On projectively flat Finsler space with n-power (α, β) - metric

P. K. Dwivedi ${ }^{a}$, Sachin Kumar ${ }^{b *}$ and C. K. Mishra ${ }^{c}$
${ }^{a}$ Department of Mathematics and Statistics
Dr. Rammanohar Lohia Avadh University, Ayodhya (U.P.)
${ }^{b}$ Department of Mathematics and Statistics
Dr. Rammanohar Lohia Avadh University, Ayodhya (U.P.)
${ }^{c}$ Department of Mathematics and Statistics
Dr. Rammanohar Lohia Avadh University, Ayodhya (U.P.)

```
E-mail: drpkdwivedi@yahoo.co.in
E-mail: skumar17011997@gmail.com
E-mail: chayankumarmishra@gmail.com
```


Abstract

In this paper we have taken the n-power (α, β)-metric and obtained the condition for projectively flatness and further find the the some special cases..

Keywords: (α, β) - metric, Projectively flat Finsler space, Randers metric, Kropina metric.

1. Introduction

An n - dimensional Finsler space $F^{n}=\left(M^{n}, \mathcal{L}\right)$ is known as a locally Minkowskian space [3] if the manifold M^{n} is covered by coordinate neighbourhood system $\left(x^{i}\right)$ in each of which the metric \mathcal{L} is the function of y^{i} only. Further the Finsler space F^{n} is known as projectively flat if F^{n} is projective to a locally Minskowski space. Matsumoto [6] introduced a condition for a Finsler space with Randers metric and Kropina metric to be projectively flat. The projective flatness property for the Finsler space with various important (α, β)-metric had been studied by various authors [1], [5], [7],[8], [9], [10], [11],

[^0][12] [13] and obtained fruitful and beneficial results in the field of Finsler spaces. Initially the concept and importance of (α, β)-metric has been introduced and explained by Matsumoto [6] in detail and the metric $\mathcal{L}=\mathcal{L}(\alpha, \beta)$ is an n - dimensional manifold M^{n}, which is positively homogeneous function of degree one in α and β, where α is a regular Riemannian metric $\alpha=\sqrt{ } \alpha_{i j}(x) y^{i} y^{j}$, i.e $\operatorname{det}\left(\alpha_{i j}\right) \neq 0$ and β is 1 - form, $\beta=b_{i}(x) y^{i}$. It is generalization of Randers metric $\mathcal{L}=\alpha+\beta$. We know that there are many types of important (α, β)-metrics namely Kropina metric, Matsumoto metric, generalized Kropina metric, and Z. shen's square metric, infinite series metric and many more metrices [2], [3], [4] [12], [13] , [14] discussed and obtained various fruitful results in field of Finsler geometry. Matsumoto [5] used the following notation, which we have applied in this research and took $\gamma_{j k}^{i}$ to repersent the Christoffel symboles in the Riemannian space (M^{n}, α)-metric
\[

$$
\begin{aligned}
& r_{i j}=\frac{1}{2}\left\{b_{i ; j}+b_{j ; i}\right\}, \quad r_{j}^{i}=a^{i h} r_{h j}, \quad r_{j}=b_{i} r_{j}^{i} \\
& \mathcal{S}_{i j}=\frac{1}{2}\left\{b_{i ; j}-b_{j ; i}\right\}, \quad \mathcal{S}_{j}^{i}=a^{i h} \mathcal{S}_{h j}, \quad \mathcal{S}_{j}=b_{i} \mathcal{S}_{j}^{i}, \\
& b^{i}=a^{i h} b_{h}, \quad b^{2}=b^{i} b_{i},
\end{aligned}
$$
\]

where $b_{i ; j}$ is the covariant derivative of the vector field b_{i} related to the Riemannian connection $\gamma_{j k}^{i}$, i.e.,

$$
b_{i ; j}=\frac{\partial b_{i}}{\partial x^{j}}-b_{k} \gamma_{j k}^{i} .
$$

It has been shown by Matsumoto [5] that a Finsler space $F^{n}=\left(M^{n}, \mathcal{L}\right)$ with an (α, β)-metric is projectively flat if and only if for every point of the manifold M^{n} there is a local co-ordinate neighbourhood that includes the point such that christoffel symbols $\gamma_{j k}^{i}$ in the Riemannian space ($\left.M^{n}, \alpha\right)$ satisfies:

$$
\begin{equation*}
\frac{1}{2}\left(\gamma_{00}^{i}-\frac{\gamma_{000} y^{i}}{\alpha^{2}}\right)+\left(\frac{\alpha \mathcal{L}_{\beta}}{\mathcal{L}_{\alpha}}\right) \mathcal{S}_{0}^{i}+\left(\frac{\mathcal{L}_{\alpha \alpha}}{\mathcal{L}_{\alpha}}\right)\left(C+\frac{\alpha r_{00}}{2 \beta}\right)\left(\frac{\alpha^{2} b^{i}}{\beta}-y^{i}\right)=0 \tag{1.1}
\end{equation*}
$$

where ${ }^{\prime} 0^{\prime}$ stands contraction by y^{i} and C is given by

$$
\begin{equation*}
C+\left(\frac{\alpha^{2} \mathcal{L}_{\beta}}{\beta \mathcal{L}_{\alpha}}\right) \mathcal{S}_{0}+\left(\frac{\alpha \mathcal{L}_{\alpha \alpha}}{\beta^{2} \mathcal{L}_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\left(C+\frac{\alpha r_{00}}{2 \beta}\right)=0 \tag{1.2}
\end{equation*}
$$

