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Abstract. In this paper we have taken the n−power (α, β)-metric and ob-

tained the condition for projectively flatness and further find the the some

special cases..
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1. Introduction

An n− dimensional Finsler space Fn = (Mn,L) is known as a locally

Minkowskian space [3] if the manifold Mn is covered by coordinate neigh-

bourhood system (xi) in each of which the metric L is the function of yi only.

Further the Finsler space Fn is known as projectively flat if Fn is projective

to a locally Minskowski space. Matsumoto [6] introduced a condition for a

Finsler space with Randers metric and Kropina metric to be projectively flat.

The projective flatness property for the Finsler space with various important

(α, β)-metric had been studied by various authors [1], [5], [7],[8], [9], [10], [11],
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[12] [13] and obtained fruitful and beneficial results in the field of Finsler spaces.

Initially the concept and importance of (α, β)-metric has been introduced and

explained by Matsumoto [6] in detail and the metric L = L(α, β) is an n- di-

mensional manifold Mn, which is positively homogeneous function of degree

one in α and β, where α is a regular Riemannian metric α =
√
αij(x)y

iyj , i.e

det(αij) ̸= 0 and β is 1− form, β = bi(x)y
i. It is generalization of Randers met-

ric L = α+β. We know that there are many types of important (α, β)-metrics

namely Kropina metric, Matsumoto metric, generalized Kropina metric, and

Z. shen’s square metric, infinite series metric and many more metrices [2], [3],

[4] [12], [13] , [14] discussed and obtained various fruitful results in field of

Finsler geometry. Matsumoto [5] used the following notation, which we have

applied in this research and took γi
jk to repersent the Christoffel symboles in

the Riemannian space (Mn, α)-metric

rij =
1

2

{
bi;j + bj;i

}
, r ij = aihrhj , rj = bir

i
j ,

Sij =
1

2

{
bi;j − bj;i

}
, Si

j = aihShj , Sj = biSi
j ,

bi = aihbh, b2 = bibi,

where bi;j is the covariant derivative of the vector field bi related to the Rie-

mannian connection γi
jk, i.e.,

bi;j =
∂bi
∂xj

− bkγ
i
jk.

It has been shown by Matsumoto [5] that a Finsler space Fn = (Mn,L)
with an (α, β)-metric is projectively flat if and only if for every point of the

manifold Mn there is a local co-ordinate neighbourhood that includes the point

such that christoffel symbols γi
jk in the Riemannian space (Mn, α) satisfies:

1

2

(
γi
00 −

γ000y
i

α2

)
+
(αLβ

Lα

)
Si
0 +

(Lαα

Lα

)(
C +

αr00
2β

)(α2bi

β
− yi

)
= 0, (1.1)

where ′0′ stands contraction by yi and C is given by

C +
(α2Lβ

βLα

)
S0 +

(αLαα

β2Lα

)(
α2b2 − β2

)(
C +

αr00
2β

)
= 0. (1.2)

Since α2Lαα = β2Lββ , due to homogeneity of L equation (1.2) may be rewritten

as

{1 + (
Lββ

αLα
)(α2b2 − β2)}(C +

αr00
2β

) = (
α

2β
){r00 − (

2αLβ

Lβ
)S0}. (1.3)
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The term (C + αr00
2β ) in (1.3) can be eliminated if {1 + (

Lββ

αLα
)(α2b2 − β2)} ≠ 0,

it is expreesed as :{
1 +

Lββ(α
2b2 − β2)

αLα

}{1

2

(
γi
00 −

γ000y
i

α2

)
+ (

αLβ

Lα
)Si

0

}
+
(Lαα

Lα

)( α

2β

){
r00 −

(2αLβ

Lα

)
S0

}(α2bi

β
− yi

)
= 0. (1.4)

Thus we have [6] :

Theorem 1.1. Let {
1 + (

Lββ

αLα
)(α2b2 − β2)

}
̸= 0.

Then a Finsler space Fn equipped with (α, β)-metric is projectively flat if and

only if (1.4) is satisfied.

