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Abstract— Step-up DC-DC converters are essential components used in a wide range of applications. Many researchers have proposed
various methods to achieve high voltage gain in DC-DC converters. However, this typically involves adding multiple passive components,
which increases system complexity and complicates output voltage control. Maintaining a constant output voltage at the desired value is
critical in these converters despite the load, supply voltage changes, and circuit disturbance. Recently, a snubber-less high-step-up enhanced
super-lift converter has been developed as a possible solution to these issues. This converter offers high gain without high voltage stress or
snubber losses. A model of the converter was created using the state-space averaging technique and is presented in this paper. The control
strategy proposed uses the input current in the inner loop and the output voltage in the outer loop. The paper also includes simulation and
experimental results that validate the circuit analysis equations.
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1. INTRODUCTION

DC-DC converters are now an essential part of many
applications, such as voltage regulators, hybrid vehicles, power
factor correction, uninterrupted power supplies, motors, spacecraft,
and renewable energy systems. Renewable energy sources typically
produce direct current (DC) voltage, while most consumer devices
require alternating current (AC) voltage. Therefore, it is crucial
to convert the output voltage of renewable energy sources into
AC voltage using an inverter. To supply DC link inverters,
typically 230V and 400V voltages are required for single-phase
and three-phase systems, respectively [1–3]. To generate high
voltage levels from renewable energy sources, multiple solar
panels need to be connected in series. However, this approach can
result in various challenges such as increased ground occupancy,
reduced controllability, and shadow effects. To address these issues,
Step-Up DC-DC converters have been developed [4–15]. Various
techniques have been developed for Step-Up DC-DC converters.
One of these techniques involves using a multiplier cell (MC)
at the output of the DC-DC converter [5]. Another way to
achieve high voltage gain is by using a switched inductor/switched
capacitors converter or a hybrid combination of both. However,
these converters have some disadvantages, such as increased cost
and complex control due to the use of multiple components [6], [7].
To increase voltage levels, voltage lift is a common method used
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that can be implemented in a single-level or multi-level manner
[8–10]. Another effective technique is using coupled inductors in
combination with any of the aforementioned methods. Although
the leakage inductance in the coupled inductance causes spikes
across the semiconductor devices, it increases the converter losses.
These converters can increase voltage gain efficiently if voltage
spikes are limited on their semiconductor devices [11]. One of the
ways to reduce spike voltage is to use active clamps and passive
clamps in converters. Converter [12] has used a lossless method to
recover the energy of the leakage inductor. However, the limited
voltage gain necessitated the use of an interleaving method in the
input and series output to increase voltage gain. By using the
interleave method, the number of components in [13] has been
doubled compared to [12].

[16] provides a detailed description of the modeling and control
of the boost converter with the voltage multiplier cell. Specifically,
for a duty cycle of 76%, the voltage gain value is 8.3. In addition,
reference [17] details the modeling of a high-voltage DC-DC
converter and the use of coupling inductors. For a duty cycle of
60%, the voltage gain is 12.

In this paper, the control approach of a high-step-up DC-DC
converter based on self-coupling and super lift techniques [18] is
presented. The high-gain DC-DC converter, referred to as converter
[18], is based on the super-lift topology and coupled inductor
structure. This converter recovers energy stored in the leakage
inductance of the coupled inductor back to the circuit. As a result,
it offers an ultra-gain without inducing high spike voltage on the
semiconductor devices and snubber losses. We model the converter
and subsequently design a control system to regulate the output
voltage at the desired value. The circuit diagram of this converter
is illustrated in Fig. 1.

The structure of the paper is organized as follows: in section
2 demonstrates the analysis of the converter’s performance in
CCM. in section 3 presents voltage gain and voltage stress on the
semiconductor devices. Dynamic behavior is illustrated in section
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4. in section 5 focuses on the modeling design of passive elements.
The design of the compensator for controlling both voltage and
current modes in the proposed converter is presented in section
6. Finally, in section 7 presents the simulation and experimental
results obtained.
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Fig. 1. High step-up DC-DC converter based on a coupled inductor and
super lift topology [18].

