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Abstract. Exponential metrics are popular Finsler metrics. Let F' be an ex-
ponential («, 8)-metric of isotropic S-curvature on manifold M. In this paper,
a Lie sub-algebra of projective vector fields of a Finsler metric F' is introduced
and denoted by SP(F). We classify SP(F) of isotropic S-curvature as a certain
Lie sub-algebra of the Killing algebra K (M, ).
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1. Introduction

The projective Finsler metrics are smooth solutions to the historical Hilbert’s
fourth problem. The projective vector fields are a way to characterize the pro-
jective metrics. The collection of all projective vector fields on a Finsler space
is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called
the projective algebra denoted by p(M, F). The collection of all projective
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vector fields on a Finsler space p(M, F) is a finite-dimensional Lie algebra with
respect to the usual Lie bracket, called the projective algebra. A specific Lie
sub-algebra of projective algebra of Finsler spaces, called the special projective
algebra and denoted by SP(F).

In [8], Rafie-Rad studied on the projective vector fields on the class of Ran-
ders metrics and introduced Lie sub-algebra of projective vector fields of a
Finsler metric. In [4], B. Rezaei and M.Rafie-Rad studied the projective alge-
bra of some («, 8)-metrics of isotropic S-curvature. In [10], the auther show
that if the Matsumoto metric admits a projective vector field, then this is a
conformal vector field with to Riemannian metric a or F' has vanishing S-
curvature.

In this paper, we characterize the special projective vector field V' on mani-
fold M with exponential metric of isotropic S-curvature. We prove the following
theorem:

Theorem 1.1. Let (M,F = aeﬁ/a) be exponential metric of isotropic S-
curvature on a manifold and b :=||8||a is constant. Then one of the following
statements holds:

(a) B is parallel with respect to o and the projective algebra p(M, F) of F is
coincides with the projective algebra p(M,a) of .

(b) Every special projective vector field V. on (M, F) is an Killing vector field
on (M,a) and £, = 0.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M. It induces a
spray G on T'M. In local coordinates in T'M, it is expressed by
. 0 ; 0
G=y'— —2G"(z,y)—,
Y 5 (z,y) oy
where G (z,y) are local functions on T My satisfying G*(x, \y) = N2G¥(x,y) A >
0. Assume the following conventions:
oG! , oG , IG" 5,

G. =" G,=—21 g =3Ik
J oy’ ) Jjk ayk ) Jkl @yl

The local functions G* ;1 8ive rise to a torison-free connection in 7*T'M called
the berwald connection which is this paper, see [5].

Let
— 9
aly) ==/ gij(®)y'yl, y = ylﬁlx €T, M.

a is a family of Euclidean norms on tangent spaces. Let o = \/a;;(z)y’y’
be a Riemannian metric and 8 = b;(z)y’ a 1-form on a manifold M. An
(a, B)-metric is a scalar function F' on TM defined by F := agb(g), where
¢ = ¢(s) is a C* on (—bg, bg) with certain regularity such that F is a positive
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definite Finsler metric. A special (¢, 8)-metric defined by ¢(s) = e® is called
exponential metric.

Denote the Levi-Civita connection of a by V and define b;); by (b;);)07 :=
db; — ;0,7 , where ' := dz', 8,7 := T, da*.

In order to study the geometric properties of (a, 3)-metrics, one needs a
formula for the spray coefficients of an («, 8)-metrics. Let

/rij = (v]lh + vib‘])/Z, sij = (V]bl — Vlb])/Z, Tij = aikaj,

o i, j o j i ik
Too '=TijY'y’, Tio:=riy’, s j = a'"sgy,

X2 - % N j

551 =0"S5,  So:i=8Y', Sio =Sy’ .