In this research paper, we have considered a generalized form of an (α, β)-

metric which is known as n−power (α, β)-metric [15] on an n− dimensional

manifold Mn, defind as

L = α
(
1 +

β

α

)n

. (1.5)

Further we shall discuss and find out the projectively flatness condition of (1.5)

and also try to obtain the special conditions on some particular cases by taking

n = 0, 1, 2, 3 and 4.

2. Projectively Flat Finsler Space with n− Power (α, β)-Metric

In this section, we have taken n−power (α, β)-metric as defined in equation

(1.5).

It has been obtained [1] if α2 contains β as a factor, then the dimension is equal

to 2 and b2 = 0.

Here we have assumed that the dimension is more than two, and b2 ̸= 0, i.e

α2 ̸≡ 0(modβ). Taking the partial derivative of (1.5) with respect to α, β, αα

and ββ, we have 
Lα = (α+β)n−1(α−(n−1)β)

αn ,

Lβ = n(α+β)n−1

αn−1 ,

Lαα = (n2−n)β2(α+β)n−2

αn+1 ,

Lββ = n(n−1)(α+β)n−2

αn−1 .

(2.1)

By virtue of theorem (1.1), {1 + (
Lββ

αLα
)(α2b2 − β2)} = 0 then we have {α2(1 +

(n2 − n)b2) + (2 − n)αβ + (1 − n2)β2} = 0, which is contradiction. Hence

theorem (1.1) can be applied.
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Putting the values of Lα, Lβ , Lαα and Lββ , in equation (1.4), we obtain

(α2(1 + (n2 − n)b2) + (2− n)αβ + (1− n2)β2){(α2γi
00 − γ000y

i)(α− (n− 1)β)

+ 2nα4Si
0}+ (n2 − n)α2{(α− (n− 1)β)r00 − 2nα2S0}(α2bi − βyi) = 0.

(2.2)

The above equation can be rewritten as a polynomial of degree 6 in ’α’, which

is given as

A6α
6 +A4α

4 +A2α
2 +A0 + α(A5α

4 +A3α
2 +A1) = 0, (2.3)

where

A0 = −(n− 1)(n2 − 1)β3yiγ000,

A1 = (3n− 3)β2γ000y
i,

A2 = (2n − 3)βyiγ000 + n(n − 1)2b2βyiγ000 + (n − 1)2(n + 1)β3γi
00 + (n2 −

n)(n− 1)β2yir00,

A3 = −yiγ000 − 2nb2yiγ000 + (3− 3n)β2γi
00 − (n2 − 1)βyir00,

A4 = n(n2−1)b2βγi
00+(3−2n)βγi

00−2n(n2−1)β2Si
0−(n2−n)(n−1)biβr00+

2n(n2 − n)βyi,

A5 = γi
00 + (n2 − n)γi

00b
2 + (n2 − n)bir00 + 2n(2− n)βSi

0,

A6 = 2n{(1 + (n2 − n)b2)Si
0 − (n2 − n)biS0}.

Since A6α
6 + A4α

4 + A2α
2 + A0 and A5α

4 + A3α
2 + A1 are rational and

α is irrational in yi, therefore we have

A6α
6 +A4α

4 +A2α
2 +A0 = 0. (2.4)

A5α
4 +A3α

2 +A1 = 0. (2.5)

Since the term which does not contains β is A6α
6, therefore there exists a ho-

mogeneous polynomial V6 of degree 6 in yi, such that

2n{(1 + (n2 − n)b2)Si
0 − (n2 − n)biS0}α6 = βV6.

Since α2 ̸≡ 0(modβ), then we must have ui = ui(x) satisfying

2n{(1 + (n2 − n)b2)Si
0 − (n2 − n)biS0} = uiβ. (2.6)
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Contracting the above equation by bi, we have

2n{(1 + (n2 − n)b2)S0 − (n2 − n)biS0} = uiβbi, i.e.

2nS0 = uiβbi. (2.7)

Again contracting this by bj , we have 2nSj = uibibj , further contracting this

equation by bj , we obtain

uibib
2 = 0, i.e uibi = 0.

Putting this value in equation (2.7), we obtain

S0 = 0.

Therefore from (2.6), we get

2n(1 + (n2 − n)b2)Sij = uibj , (2.8)

which implies uibj + ujbi = 0.