2. OPERATION PRINCIPLE

The high-step-up enhanced super-lift converter, as shown in Fig.
1, consists of several components, including the main switch S,
three diodes (D1, D2, and D3), two capacitors (C1 and C2), and
a coupled inductor. The magnetizing inductance of the coupled
inductor is represented by the symbol Lm, while N1 and N2 refer
to the number of turns in the primary and secondary windings
of the coupled inductor. In order to derive the dynamic model
of the high-step-up enhanced super-lift converter, we make the
assumption that:

• All components are functioning optimally, and the converter
is operating in a stable condition.

• The inductors and capacitors are assumed to be large enough,
and their corresponding currents and voltages are considered
during a fixed switching period.

• The losses associated with semiconductors are not taken into
consideration.

This converter has three operation stages in continuous current
mode (CCM). Fig. 2 depicts equivalent circuits during three modes,
and Fig. 3 shows the waveform of the circuit elements.

2.1. Mode 1 [t0-t1]
During this time interval, the active switch is turned on. The

diodes D1 and D3 are forward-biased Also, the magnetizing
inductor current iLm increases linearly. Capacitor C1 starts
charging through diode D3. This mode ends when current of the
diode D1 is equal to the magnetizing inductor current. The flow
path of this mode is shown in Fig. 2-(a). The governing equations
of the converter are as follows:

i̇Lm = i
vC1

LmN21
(1)

Where VC1 is the voltage of the capacitor C1, and N21 is the
urn ratio of the coupled inductor (N21 = N2/N1). Using the KCL
for the capacitors C1, it can be written that:

v̇C1 = (ig − iLm)
1

C1N21
(2)

Where ig is the input current and is defined as:

ig =
Vg − Lm

˙̇iLm
Ri

(3)

Given Eqs. (1) and (3) into Eq. (2):

This converter has three operation stages in continuous current mode (CCM). Fig. 2 depicts equivalent 

circuits during three modes, and Fig. 3 shows the waveform of the circuit elements. 
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Fig. 2. Operation mode of the converter. (a) Mode 1. (b) Mode 2. (c) Mode 3. 
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𝐶1𝑁21
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Fig. 3. Characteristic waveform of the converter in CCM 

Where 𝑖𝑔 is the input current and is defined as:  

𝑖𝑔 =
𝑉𝑔 − 𝐿𝑚𝑖̇̇𝐿𝑚

𝑅𝑖
 (3) 

Given (1) and (3) into (2): 

𝑣̇𝐶1 = (
𝑉𝑔 −

𝑣𝐶1

𝑁21

𝑅𝑖
− 𝑖𝐿𝑚)

1

𝐶1𝑁21
 (4) 

For the output capacitance of 𝐶𝑜, it can be expressed that: 

𝑣̇𝐶𝑂 =
𝑣𝐶𝑂

𝐶𝑂𝑅
 (5) 

Equations above can be represented as state space matrices: 

{
𝑥̇(𝑡) = 𝐴1𝑥(𝑡) + 𝐵1𝑉𝑔
𝑦(𝑡) = 𝐶1𝑥(𝑡) + 𝐸1𝑉𝑔

 (6) 

where 𝑥(𝑡) = [𝑖𝐿𝑚 𝑣𝑐1 𝑣𝑐𝑜]
𝑇 and 𝑦(𝑡) = [𝑖𝑔]. The matrix values 𝐴1, 𝐵1, 𝐶1, and 𝐸1 can be written 

as follow: 
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v̇C1 =

(
Vg − vC1

N21

Ri
− iLm

)
1

C1N21
(4)

For the output capacitance of Co, it can be expressed that:

v̇CO =
vCO
COR

(5)

Equations above can be represented as state space matrices:

{
ẋ (t) = A1x (t) + B1Vg
y (t) = C1x (t) + E1Vg

(6)

where x (t) =
[
iLm vc1 vco

]T and y (t) = [ig]. The matrix
values A1, B1, C1, and E1 can be written as follow:

A1 = 0 1
LmN21

0

− 1
N21

− 1
N21

2Ri
0

0 0 − 1
COR

 (7)

B1 =
[

0 1
N21Ri

0
]T

(8)

C1 =
[

0 − 1
N21Ri

0
]T

(9)

E1 =
1

Ri
(10)

2.2. Mode 2 [t1-t2]
At this moment, the Switch is still turned on. The magnetizing

inductor is being charged by connecting the switch and diode D1.
Meanwhile, the diodes D2, D3, and D4 are reverse biased and cut
off. The output capacitor is also discharging into the load. During
this time, you can confirm that the equations for magnetizing
inductor and output capacitor are similar to the previous state.
Also, capacitor voltage C1 remains unchanged, and its derivative
is zero. You can see the flow path for this mode in Fig. 2-(b).