Since $\alpha^{2} \mathcal{L}_{\alpha \alpha}=\beta^{2} \mathcal{L}_{\beta \beta}$, due to homogeneity of \mathcal{L} equation (1.2) may be rewritten as

$$
\begin{equation*}
\left\{1+\left(\frac{\mathcal{L}_{\beta \beta}}{\alpha \mathcal{L}_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\}\left(C+\frac{\alpha r_{00}}{2 \beta}\right)=\left(\frac{\alpha}{2 \beta}\right)\left\{r_{00}-\left(\frac{2 \alpha \mathcal{L}_{\beta}}{\mathcal{L}_{\beta}}\right) \mathcal{S}_{0}\right\} \tag{1.3}
\end{equation*}
$$

The term $\left(C+\frac{\alpha r_{00}}{2 \beta}\right)$ in (1.3) can be eliminated if $\left\{1+\left(\frac{\mathcal{L}_{\beta \beta}}{\alpha \mathcal{L}_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\} \neq 0$, it is expreesed as :

$$
\begin{align*}
& \left\{1+\frac{\mathcal{L}_{\beta \beta}\left(\alpha^{2} b^{2}-\beta^{2}\right)}{\alpha \mathcal{L}_{\alpha}}\right\}\left\{\frac{1}{2}\left(\gamma_{00}^{i}-\frac{\gamma_{000} y^{i}}{\alpha^{2}}\right)+\left(\frac{\alpha \mathcal{L}_{\beta}}{\mathcal{L}_{\alpha}}\right) \mathcal{S}_{0}^{i}\right\} \\
& \quad+\left(\frac{\mathcal{L}_{\alpha \alpha}}{\mathcal{L}_{\alpha}}\right)\left(\frac{\alpha}{2 \beta}\right)\left\{r_{00}-\left(\frac{2 \alpha \mathcal{L}_{\beta}}{\mathcal{L}_{\alpha}}\right) \mathcal{S}_{0}\right\}\left(\frac{\alpha^{2} b^{i}}{\beta}-y^{i}\right)=0 \tag{1.4}
\end{align*}
$$

Thus we have [6] :

Theorem 1.1. Let

$$
\left\{1+\left(\frac{\mathcal{L}_{\beta \beta}}{\alpha \mathcal{L}_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\} \neq 0
$$

Then a Finsler space F^{n} equipped with (α, β)-metric is projectively flat if and only if (1.4) is satisfied.

In this research paper, we have considered a generalized form of an (α, β) metric which is known as n-power (α, β)-metric [15] on an n - dimensional manifold M^{n}, defind as

$$
\begin{equation*}
\mathcal{L}=\alpha\left(1+\frac{\beta}{\alpha}\right)^{n} \tag{1.5}
\end{equation*}
$$

Further we shall discuss and find out the projectively flatness condition of (1.5) and also try to obtain the special conditions on some particular cases by taking $n=0,1,2,3$ and 4 .

2. Projectively Flat Finsler Space with n - Power (α, β)-Metric

In this section, we have taken n-power (α, β)-metric as defined in equation (1.5).

It has been obtained [1] if α^{2} contains β as a factor, then the dimension is equal to 2 and $b^{2}=0$.
Here we have assumed that the dimension is more than two, and $b^{2} \neq 0$, i.e $\alpha^{2} \not \equiv 0(\bmod \beta)$. Taking the partial derivative of (1.5) with respect to $\alpha, \beta, \alpha \alpha$ and $\beta \beta$, we have

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha}=\frac{(\alpha+\beta)^{n-1}(\alpha-(n-1) \beta)}{\alpha^{n}} \tag{2.1}\\
\mathcal{L}_{\beta}=\frac{n(\alpha+\beta)^{n-1}}{\alpha^{n-1}} \\
\mathcal{L}_{\alpha \alpha}=\frac{\left(n^{2}-n\right) \beta^{2}(\alpha+\beta)^{n-2}}{\alpha^{n+1}} \\
\mathcal{L}_{\beta \beta}=\frac{n(n-1)(\alpha+\beta)^{n-2}}{\alpha^{n-1}}
\end{array}\right.
$$

By virtue of theorem (1.1), $\left\{1+\left(\frac{\mathcal{L}_{\beta \beta}}{\alpha \mathcal{L}_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\}=0$ then we have $\left\{\alpha^{2}(1+\right.$ $\left.\left.\left(n^{2}-n\right) b^{2}\right)+(2-n) \alpha \beta+\left(1-n^{2}\right) \beta^{2}\right\}=0$, which is contradiction. Hence theorem (1.1) can be applied.