Contracting this equation by bj , we have uib
2 = 0 by virtue of biuj = 0. There-

fore we get, ui = 0. Hence from (2.8), we have Sij = 0.

Conversely, from (2.5) we have 1−form v0 = vi(x)y
i, such that

γ000 = v0α
2. (2.9)

Putting S0 = 0, Si
0 and γ000 = v0α

2 into (2.2), we have

{α2(1+(n2−n)b2)−(2−n)αβ−(n2−1)β2}(γi
00−v0y

i)+(n2−n)r00(α
2bi−βyi) = 0.

(2.10)

Since (α− (n− 1)β) ̸= 0, the equation (2.10) may be expressed as follows

Pα+Q = 0,

where

P = (2− n)β(γi
00 − v0y

i),

Q = {α2(1 + (n2 − n)b2)− (n2 − 1)β2}(γi
00 − v0y

i) + (n2 − n)r00(α
2bi − βyi).

Since P and Q are rational and α is irrational in yi we have P = 0 and Q = 0.

Initially, P = 0 implies that

γi
00 − v0y

i = 0. (2.11)

i.e.

2γi
jk = vjδ

i
k + vkδ

i
j , (2.12)

which implies that the associated Riemannian space (Mn, α) is projectively

flat.

Next, from Q = 0 and from γi
00 − v0y

i = 0, we have

(n2 − n)r00(α
2bi − βyi) = 0. (2.13)

Contracting the equation (2.13) by bi, we have (n2 − n)r00(α
2b2 − β2) = 0,

from which we obtain r00 = 0 i.e. rij = 0.
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From Sij = 0 and rij = 0, we have bi;j = 0.

On the other hand if bi;j = 0, then

2rij = bj;i, (2.14)

2Sij = −bj;i. (2.15)

By adding (2.14) and (2.15), we have 2rij +2Sij = 0 i.e. 2Sij = 0 and 2rij = 0,

then we have r00 = Si
0 = S0. So (2.2) is a result of (2.11). Hence we have:

Theorem 2.1. A Finsler space Fn equipped with n−power (α, β)−metric and

the associated Riemannian space (Mn, α) is projectively flat if and only if the

covariant derivative of bi with respect to ′j′ is zero.

Some special cases:

Case(a): Put n = 0 in equation (1.5), we have

L = α (2.16)

Differentiating equation (2.16) partially with respect to α, β, αα and ββ, we

have 
Lα = 1,

Lβ = 0,

Lαα = 0,

Lββ = 0.

(2.17)

Since 1 + (
Lββ

αLα
)(α2b2 − β2) ̸= 0, then putting the these values of Lα, Lβ , Lαα

and Lββ in the equation (1.4) we obtain

(1 + 0){ (γi
00−

γ000yi

α2

2 } = 0.

This implies that

α2γi
00 = γ000y

i. (2.18)

Hence:

Theorem 2.2. If we take n = 0, then the n−power (α, β)−metric is neither

projectively flat nor the associated Riemannian space (Mn, α).

Case(b): Put n = 1 in equation (1.5), we obtain

L = α+ β. (2.19)

If we put n = 1 in equation (1.5), then equation (2.19) is known as a Randers

change of (α, β)−metric. It has been studied by Matsumoto [5].

Case(c): Put n = 2 in equation (1.5), we obtain

L =
(α+ β)2

α
. (2.20)
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Differentiating equation (2.20) partially with respect to α, β, αα and ββ, we

have 
Lα = (α2−β2)

α2 ,

Lβ = 2β2

α ,

Lαα = 2(α+β)
α3 ,

Lββ = 2
α ,

(2.21)

Since 1 + (
Lββ

αLα
)(α2b2 − β2) ̸= 0, then putting the these values of Lα, Lβ , Lαα

and Lββ in the equation (1.4), we obtain

(α2(1 + 2b2)− 3β2){(α2γi
00 − γ000y

i)(α− β) + 4α4Si
0}+ 2α2(α2bi − βyi){(α− β)r00

− 4α2S0} = 0

(2.22)

