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Abstract— Traditional energy management focuses on ensuring a reliable and sustainable energy supply through meticulous planning,

coordination, and optimization of resources. However, integrating renewable energy sources like solar, wind, and hydropower introduces a
new layer of complexity. These sources, while environmentally friendly, are inherently intermittent and variable in their production, posing
unique challenges for energy management. Effective energy management in the presence of renewable energy requires strategies to balance
supply and demand, optimize energy use, and ensure grid stability. This study introduces a new model designed to significantly improve the
accuracy of estimating both energy production and demand. This enhanced level of precision plays a decisive role in the decision-making
process for energy management. This innovative model employs a fuzzy neural network trained on historical energy production data,
integrating weather information through fuzzy functions to improve precision in estimating energy production for future intervals. The
objective functions prioritize renewable energy use to minimize overall system costs. The simulations evaluated the total system cost under
various conditions. The results showed that more accurate estimation and maximized utilization of renewable energy sources led to a
significant reduction in the cost per kilowatt-hour. In essence, this study offers a promising approach to managing energy systems that
heavily rely on renewable sources. By improving estimation accuracy and prioritizing renewable energy use, the model paves the way for a
more reliable, sustainable, and cost-effective energy future.
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1. INTRODUCTION

The increasing penetration of renewable energy sources,
such as solar and wind power, has significantly impacted the
dynamics of energy management in modern power systems
[1]. With the intermittent and uncertain nature of renewable
energy generation, the optimal energy management becomes a
complex and challenging task. Deep learning, a subset of artificial
intelligence, has shown promising potential in addressing these
challenges by enabling more accurate predictions and real-time
decision-making [2]. In this context, the application of deep
learning-based techniques for optimal energy management has
gained considerable attention in recent years. This paper aims to
explore the role of deep learning in optimizing energy management
in the presence of renewable energy, considering its ability to
handle large-scale, complex, and non-linear data sets. By leveraging
deep learning algorithms, it is possible to develop more robust and
adaptive energy management systems that can effectively integrate
renewable energy sources, enhance grid stability, and minimize
operational costs. This paper will delve into the key concepts and
methodologies of deep learning-based optimal energy management,
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highlighting its potential to revolutionize the way renewable energy
is integrated and utilized within power systems [3]. The electric
grid must modify the generation units, which is one of the key
components involved in integrating renewable energy sources into
the main system. By integrating renewable energy sources into the
main grid, many technical and financial issues might arise (Fig.
1). Therefore, in order to optimize the use of renewable energy in
the network, it is necessary to implement energy monitoring and
management methods.