The spray coefficients G* of F' and G?, of « are related as follows:

G' = G +aQs'y+a0{r —20Qs.}y' + U{re — 2aQs,}b, (2.1)
oo O 0 = s(ed — ')
¢ —s¢'’ 2{(¢ — s¢') + (0% — 5%)¢"}’
\IJ (,ZSN

" 2{(g— sd) + (02— s2)¢"}

There is a notion of distortion 7 = 7(z, y) on T M associated with the Busemann-

Hausdorff volume form on manifold, i.e., dVp = op(z)dz!---dz™, which is
defined by
det(gi; (2, y))
= 1 _—
() . [ op(x) } ’
Vol(B™ (1

7rl) = Vol{(yi) € Rn F(y% x) < 1}'

For a vector y € Ty M. Let ¢(t), —e < t < ¢, denote the geodesic with ¢(0) = =

and ¢(0) = y. Define
S(y) == %[T(e(t))} li=o-

We say S-curvature is isotropic if there exists a scalar function ¢(z) on M such
that S(z,y) = (n+1)e(x)F(z,y), and constant S-curvature if ¢(z) = constant,
see [2, 6, 7].

Let G'(x,y) denote the geodesic coefficients of F in the same local coordinate

system. By the definition of the S-curvature, we have

S(3) 1= G (00) — ' s [ e (2.

where y = y' 52|, € T, M. It is proved that S = 0 if F' is a Berwald metric [5].
There are many non-Berwald metrics satisfying S = 0. To prove the Theorem
1.1, we need the following theorem which is proved in [3].
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Theorem 2.1. Let F = a¢(s), s = f/a be a (a, 8)-metric on a manifold of
dimension n and b := ||B||o is constant. Suppose that

¢ 7é kl\/ 1 —+ k252 —+ k'gs,

for any constant ki > 0, ko and ks. Then F is of isotropic S-curvature,
S = (n+1)cF, if and only if one of the following holds:

(i) B satisfies
Tij = €(b2aij — bibj>7 Sj = 0 (24)
where € = e(x) is a scalar function and ¢ = ¢(s) satisfies

PA?

where k is a constant. In this case, S = (n+ 1)cF with ¢ = ke.
(ii) B satisfies
rij =0,5; =0 (2.5)

In this case, S = 0, regardless of the choice of a particular ¢.

3. Projective vector fields on Finsler spaces

Every vector field X on M induces naturally a transformation under the
following infinitesimal coordinate transformations on TM, (z¢,y%) — (¢, 7%)
given by

)

T —+ Vldt, yl = yl + yk 8gjk dt.

This leads us to the notion of the complete lift V (see [9]) of V to a vector field
on T'My given by

R R
V=V 8xi+y Ox* Oyt

Almost any geometric object in Finsler geometry depends on the both points
and velocities, hence the Lie derivatives of such geometric objects should rather

should be regarded with respect to V. For computational use, it is known
£Vyi =0, £‘;dxi = 0 and the differential operators £y, %, exterior dif-
a%i commute as well. The vector field V is called a

projective vector field, if there is a function P on T'Mj such that

ferential operator d and

.,€‘"/le == P(slk + Pkyz,
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where P, = Py, see [1]. Thereby, given any appropriate ¢, the local flow {¢;}
associated to V is projective transformation. If V' is a projective vector field,
then [1]:

.vai = Pyi,
£yG . = 8P+ 68WPj 4y Py,
£VGijkl = (Sijpk‘l + 5ikPjil + 5ilpk_j + yiPk_j,l,
2.£‘>Ejl = (n+ l)Pj,l.

On the Riemannian spaces, given any projective vector field V' the function
P = P(x,y) is linear with respect to y. A projective vector field V is called a
special projective vector field if £, E = 0, equivalently, P(z,y) = P;(z)y".

Remark 3.1. On a weakly-Berwald space, every projective vector field is spe-
cial.