The above equation can be rewritten as a polynomial of degree 6 in ’α’, which

is given as

A6α
6 +A4α

4 +A2α
2 +A0 + α(A5α

4 +A3α
2 +A1) = 0, (2.23)

where

A0 = −3β3yiγ000,

A1 = 3β2γ000y
i,

A2 = βyiγ000 + 2b2βyiγ000 + 3β3γi
00 + 2β2yir00,

A3 = −yiγi
00 − 2b2yiγ000 − 3β2γi

00 − 2βyir00,

A4 = −2b2βγi
00 − βγi

00 − 12β2Si
0 − 2biβr00 + 8βyiS0,

A5 = γi
00 + 2γi

00b
2β + 2bir00,

A6 = 4{(1 + 2b2)Si
0 − 2biS0}.

Since A6α
6 + A4α

4 + A2α
2 + A0 and A5α

4 + A3α
2 + A1 are rational and

α is irrational in yi, therefore we have

A6α
6 +A4α

4 +A2α
2 +A0 = 0, (2.24)

A5α
4 +A3α

2 +A1 = 0. (2.25)

Since the term which does not contains β is A6α
6, therefore there exists a

homogeneous polynomial V6 of degree 6 in yi, such that
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4{(1 + 2b2)Si
0 − 2biS0}α6 = βV6.

Since α2 ̸≡ 0(modβ), then we must have ui = ui(x) satisfying

4{(1 + 2b2)Si
0 − 2biS0} = uiβ. (2.26)

Contracting the above equation by bi, we have

4S0 = uiβbi,

i.e.

4Sj = uibibj . (2.27)

Further contracting this equation by bj , we obtain uibib
2 = 0 i.e. uibi = 0.

Putting these value in equation (2.27), we obtain

S0 = 0.

Therefore from (2.26), we get

4(1 + 2b2)Sij = uibj , (2.28)

which implies uibj+ujbi = 0. Contracting this equation by bj , we have uib
2 = 0

by virtue of biuj = 0.

Therefore we get ui = 0, hence from (2.28), we have Sij = 0.

Conversely, from (2.25), we have 1− form v0 = vi(x)y
i such that

γ000 = v0α
2. (2.29)

Putting S0 = 0, Si
0 and γ000 = v0α

2 into (2.22), we have

{α2(1 + 2b2)− 3β2}(γi
00 − v0y

i) + 2r00(α
2bi − βyi) = 0. (2.30)

Since (α− β) ̸= 0, the equation (2.30) may be expressed as:

Pα+Q = 0,

where

P = 0,

Q = {α2(1 + 2b2)− 3β2}(γi
00 − v0y

i) + 2r00(α
2bi − βyi)}.

Here P and Q are rational and α is irrational in yi, we have P = Q = 0.

Since rational part of this equation has already vanished so it is not showing

that the associated Riemannian space (Mn, α)is projectively flat and bi;j ̸= 0.

Hence, we have

Theorem 2.3. A Finsler space Fn equipped with a square (α, β)−metric is

neither the associated Riemannian space (Mn, α) nor projectively flat.
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Case(d): Put n = 3 in equation (1.5), we obtain

L =
(α+ β)3

α2
. (2.31)

If we put n = 3 in equation (1.5), then equation (2.31) is known as cubic

(α, β)−metric. It has been studied by Brijesh Tripathi, Sadika Khan and V.

K. Chaubey [14].

Case(e): If we put n = 4 in equation (1.5), we obtain

L =
(α+ β)4

α3
. (2.32)

Taking the partial derivative of (2.32) with respect to α, β, αα and ββ, we

have 
Lα = (α+β)3(α−3β)

α4 ,

Lβ = 4(α+β)3

α3 ,

Lαα = 12β2(α+β)3

α5 ,

Lββ = 12(α+β)2

α3 .

(2.33)

If {1 + Lββ

αLα
(α2b2 − β2)} ≠ 0, then we have {α2(1 + 12b2)− 2αβ − 15β2} ≠ 0.

Putting the values of Lα, Lβ , Lαα and Lββ in equation (1.4), we obtain

(α2(1 + 12b2)− 2αβ − 15β2){(α2γi
00 − γ000y

i)(α− 3β) + 8α4Si
0) + 12α2(α2bi

− βyi)}{(α− 3β)r00 − 8α2S0} = 0.