2.3. Mode 3 [t2-t3]
At the beginning of this time interval, the active switch is turned

off. The diodes D2 and D4 are in forward bias and connected.
The magnetic inductor current flows through diode D2 and into
the output. The output capacitor is charged through the magnetic
inductor, secondary transformer, and capacitor C1. This mode ends
when the switch is turned off again. The flow path of this mode
is shown in Fig. 2-(c). Once this mode is over, the previously
described modes will be repeated. In this mode, the voltage of the
magnetic inductor can be written as follows:

−Vg + Lm
˙̇iLm + N21Lm

˙̇iLm−
vC1 + vCO + Riig = 0

(11)

From Eq. (11), it can be expressed that:

˙̇iLm =
1

(1+N21)Lm
[Vg + vC1 − vCO −Riig]

(12)

where in:

ig =
iLm

(1 + N21)
(13)
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By substituting Eq. (13) into Eq. (12), it can be written that:

˙̇iLm =
1

(1+N21)Lm

[
Vg + vC1 − vCO −Ri

iLm
(1+N21)

] (14)

Using the KCL for capacitor C1 , it can be expressed that:

v̇C1 =
(vLm − ig)

1
C1N21

(15)

Substituting Eq. (13) in Eq. (15) leads to:

v̇C1 =

vLm
(

1− 1
1+N21

)
1

C1N21

(16)

For the output capacitor of Co, it can be written that:

v̇CO =
1

CO

(
C1v̇C1 −

vCO
R

)
(17)

By substituting Eq. (16) into Eq. (17), it can be expressed that:

v̇CO =
1
CO

[[
iLm ×

[
1

1+N21
− 1
]

1
C1N21

]
− vCO

R

] (18)

Equations above can be represented as state space matrices:

{
ẋ (t) = A2x (t) + B2Vg
y (t) = C2x (t) + E2Vg

(19)

The matrices A2, B2, C2 and E2 are equal to:

A2 =
− Ri

(1+N21)2
1

1+N21

1
1+N21(

1
1+N21

− 1
)

1
C1N21

0 0

−
(

1
1+N21

− 1
)

1
C1CON21

0 − 1
COR

 (20)

B2 =
[

1
N21+1

0 0
]T

(21)

C2 =
[

1
N21+1

0 0
]T

(22)

E2 = 0 (23)

In the second operating mode, the magnetic inductor current
increases at the same rate as the first working mode. Therefore,
the output capacitor functions in the same way as in the previous
operating mode. Additionally, due to the disconnection of diodes
D3 and D4, no changes are made to capacitor C1. As a result,
it is only necessary to consider the first and third modes when
forming the state space matrix and modeling the converter.

Table 1. Comparison of the proposed converter and other similar topologies.

Converter Gain #Core #Capacitor #Active switch #Diode
[18] n+1

1−d 1 2 1 4
[6] nd+n+1

1−d 1 4 1 4
[7] n+1

1−d 1 3 1 3
[11] n+1

1−d 1 2 1 2
[12] 2+3n−d−nd

1−d 1 5 1 5
[13] 1 + 1+3n+2dn

1−d 2 8 2 9
[14] 2n+2

1−d 2 8 5 8

[20] (n+1)(2−d)
1−d 1 4 1 4

3. VOLTAGE GAINS AND VOLTAGE STRESS ON THE
SEMICONDUCTOR DEVICES

According to Eqs. (1) and (11) and using the volt-second
balance law, the voltage gain of the converter is as follows. For the
active switch S, diode D1 and diode D3, stress voltage in mode 3
can be calculated as:

VO =
1 + N21

1− d
Vin (24)

VS =
1 + dN21

1 + N21
VO (25)

VD1 =
dN21

1 + N21
VO (26)

VD3 =
N21

1 + N21
VO (27)

For diodes D2 and D4, stress voltage in mode 1 can be
calculated as:

VD2 =
(1− d)N21

1 + N21
VO (28)