4. Proof of Theorem 1.1

Let F' = ae®, s := B/« be exponential Finsler metric of isotropic S-curvature
on a manifold M and b := ||8]|, is constant. According to theorem 2.1, F
is of isotropic S-curvature, S = (n + 1)cF, if and only if 5 satisfies r;; =
6(()2&1‘]‘ — bibj), Sj = 0 or Tij = O, Sj = 0. Plugging Tij = €(b2ai]’ — bibj), S; = 0
in (2.1) the geodesic coefficients of F' can be calculated by

a2 e(b2a® — Ba)y

BSZJF R e(b?a? — B2a)b

2202 — 267 — 2Ba + 2a2° | 20202 — 262 — 2Ba + 202
(4.1)

G'=Gi+
«

Assuming s? = 0, equation (4.1) can be seen as follows:

€<b2 3 _ 62a>yi o8 E(b2 3 _ ﬂ2a)bi N (4 2)
20202 — 232 — 2Ba + 202 20202 — 232 — 2B + 202

G'=GL+

Let us suppose that V' is a projective vector field on (M, F). By assuming, V'
is a special projective field, that is to exists a function P of the form P(x,y) =
Py (x)y* on M such that

f‘;Gi = Pyi.
If ¢ =0, by (4.2) we can write this equation as follows

e(b%a® — B2a)y’ s e(b%a® — B2a)b’

£o(GE = Py’
PGt 57 25 950 12a2° T 9Pa? — 2% — 90y a2 ~ TV
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Therefore, Equation mentioned above is equivalent to the following equality
e(esyt + ab?)

20202 — 232 — 2B + 202
e(e’y’ +ab')(b?a® — fa)
(2202 — 262 — 2Ba + 2a?)?
e(b?a? — B2a)
20202 — 232 — 2Ba + 202

0 = —Py +L£y,GL+ Lo (00’ — B2a)

£o(2b%0% — 28 — 2Ba + 202
v

L (ey' + ab').

Let us denote
too = £Va2.
By simplifying above equation and multiplying both sides of this very equation
by a3(2b%a? — 2832 — 2Ba + 2a?)?, we can rewrite (4.3) as follows:
K(,y)a + R(z, y)e* =0 (4.3)
where

K(z,y) = ab2beLyb® +2b%eLyb’ + 2b*c£,b")
+a’(20%b e LB — 2Beb' £,b* — 2Beb* £,b")
+a%(—4Py" + 4£,GL — 8b* Py’ + 8V° L GY, — 4b* Py’
+4b1 £ GL — 2% Lo b — 4b? B2 £4,b" + 2b b et oo
+2b%etoob" — b Be £, 3)
+a’(88Py" — 8BL,, G, + 886> Py’ — 8BV £,GY,
+2b' B2 £, 8 — 3Bb%betos + 283 L;b7)
+a* (4% Pyt — 482 £, GY, + 8b* B2 Py’
—8b?B% LGl + 2B £,b" — 46" B2b et o)
+a?(—8B° Py’ + 8B LGl + b BPetoo)
+a?(—4B* Py’ + 4B* £, GE, + 2b7e M oo).
R(z,y) = a®(2y'elyb®)+a’(2y'blely B+ 4b%y'e £y B — 2y'eBLb?)
+a8%(=28b%cy’ £, B + brey'too + b2ey'tos — 4y’ Be Ly B)
+o® (=b*Bey'too — 4b2yi,62€£‘76 — 3Bb%y et oo)
+at (—0*Bey'too + 2y' B £ B+ B2y etoo)
+a3(2ﬁ4yi6£‘76 +20% B3y too + Y B3etos)
+041(7555yit00).
By changing all the terms y to —y in (4.3) we obtain R(z,y) = K(z,y) = 0.
Equation R(x) = 0 is equivalent to following polynimal equation:

asa® 4+ aza’ + aga® + a5a® + agat + aza® + a0t =0 (4.4)
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where
ag = 2yis£‘~/b2,
ar = 2yib45£‘~,5 + 4b2yi€£‘76 — 2yisﬁ£‘~,b2,
ag = —2Bb%ey’ £, + brey'too + b2ey'too — dy'Be LB,
as = —b*Beyito — 4b2yi628£‘75 — 38b%y et oo,
as = —b*B%ey'too + 2y B3 £ B + B2y etoo,
az = 2B%y'e £ + 2b* B2y’ too + y' B2 etoo,
a1 = —B%y'too.
From above equation, we can get two fundamental equations
aga® + aga® 4+ asat = 0,

a7a8 + asa® + aza® + a1’ = 0. (4.5)
From (4.5), we can see that a; has the factor o and then
too = c'(2)a?

for some scalar function ¢(z) on M.