Putting the values of $\mathcal{L}_{\alpha}, \mathcal{L}_{\beta}, \mathcal{L}_{\alpha \alpha}$ and $\mathcal{L}_{\beta \beta}$, in equation (1.4), we obtain

$$
\begin{align*}
& \left(\alpha^{2}\left(1+\left(n^{2}-n\right) b^{2}\right)+(2-n) \alpha \beta+\left(1-n^{2}\right) \beta^{2}\right)\left\{\left(\alpha^{2} \gamma_{00}^{i}-\gamma_{000} y^{i}\right)(\alpha-(n-1) \beta)\right. \\
& \left.+2 n \alpha^{4} \mathcal{S}_{0}^{i}\right\}+\left(n^{2}-n\right) \alpha^{2}\left\{(\alpha-(n-1) \beta) r_{00}-2 n \alpha^{2} \mathcal{S}_{0}\right\}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 \tag{2.2}
\end{align*}
$$

The above equation can be rewritten as a polynomial of degree 6 in ' α ', which is given as

$$
\begin{equation*}
A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}+\alpha\left(A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}\right)=0 \tag{2.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{0}=-(n-1)\left(n^{2}-1\right) \beta^{3} y^{i} \gamma_{000}, \\
& A_{1}=(3 n-3) \beta^{2} \gamma_{000} y^{i}, \\
& A_{2}=(2 n-3) \beta y^{i} \gamma_{000}+n(n-1)^{2} b^{2} \beta y^{i} \gamma_{000}+(n-1)^{2}(n+1) \beta^{3} \gamma_{00}^{i}+\left(n^{2}-\right. \\
& n)(n-1) \beta^{2} y^{i} r_{00}, \\
& A_{3}=-y^{i} \gamma_{000}-2 n b^{2} y^{i} \gamma_{000}+(3-3 n) \beta^{2} \gamma_{00}^{i}-\left(n^{2}-1\right) \beta y^{i} r_{00}, \\
& A_{4}=n\left(n^{2}-1\right) b^{2} \beta \gamma_{00}^{i}+(3-2 n) \beta \gamma_{00}^{i}-2 n\left(n^{2}-1\right) \beta^{2} \mathcal{S}_{0}^{i}-\left(n^{2}-n\right)(n-1) b^{i} \beta r_{00}+ \\
& 2 n\left(n^{2}-n\right) \beta y^{i}, \\
& A_{5}=\gamma_{00}^{i}+\left(n^{2}-n\right) \gamma_{00}^{i} b^{2}+\left(n^{2}-n\right) b^{i} r_{00}+2 n(2-n) \beta \mathcal{S}_{0}^{i}, \\
& A_{6}=2 n\left\{\left(1+\left(n^{2}-n\right) b^{2}\right) \mathcal{S}_{0}^{i}-\left(n^{2}-n\right) b^{i} \mathcal{S}_{0}\right\} .
\end{aligned}
$$

Since $A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}$ and $A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}$ are rational and α is irrational in y^{i}, therefore we have

$$
\begin{gather*}
A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}=0 \tag{2.4}\\
A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}=0 \tag{2.5}
\end{gather*}
$$

Since the term which does not contains β is $A_{6} \alpha^{6}$, therefore there exists a homogeneous polynomial V_{6} of degree 6 in y^{i}, such that
$2 n\left\{\left(1+\left(n^{2}-n\right) b^{2}\right) \mathcal{S}_{0}^{i}-\left(n^{2}-n\right) b^{i} \mathcal{S}_{0}\right\} \alpha^{6}=\beta V_{6}$.

Since $\alpha^{2} \not \equiv 0(\bmod \beta)$, then we must have $u^{i}=u^{i}(x)$ satisfying

$$
\begin{equation*}
2 n\left\{\left(1+\left(n^{2}-n\right) b^{2}\right) \mathcal{S}_{0}^{i}-\left(n^{2}-n\right) b^{i} \mathcal{S}_{0}\right\}=u^{i} \beta \tag{2.6}
\end{equation*}
$$

Contracting the above equation by b_{i}, we have
$2 n\left\{\left(1+\left(n^{2}-n\right) b^{2}\right) \mathcal{S}_{0}-\left(n^{2}-n\right) b^{i} \mathcal{S}_{0}\right\}=u^{i} \beta b_{i}$, i.e.

$$
\begin{equation*}
2 n \mathcal{S}_{0}=u^{i} \beta b_{i} \tag{2.7}
\end{equation*}
$$