The growing adoption of renewable energies, driven by their
capacity to reduce greenhouse gas emissions, has led to the
emergence of various approaches aimed at optimizing and
effectively managing energy within these systems. In [4] a
combination of batteries, electric vehicles (EVs), and other energy
sources is used to capture the fluctuations of renewable energy
sources (RESs). Then, to effectively represent the uncertainties
associated with RESs, energy prices, and load demands, a linearized
stochastic programming framework is utilized. [5] introduces a
novel energy management system model for a residential microgrid
that incorporates a battery energy storage system (BESS). The
proposed dynamic model combines a predictive model based on
deep learning, specifically bidirectional long short-term memory
(Bi-LSTM), with an optimization algorithm. [6] introduces a
pragmatic framework for achieving optimal energy management
and control in renewable microgrids (MGs) by incorporating energy
storage devices, wind turbines, and microturbines. To efficiently
solve the power flow dispatch in the system, the teacher learning-
based optimization (TLBO) technique is employed. Additionally,
a novel hybrid deep learning model, which integrates principal
component analysis (PCA), convolutional neural networks (CNN),
and bidirectional long short-term memory (BLSTM), is proposed
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to address the challenge of short-term wind power forecasting.
[7] investigates the impact of different weather conditions on
the power generation of the PV unit and explores the optimal
scheduling strategy for the MG. So, solar irradiance data from
four representative days in each of the four seasons are collected
and analyzed. The scheduling problem is formulated as a single-
objective optimization framework, where the objective function
aims to minimize the total operating cost over the scheduling
period. [8] focuses on the integration of a community energy storage
system (CESS) with a photovoltaic (PV) system. The research aims
to determine the scheduling decisions for both the CESS and utility
grid by establishing appropriate constraints. In order to analyze the
operational behavior of microgrids (MGs) and minimize network
energy losses, a scenario-based energy management system (EMS)
that is modelled as a mixed-integer linear programming (MILP)
problem is presented [9]. To maximize the energy-saving potential
of thermostatically controllable appliances (TCAs) while meeting
operational and comfort constraints, a demand response (DR)
program based on direct load control (DLC) is introduced into
the system. In [10] a PV energy storage system (CESS) is
considered where the scheduling decision of the CESS and
utility grid can be subsequently achieved through LSTM. [11]
proposes a novel robust framework for the day-ahead energy
scheduling of a residential microgrid comprising interconnected
smart users, each owning individual RESs, noncontrollable loads
(NCLs), energy- and comfort-based CLs, and individual plug-in
electric vehicles (PEVs). [12] proposes a joint and conceptual
approach for the techno-economic design and dynamic rule-based
power control of an off-grid hybrid renewable energy system
that combines solar and wind power, along with a hybrid energy
storage system that consists of a supercapacitor, a lead-acid
battery, and a lithium-ion battery. In the grid-connected microgrid
systems, [13] provides a two-stage multi-objective framework that
concurrently lowers operating costs and improves demand response
program efficiency. In order to assess the energy flexibility of
the demand response systems, it also presents the Average Power
Flexibility during Peak Period Index (APFDPPI). In the presence
of renewable energy sources, [14] discussed the modeling and
optimization of electric car charging using genetic algorithms.
[15] developed a model that accurately replicates a microgrid,
predicts demand and supply, seamlessly schedules power delivery
to meet demand, and gives actionable insights into the SG system’s
operation. In [16] a new approach is presented to designing
hybrid energy systems using the Firefly algorithm. It aims to
enhance resilience and adaptability while reducing environmental
impacts by incorporating multiple energy sources like solar
panels, wind turbines, and combined heat and power systems.
By considering uncertainties in production capacity, demand,
and costs, the study demonstrates the algorithm’s effectiveness in
optimizing system design compared to other methods. [17] explores
energy management strategies for microgrids and smart electrical
grids, with a focus on leveraging electric vehicles (EVs) as
potential energy sources. By considering market prices of energy,
prices from distributed generation sources, and EVs in the grid,
along with responsive loads, the study investigates load response
programs such as time of use and direct load control. Using
linear mixed-integer planning simulated with GAMS software,
the research demonstrates that implementing these load response
programs can effectively reduce costs. A mathematical model
for grid-connected microgrids, incorporating various generation
sources and an improved demand response program is presented
[18]. The novelty lies in a new uncertainty modeling technique
based on copula functions and scenario generation. Using the
group search optimization (GSO) algorithm, the paper optimizes
operational cost and environmental pollution.

Many of the examined studies have focused on the fluctuation
of renewable energies and have proposed models for predicting
and managing their energy output. Nevertheless, there is a need
to develop more precise estimation methods. Additionally, it is

crucial to incorporate the variability in consumer demand into
decision-making criteria. Consequently, this article introduces the
following:

1) Enhancement of the accuracy in estimating renewable energy
production.

2) Introduction of a neural-fuzzy network model for assimilating
new data.

3) Integration of demand quantity into energy management
considerations.

The remaining sections of the article are structured as follows:
Section 2 addresses problem modeling, introducing renewable
energy sources and methods for enhancing their production
estimation. Section 3 presents the system’s energy management
approach. Section 4, simulation and numerical results are
showcased, and ultimately, Section 5 provides the summary and
conclusions.
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Fig. 1. The model of using renewable energy in the grid.

2. SYSTEM MODEL

The model shown in Fig. 1 is intended to implement methods
to optimize energy consumption. A series of renewable energy
producers along with the power grid and diesel power plant deliver
electrical energy to consumers. Energy storage resources have also
been used to manage network energy. In the following, the model
of renewable producer sectors is presented along with the energy
optimizer model.

2.1. Wind turbine

One of the best renewable energy sources for making electricity
is wind energy. Thanks to new power system innovations and
faster turbine technologies, the wind sector is growing quickly.
Synchronous or induction motors are used in wind generators.
Owing to their compact size, low weight, and ease of maintenance,
induction motors are extensively utilized. The mathematical model
of wind turbines is presented below [19].

The total power:

Pw =
1

2
ρAsv

3
w (1)

The total available wind power:

PT =
1

2
ρCpζAv

3
w (2)

Where, Pw= Power (W), m= Mass (Kg), vw= Speed of wind
(m/s), ρ= Density (Kg/m3), As= Swept area (m2), and ζ= Speed
ratio.
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2.2. PV farm
There are two ways that the PV energy can be converted. The

direct use of photovoltaic phenomena to generate power is known
as photovoltaic. The photovoltaic system experiences fluctuations
in DC current as a result of variations in solar intensity. By
employing an inverter to supply the proper voltage and current,
this volatility is lessened. A concentrated solar power system is
an indirect technique that generates electricity by using mirrors or
lenses. The following equation show the governing equations of
photovoltaic cells based on equivalent circuit model of PV unit
shown in Fig. 2 [16].