By the equation mentioned above we can conclude that the coefficient a4
must be divided by a2, hence there is a class of homogenous of degree one
functions g* = ¢’(y) on M such that,

—b%ey’too + 2yi56£‘7ﬂ +yletoo = g'(y)o? (4.6)

Replacing this quantity t., = c*(z)a? into (4.6) and taking into account the
non-degeneracy of €, 8 # 0 we conclude that

£08=0.

Plugging the quantities too = ¢(z)a?, £, = 0 in R(x) = 0 and sorting again
by «, we can get the following equation

mga® + mra’ + mga® + msa® + msa® = 0. (4.7)

where

ms = 2ey’ L b? + ebly'c (z) + eby'c (),

my = —2yi65£vb2 — eBy'bict(z) — 3By b ci (),

me = Brey’c (x) — ey b c!(x),

ms = Boec 1)y’ + 22 Fec (@),

my = —B%ey'c’ ().
From above equation, we can get two fundamental equations

msa® + mga* = 0,

mra® + msa? + mza® = 0. (4.8)
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From (4.8), we see that ms has the factor o?

non-degeneracy of €, 8 # 0 we conclude that

and taking into account the

c(x) =0, for any index i.

Therefore o, = 0.
If we assume that s # 0, by (4.3) we can write equation (4.1) as follows

a? c(b2a® — B2a)y’
a5 " 22a? — 27— 2Ba 1 202

E(b2 3 _ BQOz)bi
+2b2a2 — 232 — 2Ba + 202

S

£4(G +

o) = Py'.

Therefore, Equation mentioned above is equivalent to the following equality

. . t at o2 L8 .

= £-G' — Pyt co oo 14 )

0 vGa = PV (T " sa—pr Yo pp )
a? e(e*y’ + ab?)

+a7—,6’£‘752 + 20202 — 232 — 2B + 22
e(e*y’ + ab?)(b?a® — f%a)
(20202 — 262 — 2Ba + 202)?
6(()2 3 _ 6204)
20202 — 232 — 2Ba + 202

L (b%a® — f2a)

£:(20%” — 267 — 2Ba + 202)

+ Lo (e%y" + ab'). (4.9)

By simplifying above equation and multipling both sides of this very equation
by a?(a — B)?(2b%a? — 232 — 2Ba + 2a2)?, we can rewrite (4.9) as follows:

L(z,y)a+ D(z,y)e* =0 (4.10)
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where