(2.34)

The above equation can be rewritten as a polynomial of degree 6 in ’α’, which

is given as

A6α
6 +A4α

4 +A2α
2 +A0 + α(A5α

4 +A3α
2 +A1) = 0, (2.35)

where

A0 = −45β3yiγ000,

A1 = 9β2γ000y
i,

A2 = 5βyiγ000 + 36b2βyiγ000 + 45β3γi
00 + 36β2yir00,

A3 = −yiγ000 − 8b2yiγ000 − 9β2γi
00 − 15βyir00,

A4 = 60b2βγi
00 + 5βγi

00 − 120β2Si
0 − 36biβr00 + 96βyi,

A5 = γi
00 + 12γi

00b
2 + 12bir00 − 16βSi

0,

A6 = 8{(1 + 12b2)Si
0 − 12biS0}.
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Since A6α
6 + A4α

4 + A2α
2 + A0 and A5α

4 + A3α
2 + A1 are rational and

α is irrational in yi, therefore we have

A6α
6 +A4α

4 +A2α
2 +A0 = 0. (2.36)

A5α
4 +A3α

2 +A1 = 0. (2.37)

Since the term which does not contains β is A6α
6, therefore there exists a ho-

mogeneous polynomial V6 of degree 6 in yi, such that

8{(1 + 12b2)Si
0 − 12biS0}α6 = βV6 .

Since α2 ̸≡ 0(modβ), then we must have ui = ui(x) satisfying

8{(1 + 12b2)Si
0 − 12biS0} = uiβ. (2.38)

Contracting the above equation by bi, we have

8S0 = uiβbi. (2.39)

Again contracting this by bj , we have

8Sj = uibibj .

Further contracting this equation by bj , we obtain

uibib
2 = 0, i.e uibi = 0.

Putting this value in equation (2.39), we obtain

S0 = 0.

Therefore from (2.38), we get

8(1 + 12b2)Sij = uibj , (2.40)

which implies uibj+ujbi = 0. Contracting this equation by bj , we have uib
2 = 0

by virtue of biuj = 0.

Therefore we get ui = 0, hence from (2.40), we have

Sij = 0.

Conversely, from (2.37), we have 1− form v0 = vi(x)y
i, such that

γ000 = v0α
2. (2.41)

Putting S0 = 0, Si
0 and γ000 = v0α

2 into (2.34), we have

{α2(1 + 12b2)− 2αβ − 15β2}(γi
00 − v0y

i) + 12r00(α
2bi − βyi) = 0. (2.42)

Since (α− 3β) ̸= 0, the equation (2.42) may be expressed as:

Pα+Q = 0,

where
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P = −2β(γi
00 − v0y

i),

Q = {α2(1 + 12b2)− 15β2}(γi
00 − v0y

i) + 12r00(α
2bi − βyi).

Since P and Q are rational and α is irrational in yi, we have P = Q = 0.

Initially, P = 0 implies that

γi
00 − v0y

i = 0, (2.43)

that is

2γi
jk = vjδ

i
k + vkδ

i
j , (2.44)

which implies that the associated Riemannian space (Mn, α) is projectively flat.

Next , from Q = 0 and from γi
00 − v0y

i = 0, we have

12r00(α
2bi − βyi) = 0. (2.45)

Contracting the equation (2.45) by bi, we have 12r00(α
2b2−β2) = 0, we obtain

r00 = 0, i.e. rij = 0.

From Sij = 0 and rij = 0, we have bi;j = 0.

On the other hand, if bi;j = 0, then we have r00 = Si
0 = S0. So (2.34) is a

result of (2.43). Thus we have:

Theorem 2.4. A Finsler space Fn equipped with quartic (α, β)−metric and

the associated Riemannian space (Mn, α) is projectively flat if and only if the

covariant derivative of bi with respect to ′j′ is zero.

Conclusion

A Finsler space Fn equipped with n-power (α, β)−metric and associated Rie-

mannian space (Mn, α) is projectively flat if and only if covariant derivative of

bi with respect to ′j′ is zero. If we take n = 0, 2, the condition of projectively

flatness is not satisfied but for n = 1, 3, 4 the condition of projectively flatness

are satisfied.
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