Again contracting this by b_{j}, we have $2 n \mathcal{S}_{j}=u^{i} b_{i} b_{j}$, further contracting this equation by b^{j}, we obtain
$u^{i} b_{i} b^{2}=0$, i.e $u^{i} b_{i}=0$.
Putting this value in equation (2.7), we obtain
$\mathcal{S}_{0}=0$.
Therefore from (2.6), we get

$$
\begin{equation*}
2 n\left(1+\left(n^{2}-n\right) b^{2}\right) \mathcal{S}_{i j}=u^{i} b_{j} \tag{2.8}
\end{equation*}
$$

which implies $u_{i} b_{j}+u_{j} b_{i}=0$.
Contracting this equation by b^{j}, we have $u_{i} b^{2}=0$ by virtue of $b^{i} u_{j}=0$. Therefore we get, $u_{i}=0$. Hence from (2.8), we have $\mathcal{S}_{i j}=0$.
Conversely, from (2.5) we have 1 -form $v_{0}=v_{i}(x) y^{i}$, such that

$$
\begin{equation*}
\gamma_{000}=v_{0} \alpha^{2} \tag{2.9}
\end{equation*}
$$

Putting $\mathcal{S}_{0}=0, \mathcal{S}_{0}^{i}$ and $\gamma_{000}=v_{0} \alpha^{2}$ into (2.2), we have
$\left\{\alpha^{2}\left(1+\left(n^{2}-n\right) b^{2}\right)-(2-n) \alpha \beta-\left(n^{2}-1\right) \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+\left(n^{2}-n\right) r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0$.
Since $(\alpha-(n-1) \beta) \neq 0$, the equation (2.10) may be expressed as follows

$$
P \alpha+Q=0
$$

where

$$
\begin{aligned}
& P=(2-n) \beta\left(\gamma_{00}^{i}-v_{0} y^{i}\right) \\
& Q=\left\{\alpha^{2}\left(1+\left(n^{2}-n\right) b^{2}\right)-\left(n^{2}-1\right) \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+\left(n^{2}-n\right) r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)
\end{aligned}
$$

Since P and Q are rational and α is irrational in y^{i} we have $P=0$ and $Q=0$.
Initially, $P=0$ implies that

$$
\begin{equation*}
\gamma_{00}^{i}-v_{0} y^{i}=0 \tag{2.11}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
2 \gamma_{j k}^{i}=v_{j} \delta_{k}^{i}+v_{k} \delta_{j}^{i}, \tag{2.12}
\end{equation*}
$$

which implies that the associated Riemannian space (M^{n}, α) is projectively flat.
Next, from $Q=0$ and from $\gamma_{00}^{i}-v_{0} y^{i}=0$, we have

$$
\begin{equation*}
\left(n^{2}-n\right) r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 \tag{2.13}
\end{equation*}
$$

Contracting the equation (2.13) by b_{i}, we have $\left(n^{2}-n\right) r_{00}\left(\alpha^{2} b^{2}-\beta^{2}\right)=0$, from which we obtain $r_{00}=0$ i.e. $r_{i j}=0$.

From $\mathcal{S}_{i j}=0$ and $r_{i j}=0$, we have $b_{i ; j}=0$.
On the other hand if $b_{i ; j}=0$, then

$$
\begin{gather*}
2 r_{i j}=b_{j ; i} \tag{2.14}\\
2 \mathcal{S}_{i j}=-b_{j ; i} \tag{2.15}
\end{gather*}
$$

By adding (2.14) and (2.15), we have $2 r_{i j}+2 \mathcal{S}_{i j}=0$ i.e. $2 \mathcal{S}_{i j}=0$ and $2 r_{i j}=0$, then we have $r_{00}=\mathcal{S}_{0}^{i}=\mathcal{S}_{0}$. So (2.2) is a result of (2.11). Hence we have:

Theorem 2.1. A Finsler space F^{n} equipped with $n-\operatorname{power}(\alpha, \beta)$-metric and the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat if and only if the covariant derivative of b_{i} with respect to ' j ' is zero.

Some special cases:

Case(a): Put $n=0$ in equation (1.5), we have

$$
\begin{equation*}
\mathcal{L}=\alpha \tag{2.16}
\end{equation*}
$$

Differentiating equation (2.16) partially with respect to $\alpha, \beta, \alpha \alpha$ and $\beta \beta$, we have

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha}=1 \tag{2.17}\\
\mathcal{L}_{\beta}=0 \\
\mathcal{L}_{\alpha \alpha}=0 \\
\mathcal{L}_{\beta \beta}=0
\end{array}\right.
$$

Since $1+\left(\frac{\mathcal{L}_{\beta \beta}}{\alpha \mathcal{L}_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$, then putting the these values of $\mathcal{L}_{\alpha}, \mathcal{L}_{\beta}, \mathcal{L}_{\alpha \alpha}$ and $\mathcal{L}_{\beta \beta}$ in the equation (1.4) we obtain
$(1+0)\left\{\frac{\left(\gamma_{00}^{i}-\frac{\gamma_{000} i^{i}}{\alpha^{2}}\right.}{2}\right\}=0$.
This implies that

$$
\begin{equation*}
\alpha^{2} \gamma_{00}^{i}=\gamma_{000} y^{i} . \tag{2.18}
\end{equation*}
$$

Hence:
Theorem 2.2. If we take $n=0$, then the n-power (α, β)-metric is neither projectively flat nor the associated Riemannian space $\left(M^{n}, \alpha\right)$.