L(z,y) = o(2b'cLyb’ +2b%e L b + 2b'e £4,b%)
+a® (4L st + Ab £y st + 867 Ly s — AbT Be £ b’
+20%b'e £ 3 — 6b*Be L b — 6b'Be £,b%)
+a7(—4Py' + 4£, Gl — A*BLy sL — 2B%c £ b
+4b*s! £ 8 — 16b° Ly s) + 8b*s, £,8 + 6b' 37 £,07
—4b' Be LB + 2b* B2 L0 + 202 B2 £, + 267D et oo
+26% b cto, + 8V7 £ GE — 8V2 Py’ + 4b* £, G,
—4b* Py’ + 4L £, 8 — 12BL 8L — 467V Be £, B)
+a%(68%c £ b + 26" shtoo + 4b%sLtoo — 886 £, G,
+8Bb* Py’ — 248b° £, G, + 24Bb> Py’ — 8BsL L3
+6b%B3c£b" — 26" B3 £,b% + 100 B2 £,
—8b%Bst L8 — 16BLyGL + 168Py" +458% L ;5!
+258too — 4B toobe — TAb ebito + 2607 % £, )
+a®(—4b* B2 Py’ — 16b> B> Py’ + 8b* B> £, 5% + 16b° B2 £, G,
—88Ltoo3 + 40 B2 L GY — 4B LB — 4B £y b
—4Bb* sl teo — 128b%skte0 — 8B°%sL LB — 8b' B £, B
—4b?Ble £ b + 128° L st — 1632 Py’ + 168° LG,
4200 % t0e + 4b°b% B et 00
+at(=2B8%e L b + 8V2 B3 £y, GY, — 82 B3 Py + 885t £, 8
+63%t 005t + 5b'b? Betos — 8B Py’ — 4B L s + 8B £, G,
+B3b etoo + 4870251 oo + 2B e £ )
+a?(28% £,b" + 82 B Py’ — 8b*B £, G, + 168 Py’
4851 toob? 33 — 4blt, b2 fre)
—1—042(—654521500 - 365bit005)
+a! (—4B°Py" + 4B° LGl — 4B° sk too + 285 ts08).

and

D(z,y) = o (2y'eLyb?)
+a®(—6By’c £,b* + 2eb'y' £, 8 + 4b%y'e £, 8)
+a" (—106°Bey’ LB — 4b* Bey' LB + by etoo + by'etoo
—TBb*eb'too + 26'0* B2e L, B — ABey’ £ 8 + 6%y’ £,,0%)
+a8 (4 B2y'e £, 8 — 5b* Bey'too — 3b* Bey'tor + 20 By £
—2B%y" Lb* + 8%y’ £,8)
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+a®(=28%y" £ 8+ BPeytoo + 30* By etoo + 667 BPey’ £, 3
+6y'b% B3 cto0)
+a4(b253yi€too o b4ﬂ35yitoo o 452,34y16£‘75 o sﬂgyitoo
—2,6’4y’5£‘76)
+a3 (=58 ey o0 — Bleytoo — 2y' B Ly f)
+02(28°V ey too + 28%y" £, 8)
+al (268%ytoo)
+a0(_/67€yitoo)~
By changing all the terms y to —y in (4.10) we obtain L(z,y) = D(x,y) = 0.

From equation D(z) = 0, we can get two fundamental equations

aga® + azab + a5a4 +asa? + a1’ = 0,

aga® + aga® + aso* + aza? + apa’ = 0. (4.11)
where

ag = 2yia£‘7b2,

ag = —6By'e L;b” + 2eb'y LB + Ab*y'e LB,

a7 = —106%Bey’ £, 8 — 4b* Bey' £, 8 + bry'etoo + by et oo,
TBb%ebitoo + 26'0%B%e LB — ABey’ £ 8 + 65%ey  £b7,

ag = 4*B2y'e £, B — 5b*Bey’tos — 3b*Beytos + 2b* B2y’ L3,
283y £,b% + 8%y’ £, 3,

a5 = =23%y" £,8 + B2ey'too + 30" 7Y ctoo + 607y’ £, 8
+61'b* B et oo,

ag = b2 B%y'etos — b BPey’tos — AUP By e £ B — By oo — 2By e LB,

az = —5B*%eytos — Brey'tos — 2y’ B Ly B,

az = 2B°02ey’to, + 285y’ £, B,

a1 = 28%y oo,

ag = —ﬁ75yitoo.
From (4.11), we see that ag has the factor o and then t,, = ¢!(x)a? for some
scalar function ¢(z) on M.
Replacing this quantity t., = c‘(x)a? into (4.9) and sorting sorting again by
a, we have equation