I =

(NcpIpc −NcpImc)× [exp(
V/Ncs+IRs/Ncp

NVdt
)− 1]− Irc

(3)

Vdt +
KT

Q
(4)

Irc =
V Ncp/Ncs + IRs

Rsr
(5)

Ipc= Photo current (A); Ncp= Cell number connected in parallel;
Imc= Module saturation current; Ncs= Cell number connected in
series; Q= Charge of electron; K= Boltzmann’s constant: T =
Actual cell temperature;

The total available wind power: 

31

2
T p wP C Av =  

(2) 

Where, wP  = Power (W), m = Mass (Kg), wv = Speed of wind (m/s),   = Density (Kg/m3), sA = 

Swept area (m2), and  = Speed ratio.  

2-2-PV farm  

There are two ways that the PV energy can be converted. The direct use of photovoltaic phenomena 

to generate power is known as photovoltaic. The photovoltaic system experiences fluctuations in 

DC current as a result of variations in solar intensity. By employing an inverter to supply the proper 

voltage and current, this volatility is lessened. A concentrated solar power system is an indirect 

technique that generates electricity by using mirrors or lenses. The following equation show the 

governing equations of photovoltaic cells based on equivalent circuit model of PV unit shown in 

Fig 2 [16]. 
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pcI = Photo current (A); cpN = Cell number connected in parallel; mcI = Module saturation current; csN = 

Cell number connected in series; Q = Charge of electron; = K = Boltzmann’s constant: T = Actual cell 

temperature; 

 

Fig 2: Equivalent circuit model of PV unit 
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3. OPTIMIZING ENERGY IN THE NETWORK

Even though using renewable energy has numerous advantages,
the grid faces difficulties because of its unpredictable nature. In
order to overcome this challenge, in the proposed method, energy
storage devices along with algorithms have been presented to
accurately predict production schedules and demand.

3.1. Wind/PV generation prediction
Wind energy can be used on a large scale to generate electrical

power. In order to estimate the amount, various methods have been
presented in past research. However, in order to estimate it more
accurately, it is necessary to consider information such as weather
information. In this regard, in the proposed method, weather
information is combined with power generation information by a
fuzzy network to provide a more accurate estimate.

As illustrated in the Fig. 3, the weather data is converted into
vectors through a set of fuzzy functions, positioned alongside
power generation information, and subsequently input into the
LSTM network.

A more advanced version of the RNN, referred to as an
LSTM network, overcomes its limitations by integrating memory
cells and multiple control gates. These memory cells allow
LSTM networks to capture long-term dependencies in temporal
sequences, facilitating the flow of information across consecutive
time steps within the internal network structure. Fig. 4 illustrates
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Fig 3: Proposed structure for wind power generation 

A more advanced version of the RNN, referred to as an LSTM network, overcomes its limitations by 

integrating memory cells and multiple control gates. These memory cells allow LSTM networks to capture 

long-term dependencies in temporal sequences, facilitating the flow of information across consecutive time 

steps within the internal network structure. Fig 4 illustrates the single-cell structure of an LSTM, featuring 

three gates (input gate, output gate, and forget gate). 
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Fig 4: Single-cell structure of an LSTM 

 However, an LSTM layer consists of interconnected single cells. Let 𝑋𝑡 represent the wind-generated 
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The same structure is used for PV-gerated prediction.  
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Fig. 4. Single-cell structure of an LSTM.

the single-cell structure of an LSTM, featuring three gates (input
gate, output gate, and forget gate).

However, an LSTM layer consists of interconnected single cells.
Let Xt represent the wind-generated power or energy measurement
at time step t. The relationship between the current and previously
observed data is formulated as follows to predict the 24-hour-ahead
response of the wind-generated power or energy consumption.

(
Ŷt+1, Ŷt+2, . . . , Ŷt+24

)
=

LSTM (Xt−k+1, . . . , Xt−1, Xt)
(6)

Here, t belongs to the interval [k, N − 1], where k is the
time lag, and N is the size of the data. In the equation, LSTM(·)
denotes the LSTM function for each individual cell L within the
range of 1 to NL, and is defined by the following:
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The same structure is used for PV-gerated prediction.