VD4 =
1 + dN21

1 + N21
VO (29)

In Table 1, you can find a comparison between the proposed
converter and other high voltage gain converters that are similar.
The table presents various components used in different converters,
including gains, power ratings of switches, overall power ratings
of diodes, and the used components. To calculate the power rating
of a switching device, we multiply voltage stress and current
stress. As per the analysis, the voltage stress calculated for some
converters such as [11, 19] is higher than their ideal model.
Though the number of proposed converters is moderate when
compared to other converters, the converter proposed in [11] has
fewer components. However, it requires additional components for
the snubber circuit. In the converter presented in [11], when the
switch is turned off, the stored energy in the leakage inductance
causes the switch to experience high voltage stress (output voltage).
Therefore, a snubber circuit is necessary to resolve the issue [11].
Although transformers [12], [13] and [14] have large voltage gain,
the number of their components is much larger than [18].
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4. DYNAMIC BEHAVIOUR MODELING USING THE
STATE-SPACE AVERAGING TECHNIQUE

According to [21], it is possible to obtain the average state
space model.

〈ẋ (t)〉TS
=
[
A1d (t) + A2 d́(t)

]
〈ẋ (t)〉TS

+[
B1d (t) + B2 d́(t)

]
〈Vg (t)〉TS

〈y (t)〉TS
=
[
C1d (t) + C2 d́(t)

]
〈x (t)〉TS

+[
E1d (t) + E2 d́(t)

]
〈Vg (t)〉TS

(30)

where the value of 〈x (t)〉TS
is the average value of x (t) over

a switching period.
By sting d (t) = d and 〈Vg (t)〉TS

and setting all derivatives
equal to zero, relations of the converter in the steady state are
determined: {

X = −A−1B2Vg(t)
Y = −C−1B2Vg(t)

(31)

Where A, B, C and E are defined by Eqs. (32), (33), (34) and
(35), respectively.

A = A1d + A2 d́ =
− Ri

(1+N21)2
d
N21

+ d́
1+N21

− d́
1+N21(

1
1+N21

− 1
)

1
C1N21

− d
RiN21

2 0

−d́
(

1
(1+N21)N21

−
1
N21

)
1

C1CON21

0 − 1
R


(32)

B = B1d + B2 d́ =[
d́

1+N21

d
RiN21

0
]T (33)

C = C1d + C2 d́ =[
d́

1+N21

d
RiN21

0
]T (34)

E = E1d + E2 d́ =
d

Ri
(35)

The small signal model of the converter is derived by [21]:

K dx̂(t)
dt

=

Ax̂ (t) + BV̂g (t) +

{(A1 + A1)X + (B1 + B2)U} d̂(t)

(36)

where superscript ‘ˆ’ denotes small signal term of each variable
from Eq. (36) it can be expressed that:

x̂(t) = (Sk −A)−1 dĝ(t) (37)

where ĝ (t) =
[
v̂g (t) d̂ (t)

]T
. Now Eq. (37) is a linear

Equation from which the converter transfer functions can be
obtained using Eqs. (38) and (39):

Gid = î(s)

d̂(s)

∣∣∣
v̂g=0

=

163840000×


10443286345137363S2

+35173241491024667363000S
+72798782156289254928000000


65716525762559028125S3

+21912083698870866598665928S2

+22608794164104784225900928000S
+231218407748903161036800000000000

(38)

Gvd = v̂co(s)

d̂(s)

∣∣∣
v̂g=0

=

−2500×


703166825659716009375S2

+2337045676814373787832199296S
−22969040244813087878676480000000


6571652576259028125S3

+21912083698870866598665928S2

+22608794164104784225900928000S
+231218407748903161036800000000000

(39)

5. MODELLING DESIGN OF PASSIVE ELEMENT

Designing the circuit components for the converter is a crucial
step that requires careful consideration. The selection of appropriate
values for inductors and capacitors is a topic that often sparks
controversy in the field of DC-DC converters. One effective
approach to determine the values of inductors and capacitors is
to analyse their impact on the conversion functions of the circuit
[22]. When poles are transferred along an imaginary axis, the
natural damping frequency changes, resulting in a shift from weak
damping to critical damping response. Fig. 4 demonstrates that
increasing the amount of magnetizing inductor can help achieve
this. However, as depicted in Fig. 5, altering the value of C has
little effect on the RHP zeros. Additionally, it has been observed
that increasing the amount of magnetizing inductor can lead to a
slower system response.