Case(b): Put $n=1$ in equation (1.5), we obtain

$$
\begin{equation*}
\mathcal{L}=\alpha+\beta \tag{2.19}
\end{equation*}
$$

If we put $n=1$ in equation (1.5), then equation (2.19) is known as a Randers change of (α, β)-metric. It has been studied by Matsumoto [5].
Case(c): Put $n=2$ in equation (1.5), we obtain

$$
\begin{equation*}
\mathcal{L}=\frac{(\alpha+\beta)^{2}}{\alpha} \tag{2.20}
\end{equation*}
$$

Differentiating equation (2.20) partially with respect to $\alpha, \beta, \alpha \alpha$ and $\beta \beta$, we have

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha}=\frac{\left(\alpha^{2}-\beta^{2}\right)}{\alpha^{2}} \tag{2.21}\\
\mathcal{L}_{\beta}=\frac{2 \beta^{2}}{\alpha} \\
\mathcal{L}_{\alpha \alpha}=\frac{2(\alpha+\beta)}{\alpha^{3}} \\
\mathcal{L}_{\beta \beta}=\frac{2}{\alpha}
\end{array}\right.
$$

Since $1+\left(\frac{\mathcal{L}_{\beta \beta}}{\alpha \mathcal{L}_{\alpha}}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) \neq 0$, then putting the these values of $\mathcal{L}_{\alpha}, \mathcal{L}_{\beta}, \mathcal{L}_{\alpha \alpha}$ and $\mathcal{L}_{\beta \beta}$ in the equation (1.4), we obtain
$\left(\alpha^{2}\left(1+2 b^{2}\right)-3 \beta^{2}\right)\left\{\left(\alpha^{2} \gamma_{00}^{i}-\gamma_{000} y^{i}\right)(\alpha-\beta)+4 \alpha^{4} \mathcal{S}_{0}^{i}\right\}+2 \alpha^{2}\left(\alpha^{2} b^{i}-\beta y^{i}\right)\left\{(\alpha-\beta) r_{00}\right.$ $\left.-4 \alpha^{2} \mathcal{S}_{0}\right\}=0$

The above equation can be rewritten as a polynomial of degree 6 in ' α ', which is given as

$$
\begin{equation*}
A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}+\alpha\left(A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}\right)=0 \tag{2.23}
\end{equation*}
$$

where
$A_{0}=-3 \beta^{3} y^{i} \gamma_{000}$,
$A_{1}=3 \beta^{2} \gamma_{000} y^{i}$,
$A_{2}=\beta y^{i} \gamma_{000}+2 b^{2} \beta y^{i} \gamma_{000}+3 \beta^{3} \gamma_{00}^{i}+2 \beta^{2} y^{i} r_{00}$,
$A_{3}=-y^{i} \gamma_{00}^{i}-2 b^{2} y^{i} \gamma_{000}-3 \beta^{2} \gamma_{00}^{i}-2 \beta y^{i} r_{00}$,
$A_{4}=-2 b^{2} \beta \gamma_{00}^{i}-\beta \gamma_{00}^{i}-12 \beta^{2} \mathcal{S}_{0}^{i}-2 b^{i} \beta r_{00}+8 \beta y^{i} \mathcal{S}_{0}$,
$A_{5}=\gamma_{00}^{i}+2 \gamma_{00}^{i} b^{2} \beta+2 b^{i} r_{00}$,
$A_{6}=4\left\{\left(1+2 b^{2}\right) \mathcal{S}_{0}^{i}-2 b^{i} \mathcal{S}_{0}\right\}$.

Since $A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}$ and $A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}$ are rational and α is irrational in y^{i}, therefore we have

$$
\begin{gather*}
A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}=0 \tag{2.24}\\
A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}=0 \tag{2.25}
\end{gather*}
$$

Since the term which does not contains β is $A_{6} \alpha^{6}$, therefore there exists a homogeneous polynomial V_{6} of degree 6 in y^{i}, such that
$4\left\{\left(1+2 b^{2}\right) \mathcal{S}_{0}^{i}-2 b^{i} \mathcal{S}_{0}\right\} \alpha^{6}=\beta V_{6}$.
Since $\alpha^{2} \not \equiv 0(\bmod \beta)$, then we must have $u^{i}=u^{i}(x)$ satisfying

$$
\begin{equation*}
4\left\{\left(1+2 b^{2}\right) \mathcal{S}_{0}^{i}-2 b^{i} \mathcal{S}_{0}\right\}=u^{i} \beta \tag{2.26}
\end{equation*}
$$

Contracting the above equation by b_{i}, we have $4 \mathcal{S}_{0}=u^{i} \beta b_{i}$,
i.e.

$$
\begin{equation*}
4 \mathcal{S}_{j}=u^{i} b_{i} b_{j} . \tag{2.27}
\end{equation*}
$$

Further contracting this equation by b^{j}, we obtain $u^{i} b_{i} b^{2}=0$ i.e. $u^{i} b_{i}=0$.