3.2. Energy consumption management
Once the precision of estimating renewable resource generation

is enhanced, attention must be directed towards devising policies
for governing energy consumption within the grid. Every
component of the grid, such as renewable sources, energy storage
units, diesel power plants, and others, contributes costs to the
grid that necessitate careful consideration. To address this, the
comprehensive cost function of the network is conceived as the
aggregate of the cost functions associated with various segments
of the network, as outlined below:
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max Pwind + PPv

min Pdisel + Pnetwork

CS : StorageCapacity < γs, T otall_power > γth
(8)

CostkW = 400× CostPV + 190× Costwind + 250×
Coststorage + 350× CostDiesel + 300× CostNetwork

(9)

Where 400, 190, and 350 are generated power in KW by PV,
wind, and diesel powerplants respecticely. Also, 250 (KW) is the
cpacity and 300 (KW) is the network power consumption.

4. NUMERICAL RESULTS

In order to evaluate the presented model, it is necessary to
analyze its numerical results using simulations. Therefore, the
model shown in Fig. 5 is implemented in Simulink environment.
Since neural networks require a large amount of data for training,
this implemented model has been used to create data. 1,000
four-hour samples have been produced and stored for each of the
wind energy, solar energy and consumer demand sectors. Then
the fuzzy neural network model shown in the figure is used to
estimate the wind and solar energy sectors.

Once the precision of estimating renewable resource generation is enhanced, attention must be directed 

towards devising policies for governing energy consumption within the grid. Every component of the grid, 

such as renewable sources, energy storage units, diesel power plants, and others, contributes costs to the 

grid that necessitate careful consideration. To address this, the comprehensive cost function of the network 

is conceived as the aggregate of the cost functions associated with various segments of the network, as 

outlined below: 
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Fig 5: Simulated model in SIMULINK Fig. 5. Simulated model in SIMULINK.

In order to produce the energy of each of the renewable energy
units, random variables are placed in specific intervals at the input
of their resources to model their stochastic behavior. Then the
energy produced from them is stored and used for training. Figs.
5 and 6 show the actual and estimated amounts for wind and solar
energy, respectively. These values are for the test data and it shows
that the designed network can estimate the production values well.
These estimated values can be used in energy management process.
The influence of environmental factors, such as wind dynamics, on
the accuracy of renewable energy predictions is vividly illustrated
in Fig. 6. This figure showcases the considerable variability in
wind patterns, which directly impacts the precision of forecasting
models. The fluctuations in wind speed and direction contribute to
higher error rates compared to the more consistent and predictable
nature of photovoltaic (PV) generated power, as depicted in Fig. 7.
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depicted in Figure 7.  
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advanced data analytics and machine learning algorithms can enhance the accuracy of predictions, 

enabling more effective energy management strategies. Moreover, these insights underscore the 

necessity of holistic approaches to energy planning, especially in contexts where wind power plays 

a significant role in the energy mix. By considering the inherent variability of renewable energy 

sources, decision-makers can better anticipate fluctuations in energy generation and optimize 

resource allocation accordingly. This proactive approach not only improves the reliability of 

energy supply but also minimizes costs and enhances overall system efficiency. 

Fig. 6. Actual and estimated amount of produced wind energy.

Understanding and accounting for this variability is paramount
when designing forecasting methodologies within renewable
energy systems. These findings highlight the critical importance of
developing robust models that can adapt to dynamic environmental

conditions. Incorporating advanced data analytics and machine
learning algorithms can enhance the accuracy of predictions,
enabling more effective energy management strategies. Moreover,
these insights underscore the necessity of holistic approaches to
energy planning, especially in contexts where wind power plays
a significant role in the energy mix. By considering the inherent
variability of renewable energy sources, decision-makers can better
anticipate fluctuations in energy generation and optimize resource
allocation accordingly. This proactive approach not only improves
the reliability of energy supply but also minimizes costs and
enhances overall system efficiency.

