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proves some conclusions from the literature.
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1. Introduction

Banach contraction, widely used in several fields of science and engineering,

originated from creating a contractive mapping or a metric space. Reducing
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or altering the metric conditions establishes the development of type metric

space. Go to [1, 15] to learn more. It should be noted that certain topological

advantages are lost when certain metric requirements are abused or weakened,

which makes the proof of certain fixed-point theorems difficult. Due to these

challenges, the authors have had to invent new techniques for developing fixed-

point theorems to tackle more specialized applications. Branciari [6] established

the notion of rectangular metric space and obtained the analog of the Banach

contraction principle in this space. A fixed point theory in the Branciari-metric

spaces has been the subject of numerous papers, (see [2, 8, 13].

On the other hand, since Bakhtin [3] established a generalization of metric

space and demonstrated the symmetric Banach contraction principle, numerous

studies of fixed point theorem or the changeful notion for sole-evaluative and

multi-evaluative mappings in Bakhtin-metric space have been conducted (see

[5, 9, 10].

This study re-shows a contraction type in the Branciari-Bakhtin-metric

space, as the parallel of the Banach fixed point theorem literature.

2. Preliminaries

This section presents the foundation for our primary findings.

Definition 2.1. [3] Suppose E is a non-empty set and λ > 1, is a given real

number. A function σ : E×E → [0,∞) is a Bakhtin on E if for all u1, u2, u3 ∈ E,
satisfied :

(i): σ(u1, u2) = 0 if and only if u1 = u2;

(ii): σ(u1, u2) = σ(u2, u1);

(iii): σ(u1, u2) ≤ σ(u1, u3) + σ(u3, u2).

The pair (E , σ) is called a Bakhtin metric space.

Definition 2.2. [7] Suppose E is a non-empty set and λ > 1, is a given real

number. A function σ : E × E → [0,∞) is Branciari on E if for all u1, u2 ∈
mathcalE and all distinct points v1, v2 ∈ mathcalE each distinct from u1, u2,

the following terms are satisfied:

(i): σ(u1, u2) = 0 if and only if u1 = u2;

(ii): σ(u1, u2) = σ(u2, u1);

(iii): σ(u1, v1) ≤ σ(u1, v2) + σ(v2, u2) + σ(v2, u1).

The pair (E , σ) is called a Branciari metric space.

Remark 2.3. [12] In Definition 2.2 if the third term becomes to

(iii)σ(u1, v1) ≤ λ(σ(u1, v2) + σ(v2, u2) + σ(v2, u1)).

Then (E , σ) is called a Branciari-Bakhtin metric space.
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Lemma 2.4. [14] Suppose, (E , σ) be a Branciari-Bakhtin metric space with

λ > 1 and suppose ui be a Cauchy sequence in E such that ui = uj when it was

i ̸= j. Then ui be able to converge at most one point.

3. Main Results

The parallel of the Banach [4] contraction principle in the Branciari-Bakhtin

metric spaces is the next theorem

Theorem 3.1. Suppose (E , σ) be a complete Branciari-Bakhtin metric space

with λ > 1 and suppose ζ is a self-mapping on E for all u1, v1) + σ(u2, v2) ∈ E
satisfies

σ(ζu1, ζu2) ≤ λ(−1)
[
σ(u1, v2) + σ(v2, u2) + σ(u2, v1)

]
. (3.1)

Then ζ has a fixed point.

Proof. Assume that u0 ∈ E , consider the iteration ζui = ui+1 for all i ≤ 1. We

will prove that {ui} is a Cauchy sequence, such that ui ̸= ui+1. Using (3.1), to

get

σ(ui, ui+1) = σ(ζui−1, ζui) ≤ λ(−1)
[
σ(ui−1, v2) + σ(v2, ui) + σ(ui, v1)

]
σi ≤ λ(−1)σ(i−1).

Using this procedure i times, we get

σi ≤ λ(−1)σ0 (3.2)

Allowing the assumption that u0 is not a cyclic point of ζ. Actually, if

u0 = ui for all i ≥ 2, we get

σ(u0, ζu0) =σ(ui, ζui)

σ(u0, ζu1) =σ(ui, ζui+1)

σ0 =σi

σ0 =λ(−1)σ0.

Thus, σ0 = 0, hence u0 is a fixed point of ζ. Letting ui ̸= uj for all i ̸= j ∈ N
and (ui, ui+2) = δ, getting

σ(ui, ui+2) = σ(ζui−1, ζui+1) ≤ λ−1
[
σ(ui−1, v2) + σ(v2, ui+1) + σ(ui+1, v1)

]
δi ≤ λ−1δai−1

δi ≤ λ−1δi0 .

Thus, ui ia a Cauchy sequence. Since (E , σ) is a complete Branciari-Bakhtin

metric space then there exists u ∈ E satisfies ui → u as i → ∞.
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To proving that u is a fixed point of ζ, take

σ(u, ζu) ≤ λ
[
σ(u, ui) + σ(ui, ui+1) + σ(ui+1, ζui+1)

]
.

Thus u = ζu. Therefore, ζ has a fixed point. □

Let ζ : E → E such that F (ζ) = F (ζi),∀i ∈ N . Then ζ has ρ property (see

[11]) where, F (ζ) = Y ∈ E : ζY = Y . So, we get the following result.

Corollary 3.2. Suppose (E , σ) be a complete Branciari-Bakhtin metric space

with λ > 1 and let ζ : E → E satisfies for all u1, u2, v1, v2 ∈ E

σ(ζiu1, ζ
iu2) ≤ λ−1[σ(u1, ui) + σ(ui, v2) + σ(v2, ζu2) + σ(u2, ζv1)]. (3.3)

Then ζiu = u,∀I ∈ N , where u is a fixed point of ζ.

Example 3.3. Suppose that E = u1∪u2 such that u1 = {0.5, 0.3, 0.25, 0.2}, u2 =

[1, 2]. Consider σ : E × E → [0,∞) and σ(χ1, χ2) = 0, where χ1 = ζ2 and

σ(χ1, χ2) = σ(χ2, χ1) where χ1 = χ2 such that χ1, χ2 ∈ E, as
σ(0.3, 0.5) = σ(0.25, 0.2) = 0.03,

σ(0.2, 0.5) = σ(0.3, 0.25) = 0.02,

σ(0.25, 0.5) = σ(0.25, 0.2) = 0.6,

σ(χ1, χ2) = |χ1 − χ2|2 else

Therefore (E , σ) is a complete Branciari-Bakhtin metric space with λ = 4.

Define ζ : E → E as

ζχ =

{
0.25, χ ∈ u1,

0.2, χ ∈ u2

Hence, the Condition of Theorem 3.1 is satisfied and ζ has a unique fixed point

of 0.25.

4. Conclusion

This paper has generalized an important theorem from the literature and

re-proved it in the context of Branciari-Bakhtin metric spaces.
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