Putting these value in equation (2.27), we obtain
$\mathcal{S}_{0}=0$.

Therefore from (2.26), we get

$$
\begin{equation*}
4\left(1+2 b^{2}\right) \mathcal{S}_{i j}=u_{i} b_{j} \tag{2.28}
\end{equation*}
$$

which implies $u_{i} b_{j}+u_{j} b_{i}=0$. Contracting this equation by b^{j}, we have $u_{i} b^{2}=0$ by virtue of $b^{i} u_{j}=0$.
Therefore we get $u_{i}=0$, hence from (2.28), we have $\mathcal{S}_{i j}=0$.
Conversely, from (2.25), we have $1-$ form $v_{0}=v_{i}(x) y^{i}$ such that

$$
\begin{equation*}
\gamma_{000}=v_{0} \alpha^{2} \tag{2.29}
\end{equation*}
$$

Putting $\mathcal{S}_{0}=0, \mathcal{S}_{0}^{i}$ and $\gamma_{000}=v_{0} \alpha^{2}$ into (2.22), we have

$$
\begin{equation*}
\left\{\alpha^{2}\left(1+2 b^{2}\right)-3 \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+2 r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 \tag{2.30}
\end{equation*}
$$

Since $(\alpha-\beta) \neq 0$, the equation (2.30) may be expressed as:
$P \alpha+Q=0$,
where
$P=0$,
$\left.Q=\left\{\alpha^{2}\left(1+2 b^{2}\right)-3 \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+2 r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)\right\}$.
Here P and Q are rational and α is irrational in y^{i}, we have $P=Q=0$.
Since rational part of this equation has already vanished so it is not showing that the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat and $b_{i ; j} \neq 0$. Hence, we have

Theorem 2.3. A Finsler space F^{n} equipped with a square (α, β)-metric is neither the associated Riemannian space $\left(M^{n}, \alpha\right)$ nor projectively flat.

Case(d): Put $n=3$ in equation (1.5), we obtain

$$
\begin{equation*}
\mathcal{L}=\frac{(\alpha+\beta)^{3}}{\alpha^{2}} \tag{2.31}
\end{equation*}
$$

If we put $n=3$ in equation (1.5), then equation (2.31) is known as cubic (α, β)-metric. It has been studied by Brijesh Tripathi, Sadika Khan and V. K. Chaubey [14].

Case(e): If we put $n=4$ in equation (1.5), we obtain

$$
\begin{equation*}
\mathcal{L}=\frac{(\alpha+\beta)^{4}}{\alpha^{3}} \tag{2.32}
\end{equation*}
$$

Taking the partial derivative of (2.32) with respect to $\alpha, \beta, \alpha \alpha$ and $\beta \beta$, we have

$$
\left\{\begin{array}{l}
\mathcal{L}_{\alpha}=\frac{(\alpha+\beta)^{3}(\alpha-3 \beta)}{\alpha^{4}} \tag{2.33}\\
\mathcal{L}_{\beta}=\frac{4(\alpha+\beta)^{3}}{\alpha^{3}} \\
\mathcal{L}_{\alpha \alpha}=\frac{12 \beta^{2}(\alpha+\beta)^{3}}{\alpha^{5}} \\
\mathcal{L}_{\beta \beta}=\frac{12(\alpha+\beta)^{2}}{\alpha^{3}}
\end{array}\right.
$$

If $\left\{1+\frac{\mathcal{L}_{\beta \beta}}{\alpha \mathcal{L}_{\alpha}}\left(\alpha^{2} b^{2}-\beta^{2}\right)\right\} \neq 0$, then we have $\left\{\alpha^{2}\left(1+12 b^{2}\right)-2 \alpha \beta-15 \beta^{2}\right\} \neq 0$. Putting the values of $\mathcal{L}_{\alpha}, \mathcal{L}_{\beta}, \mathcal{L}_{\alpha \alpha}$ and $\mathcal{L}_{\beta \beta}$ in equation (1.4), we obtain

$$
\begin{align*}
& \left(\alpha^{2}\left(1+12 b^{2}\right)-2 \alpha \beta-15 \beta^{2}\right)\left\{\left(\alpha^{2} \gamma_{00}^{i}-\gamma_{000} y^{i}\right)(\alpha-3 \beta)+8 \alpha^{4} \mathcal{S}_{0}^{i}\right)+12 \alpha^{2}\left(\alpha^{2} b^{i}\right. \\
& \left.\left.-\beta y^{i}\right)\right\}\left\{(\alpha-3 \beta) r_{00}-8 \alpha^{2} \mathcal{S}_{0}\right\}=0 \tag{2.34}
\end{align*}
$$