  

Fig7: Actual and estimated amount of produced PV energy  

In addition to environmental factors, accurately estimating consumer demand is another essential 

parameter in effective energy management. By leveraging available data on demand patterns, 

organizations can optimize the utilization of resources, including renewable energy production and 

energy storage. This optimization leads to more efficient allocation of resources, reduces reliance 

on traditional energy sources, and ultimately lowers operational costs. Overall, by acknowledging 

and addressing the complexities of renewable energy forecasting and demand estimation, 

stakeholders can pave the way for a more sustainable and resilient energy future. This requires a 

multidisciplinary approach, integrating technological advancements, data-driven insights, and 

strategic planning to maximize the benefits of renewable energy sources while minimizing their 

inherent challenges. 
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In addition to environmental factors, accurately estimating
consumer demand is another essential parameter in effective energy
management. By leveraging available data on demand patterns,
organizations can optimize the utilization of resources, including
renewable energy production and energy storage. This optimization
leads to more efficient allocation of resources, reduces reliance on
traditional energy sources, and ultimately lowers operational costs.
Overall, by acknowledging and addressing the complexities of
renewable energy forecasting and demand estimation, stakeholders
can pave the way for a more sustainable and resilient energy
future. This requires a multidisciplinary approach, integrating
technological advancements, data-driven insights, and strategic
planning to maximize the benefits of renewable energy sources
while minimizing their inherent challenges.
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Fig. 8. Actual and estimated amount of Consumer demand.

Ultimately, once the desired values are estimated, it becomes
feasible to ascertain the values for each production and storage
unit using Eq. (1). Subsequently, the cost is determined based on
this equation. In Fig. 9, the cost for the system under consideration
are presented, depicting results for two modes: Utilizing the
estimation model and making decisions based on measured values.
The results indicate that when production quantities for each unit
are accessible, the cost per kilowatt of production power decreases
by approximately $220, signifying a noteworthy reduction on a
larger scale.

The numerical result (Fig. 10) reveals that the enhanced
model, incorporating weather information and LSTM networks,
outperforms the traditional model in terms of prediction accuracy
and robustness. Specifically, the enhanced model exhibits lower
mean squared error (MSE) (given by Eq. (10)) values across
various test datasets compared to the model in [19].
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Fig9: The cost value of proposed method  
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The figure demonstrates that the proposed method consistently
outperforms the method referenced in [19] in terms of MSE.
This suggests that the proposed method provides more accurate
predictions or estimations throughout the observed period. The
lower MSE values indicate a significant improvement, which
is crucial for applications requiring precise energy management,
prediction, and optimization. In conclusion, the proposed method’s
superior performance, as evidenced by consistently lower MSE
values, validates its effectiveness and potential for enhancing
reliability and accuracy in the relevant applications. This
improvement is particularly notable under conditions of varying
weather patterns and environmental factors, where the traditional
model may struggle to capture the complexities of renewable
energy generation.
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Fig. 10. Wind and solar power generation MSE: Proposed vs. Method in
[19].

Also, the Mean Absolute Percentage Error (MAPE) which is
a widely used metric for assessing the accuracy of forecasting
methods is calculated for both methods. It provides a clear
indication of how accurate forecasts are by expressing the average
absolute percentage difference between the predicted and actual
values. The formula for calculating MAPE is as follows:
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Where, n is the number of observations, At is the actual value
at time t, and Ft is the forecasted value at time t. The MAPE
value for the proposed method and the method in [20] is 11% and
16%, respectively. The model in [20] presents a methodology for
energy forecasting utilizing Renewable Energy Sources (RESs),
emphasizing the deployment of Deep Neural Network (DNN)
models on mobile devices located at the network edge. However,
due to its omission of weather information and complete historical
data, it exhibits reduced accuracy in predicting renewable energy
generation.

5. CONCLUSION
This study introduces an innovative energy management

approach tailored for power networks integrating variable renewable
energy sources. Leveraging neural-fuzzy networks, the model
achieves remarkable precision in estimating production for
renewable units, as evidenced by a significantly lower Mean
Absolute Percentage Error (MAPE) value of 11% compared to
16% for the previous methods in the literature. This improvement
in accuracy translates into tangible benefits, as demonstrated
by a reduction in the cost per kilowatt-hour of production
power by approximately $220, as highlighted in the results. This
refined estimation capability proves instrumental in optimizing
energy management strategies, enabling the model to consider
unit costs and storage dynamics to determine the most efficient
production quantities for each renewable source. Consequently,
the model significantly boosts renewable energy production while
simultaneously curbing overall system costs. This achievement
underscores the efficacy of neural-fuzzy networks in addressing the
inherent unpredictability of renewable energy production, thereby
enhancing the network’s stability and efficiency. Moreover, the
model’s integration of unit costs and storage options ensures
a financially prudent approach to energy management, further
corroborated by the tangible cost reductions observed in the
study. Future endeavors may explore integrating additional data
sources and developing real-time adaptive models to enhance
scalability and responsiveness. Additionally, economic analysis,
policy integration, and synergy with smart grid technologies are
crucial avenues for further exploration and refinement.
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