = [-(n—1)(B+n)+7r|n(Z)n(U)—(n—1)Cyg(Z,U).
Using (3.5) in (5.19), we obtain
[~ (n—1)(B+n)+r]n(Z2)nU)—(n—1)Cq(Z,U)

(5.20) = [)\— % (p—i— i) — 1] g(X,Y)+n(X)n(Y).
Setting Z = U = ¢ in (5.20), we have

[—(n—l)(B+n)+r]—(n—l)C:)\—;<p+i>.

(5.18) —
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Thus we can state

Theorem 5.1. If (g,&,\,p) is an Conformal Ricci soliton admitting
RS . PS = 0 on an Sasakian manifold M with respect to the general
connection V&, then X and p are related by (5.21).

Theorem 5.2. If (g,&,\,p) is an Conformal Ricci soliton admitting
RS . PS¢ = 0 on an Sasakian manifold M with respect to the quarter
symmetric metric connection V4, then A and p are related by
1 2
2mn—-1)>4+r=x—= ).
n-1fsr=x-g (pe2)
Theorem 5.3. If (g,£,\,p) is an Conformal Ricci soliton admitting

RE . PS =0 on an Sasakian manifold M with respect to the Shouten-
Van Kampen connection V?®, then A and p are related by

[—(n—1)+r]:)\—;<p+i>.

Theorem 5.4. If (g,&,\,p) is an Conformal Ricci soliton admitting
RE . P% = 0 on an Sasakian manifold M with respect to generalized
Tanaka Webster connection VT, then X and p are related by

[—3(71—1)—1—7"]—)\—;(19—1-721).

Theorem 5.5. If (g,&,\,p) is an Conformal Ricci soliton admitting
RE . PY = 0 on an Sasakian manifold M with respect to Zamkovoy
connection V7, then A and p are related by

(n—1)+r:>\—;<p+i>.
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