The above equation can be rewritten as a polynomial of degree 6 in ' α ', which is given as

$$
\begin{equation*}
A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}+\alpha\left(A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}\right)=0 \tag{2.35}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{0}=-45 \beta^{3} y^{i} \gamma_{000}, \\
& A_{1}=9 \beta^{2} \gamma_{000} y^{i}, \\
& A_{2}=5 \beta y^{i} \gamma_{000}+36 b^{2} \beta y^{i} \gamma_{000}+45 \beta^{3} \gamma_{00}^{i}+36 \beta^{2} y^{i} r_{00}, \\
& A_{3}=-y^{i} \gamma_{000}-8 b^{2} y^{i} \gamma_{000}-9 \beta^{2} \gamma_{00}^{i}-15 \beta y^{i} r_{00}, \\
& A_{4}=60 b^{2} \beta \gamma_{00}^{i}+5 \beta \gamma_{00}^{i}-120 \beta^{2} \mathcal{S}_{0}^{i}-36 b^{i} \beta r_{00}+96 \beta y^{i}, \\
& A_{5}=\gamma_{00}^{i}+12 \gamma_{00}^{i} b^{2}+12 b^{i} r_{00}-16 \beta \mathcal{S}_{0}^{i}, \\
& A_{6}=8\left\{\left(1+12 b^{2}\right) \mathcal{S}_{0}^{i}-12 b^{i} \mathcal{S}_{0}\right\} .
\end{aligned}
$$

Since $A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}$ and $A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}$ are rational and α is irrational in y^{i}, therefore we have

$$
\begin{gather*}
A_{6} \alpha^{6}+A_{4} \alpha^{4}+A_{2} \alpha^{2}+A_{0}=0 \tag{2.36}\\
A_{5} \alpha^{4}+A_{3} \alpha^{2}+A_{1}=0 \tag{2.37}
\end{gather*}
$$

Since the term which does not contains β is $A_{6} \alpha^{6}$, therefore there exists a homogeneous polynomial V_{6} of degree 6 in y^{i}, such that
$8\left\{\left(1+12 b^{2}\right) \mathcal{S}_{0}^{i}-12 b^{i} \mathcal{S}_{0}\right\} \alpha^{6}=\beta V_{6}$.
Since $\alpha^{2} \not \equiv 0(\bmod \beta)$, then we must have $u^{i}=u^{i}(x)$ satisfying

$$
\begin{equation*}
8\left\{\left(1+12 b^{2}\right) \mathcal{S}_{0}^{i}-12 b^{i} \mathcal{S}_{0}\right\}=u^{i} \beta \tag{2.38}
\end{equation*}
$$

Contracting the above equation by b_{i}, we have

$$
\begin{equation*}
8 \mathcal{S}_{0}=u^{i} \beta b_{i} . \tag{2.39}
\end{equation*}
$$

Again contracting this by b_{j}, we have
$8 \mathcal{S}_{j}=u^{i} b_{i} b_{j}$.

Further contracting this equation by b^{j}, we obtain $u^{i} b_{i} b^{2}=0$, i.e $u^{i} b_{i}=0$.
Putting this value in equation (2.39), we obtain
$\mathcal{S}_{0}=0$.
Therefore from (2.38), we get

$$
\begin{equation*}
8\left(1+12 b^{2}\right) \mathcal{S}_{i j}=u_{i} b_{j} \tag{2.40}
\end{equation*}
$$

which implies $u_{i} b_{j}+u_{j} b_{i}=0$. Contracting this equation by b^{j}, we have $u_{i} b^{2}=0$ by virtue of $b^{i} u_{j}=0$.
Therefore we get $u_{i}=0$, hence from (2.40), we have
$\mathcal{S}_{i j}=0$.
Conversely, from (2.37), we have $1-$ form $v_{0}=v_{i}(x) y^{i}$, such that

$$
\begin{equation*}
\gamma_{000}=v_{0} \alpha^{2} \tag{2.41}
\end{equation*}
$$

Putting $\mathcal{S}_{0}=0, \mathcal{S}_{0}^{i}$ and $\gamma_{000}=v_{0} \alpha^{2}$ into (2.34), we have

$$
\begin{equation*}
\left\{\alpha^{2}\left(1+12 b^{2}\right)-2 \alpha \beta-15 \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+12 r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 \tag{2.42}
\end{equation*}
$$

Since $(\alpha-3 \beta) \neq 0$, the equation (2.42) may be expressed as:
$P \alpha+Q=0$,
where
$P=-2 \beta\left(\gamma_{00}^{i}-v_{0} y^{i}\right)$,
$Q=\left\{\alpha^{2}\left(1+12 b^{2}\right)-15 \beta^{2}\right\}\left(\gamma_{00}^{i}-v_{0} y^{i}\right)+12 r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)$.
Since P and Q are rational and α is irrational in y^{i}, we have $P=Q=0$. Initially, $P=0$ implies that

$$
\begin{equation*}
\gamma_{00}^{i}-v_{0} y^{i}=0 \tag{2.43}
\end{equation*}
$$

that is

$$
\begin{equation*}
2 \gamma_{j k}^{i}=v_{j} \delta_{k}^{i}+v_{k} \delta_{j}^{i}, \tag{2.44}
\end{equation*}
$$

which implies that the associated Riemannian space (M^{n}, α) is projectively flat.