L(z,y)a+ D(z,y)e* =0 (4.12)
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By similar computations we can conclude L(z,y) = D(z,y) = 0. Equation
D(z,y) =01is as
moa’ +mga® +mra’ +mga’ + mza® + mga* + mza® + mza® = 0. (4.13)
where
ms = —28%y" £,8 + 28%y' ' (z),
mz = +28%y' £,8 — BTey’c (x).
From (4.13), we have two fundamental equation
myal + mrat + mpa? + mza’ =0,
mga® + mgat + mza® + mza’ = 0.
By the equations mentioned above we conclude that mz, 3 must be divided
by a2, therefore there are two scalar function ¢*(x), g*(z) on M where

—2ey' £+ 2Bey’c (z) = ¢'(x)a?, (4.14)
2ey' £,8 — Bey'c'(z) = g'(x)a. (4.15)
Let us compute the terms given by (4.14) and (4.15),
Bey'ci(z) = (¢'() + g'(2))a. (4.16)
Taking into account the non-degeneracy of €, 5 # 0 yields
c(z) =0,
therefore
too = 0.
Plugging c(x) = 0 in (4.14) follows that
LyB=0.

Now, let us assume 3 satisfies
Too =0, s, =0.

In this case, S = 0. Substituting r.c = 0 and s, = 0 in (2.1), the spray
coefficients of F' can be calculated by G* = G%, + aQs!, i.e.

a2

G'=Gh + a—_ﬁsg. (4.17)
Suppose that s® = 0, so we observe
G'=@G".
In this case one can see that the projective algebra p(M, F') of F' is coincides
with the projective algebra p(M, «) of « and this proves (a).
If s£ # 0 and V be a projective vector field on (M, F). From remark 3.1, V/
is a special projective vector field on M, so

£‘>Gi = Pyi.
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where P(z,y) = P(z)y*. From (4.17)

' , o . ) a? . .
"CVGZ — £V(G?X + - ﬂsé) = f‘;Gg + £V(Oz — ﬁSZ) = Py’.
Therefore
. o tee ;1 atee . QLB . a? ;
£AGZ:£AG;+ SZ)*, 524» 14 524» .i“sé. 4.18
v v a—pf 2 (a— B)2 (a—pB)? a—8""Y ( )

By replacing ¢ in (4.18) with —y® we have:

i i QP Lyp o?
a—i—Bso §(a+5)280 (a—i—/)’)Qso_ a+ 3
Let us compute the terms given by (4.18), (4.19)

too . 1  ateo

£VGi = vaé — £Vsé (4.19)

atoosh(a® — 36%) + 4a’Bst £, 8 + 2a° £5L (o — B%) = 0. (4.20)
Eq. (4.20) is equivalent to following polynimal equation:
a1 + o?az + a*as = 0. (4.21)
where
a1 = —33%s' too,

as = Sitoo — 2ﬂ2£‘7$é + 4532,6‘»,@
as = 2£‘7$i.
we see that a; has the factor o2 and then

too = ci(x)a2

for some scalar function ¢’(z) on M. Plugging it in (4.21), changes it into the
following equation

a’as 4+ as +a; =0. (4.22)
where
as = 2.,5‘;82,
az = stc'(x)a? — 2,82£Vsi + 4,6’sf)£‘7,8,
a; = —33%sic(x).
From which it follows that a? must divide a; + a3, hence there is a class of
functions p* = p*(z) on M such that,

—3B%sic' () + st (w)a® — 2B% Lo st + ABsL Lo B = p' (z)a? (4.23)
Convecting the two sides of (4.23) with y; and taking the facts that y; = a;;4”,

yish =0 and £y y; = 0, Bq.(4.23) reads as p'(z)y;0? = 0.
After a derivation with respect to y* , we have

2u(x)a =0, u'=0.
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Plugging p* = 0 in (4.23) and then (4.22) follows that
£st) =0

and thus,

—3B%sic(z) + st (z)a® + 4BsL Ly B =0 (4.24)
From s! # 0 we get:

—36%c' () + ¢'(z)a® + 4B £y 8 = 0.

Taking into account the non-degeneracy of o, 3 # 0 yields ¢(z) = 0, £y, = 0
and completes the proof.
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