تعداد نشریات | 27 |
تعداد شمارهها | 364 |
تعداد مقالات | 3,223 |
تعداد مشاهده مقاله | 4,740,994 |
تعداد دریافت فایل اصل مقاله | 3,238,445 |
Special projective algebra of exponential metrics of isotropic S-curvature | ||
Journal of Finsler Geometry and its Applications | ||
دوره 5، شماره 2، اسفند 2024، صفحه 1-13 اصل مقاله (301.98 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22098/jfga.2024.14407.1113 | ||
نویسندگان | ||
Seyedeh Yasaman Sadati؛ Mehdi Rafie-Rad* | ||
Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
چکیده | ||
Exponential metrics are popular Finsler metrics. Let F be a exponential (α, β)-metric of isotropic S-curvature on manifold M. In this paper, a Lie sub-algebra of projective vector fields of a Finsler metric F is introduced denoted by SP(F). We classify SP(F) of isotropic S-curvature as a certain Lie sub-algebra of the Kiliing algebra k(M, α). | ||
کلیدواژهها | ||
Projective vector field؛ Exponential Finsler metirc؛ S-curvature | ||
مراجع | ||
1. H. Akbar-Zadeh, Champs de vecteurs projectifs sur le fibr´e unitaire , J. Math. Pure Appl. 65 (1986), 47–79. 2. H. Akbar-Zadeh, Sur les espaces de Finsler `a courbures sectionelles constantes, Acad. Roy. Belgian Bull. Cl. Sci. 74 (5) (1988), 281–322. 3. S. B`acs`o, X. Cheng and Z.Shen, Curvature properties of (α, β)-metrics, Advance. Stud. Pure. Math. 48(2007), 73–110. 4. M. Rafie-Rad and B. Rezaei, On the projective algebra of some (α, β)-metrics of isotropic S-curvature, Int. J. Geom. Methods Mod. Phys. 10 (2013) 048, 11 pp. 5. Z. Shen, Differential Geometry of Spray and Finsler Spaces (Kluwer Academic Publish-ers, 2001). 6. X. Mo, On the non-Riemannian quantity H of a Finsler metric, Diff. Geom. Appl. 27 (2009), 7–14. 7. B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata 131 (2008), 87–98. 8. M. Rafie-Rad, Some new characterizations of projective Randers metrics with constant S-curvature, J. Geom. Phys. 9 (4) (2012), 272–278. 9. K. Yano, The Theory of Lie Derivatives and Its Applications (North Holland, Amster-dam, 1957). 10. S. Masoumi, Projective vector fields on special (α, β)-metric, J. Finsler Geom. Appl. 2 (2020), 83–93. | ||
آمار تعداد مشاهده مقاله: 80 تعداد دریافت فایل اصل مقاله: 78 |