Next, from $Q=0$ and from $\gamma_{00}^{i}-v_{0} y^{i}=0$, we have

$$
\begin{equation*}
12 r_{00}\left(\alpha^{2} b^{i}-\beta y^{i}\right)=0 \tag{2.45}
\end{equation*}
$$

Contracting the equation (2.45) by b_{i}, we have $12 r_{00}\left(\alpha^{2} b^{2}-\beta^{2}\right)=0$, we obtain $r_{00}=0$, i.e. $r_{i j}=0$.
From $\mathcal{S}_{i j}=0$ and $r_{i j}=0$, we have $b_{i ; j}=0$.
On the other hand, if $b_{i ; j}=0$, then we have $r_{00}=\mathcal{S}_{0}^{i}=\mathcal{S}_{0}$. So (2.34) is a result of (2.43). Thus we have:

Theorem 2.4. A Finsler space F^{n} equipped with quartic (α, β)-metric and the associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat if and only if the covariant derivative of b_{i} with respect to ${ }^{\prime} j^{\prime}$ is zero.

Conclusion

A Finsler space F^{n} equipped with n-power (α, β)-metric and associated Riemannian space $\left(M^{n}, \alpha\right)$ is projectively flat if and only if covariant derivative of b_{i} with respect to ' j ' is zero. If we take $n=0,2$, the condition of projectively flatness is not satisfied but for $n=1,3,4$ the condition of projectively flatness are satisfied.

Acknowledgment: Authors are very much thankful to Research and Development scheme, Department of Higher Education, U. P. Gov. Lucknow (Sankhya $-89 / 2022 / 1585 /$ sattar $-4-2022 / 001-4-32-2022$ dated 10.11.2022) to provide the fund to execute this research.

References

1. S.Bacso , Projective change between Finsler spaces with (α, β)-metric, Tensor, NS, 55(1994), 85-99.
2. L. Y. Lee and H. S. Park, Finsler spaces with infinite series $(\alpha, \beta)-m e t r i c$, Journal of Korean Mathematical Society, , 41(3),1986, pp-567-589.
3. M. Matsumoto, Foundation of Finsler geometry and speial Finsler spaces, Kaiseisha Press, Saikawa, Otsu, 520, Japan, 1986
4. M. Matsumoto, The Berwald connection of a Finsler space with an (α, β)-metric, Tensor, 50(1),(1991), 18-21.
5. M. Matsumoto, Projectively flat Finsler spaces with $(\alpha, \beta)-$ metric, Rep. on Math. Phys., 30(1), 1991, 15-20.
6. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Reports on mathematical Physics, 31(1), 1992, 43-83.
7. S. K. Narasimhamurthy, G. L. Kumari, C. S. Bagewadi and J. Sahyadri, On some projectively flat (α, β)-metrics, International Electronic Journal of Pure and Applied Mathematics, 3(3), 2011, 187-193.
8. S. K. Narasimhamurthy, Projectively flat Finsler space of Douglas type with weakly Berwald (α, β)-metric, International Journal of Pure Mathematical Sciences, Vol. 18, 2017, pp 1-12.
9. H.S. Park and E.S. Choi, On a Finsler space with with a special (α, β)-metric, Tensor, 56(2), 1995, 142-148.
10. H. S. Park and L. Y. Lee, On projectively flat Finsler spaces with (α, β)-metric, Communication of the Korean mathematical Society, 14(2), 1999, 373-383.
11. H. S. park et.al, Projective flat Finsler space with a certain $(\alpha, \beta)-$ metrics, Bull. Korean Math. Soc., 40(4), 2003, 649-661.
12. Z. Shen and G. C. Yildrim, On a class of projectively flat metrices with constant flag curvature, Canadian Journal of Mathematics, 60(2), 2008, 443-456.
13. B. Tiwari and M. Kumar, On Finsler space with a special (α, β)-metric, Journal of the Indian Math. Soc., 82(3-4), 2015, 207-218.
14. B. K. Tripathi, S. Khan and V. K. Chaubey, On projectively flat Finsler space with a cubic (α, β)-metric, Filomat, 37(26), 2023, 8975-8982.
15. G. Yang, On a class of Einstein- reversible Finsler metrics, Differential Geometry and its Applications, 60, 2018, 80-103.

Received: 22.03.2024
Accepted: 02.05.2024

[^0]: * Corresponding Author

 AMS 2020 Mathematics Subject Classification: 53A20, 53B10, 53B20, 53B40