𝐺𝑣𝑑 =
𝑣𝑐𝑜(𝑠)

𝑑̂(𝑠)
|
𝑣̂𝑔=0

=

−2500 × (
703166825659716009375𝑆2

+2337045676814373787832199296𝑆
−22969040244813087878676480000000

)

6571652576259028125𝑆3

+21912083698870866598665928𝑆2

+22608794164104784225900928000𝑆
+231218407748903161036800000000000
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6. CONTROLLER

In the previous section, we derived the small-signal model of the
converter. In this section, we will introduce a control method for the
high step up Enhanced Super-Lift Converter using the parameters
listed in Table 2. Fig. 7 illustrates the block diagram of the
proposed system, which utilizes voltage and current compensators
to regulate the converter. Blocks Gv and Gi represent the input
current and output voltage controllers, respectively. Hv which is
the output voltage sensor is considered equal to 1 and the pulse
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𝐺𝑣𝑑 =
𝑣𝑐𝑜(𝑠)

𝑑̂(𝑠)
|
𝑣̂𝑔=0

=

−2500 × (
703166825659716009375𝑆2

+2337045676814373787832199296𝑆
−22969040244813087878676480000000

)

6571652576259028125𝑆3

+21912083698870866598665928𝑆2

+22608794164104784225900928000𝑆
+231218407748903161036800000000000

 
(39) 
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width modulation (PWM) block represents the PWM dynamic
model, which can be given by [19–26]. The bode diagram for the
transfer functions of control to input current is depicted in Fig. 8.
To compensate for voltage variations, a PD compensator can be
employed [19–26].

Gi (s) = Gio
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ωiz

)
(
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ωip
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For phase margin of 60 degrees and crossover frequency of 5
kHz, the controller can be found as:

Table 2. Parameters of the converter employed in the modelling.

Parameter Notation Value
Input voltage Vg 8-12V

Output voltage Vo 80-100V
Rated of output power Pout 16-64W

Switch frequency fs 50Khz
Load R 100-400Ω

Coupled inductor turns ratio N21 1:3
Magnetizing inductor Lm 95µH

Capacitor C1 10µH
Capacitor Co 10µH

diodes D1, D2 V30202C
diodes D3, D4 SBR40U300CT
switch S IXFK210N30X3

Gi (s) =
1.33
S

(1+ S
8417.84 )

(1+ S
11724583 )

(41)

Regarding Fig. 7, closed loop transfer function of current loop
can be expressed by:

Gi,CL (s) =
Ci(S)GPWM (S)Gid(S)

1+Ci(S)GPWM (S)Gid(S)Hi(S)He(S)

(42)
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where:

GPWM (S) = 1
3
,

Hi (S) = 1/50
(43)

He (S) =
S2

(πfS)2
− S

2fS
+ 1

(44)

To design voltage controller, transfer function of output voltage
to input current should be extracted:

GV oi (S) =
Gvod (S)

Gild (S)
(45)
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Fig. 13 depicts the experimental prototype of the proposed converter with Figs. 14-17 showing 

the experimental waveforms including the switching signal for clarity. In Fig. 14 the voltage of the diodes 

𝐷3 and 𝐷4 is displayed. As expected, when the switching signal is high, diodes 𝐷3 and 𝐷4 are off, and 

according to Fig. 16 the switching signal is synchronized with the turning off and on of the active switch. 

Also, according to Fig. 16, when the switching signal is high, diodes 𝐷3 and 𝐷4 are on. Furthermore, it is 

observable that equations (24) to (29) hold true. The dynamic response of the converter by changing the 

reference value from 80 to 100 V is shown in Fig. 17. Based on the Fig. 18, it can be inferred that the 

circuit's efficiency falls within the range of 93% to 94%. This makes it an optimal choice for renewable 

energy applications where high efficiency is a crucial requirement for choosing a converter. The obtained 

result is evidence of the proposed converter's outstanding performance.  
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Fig. 13. The view of the experimental prototype of the proposed converter.

Eq. (45) can be calculated using Eqs. (38) and (39). Open loop

transfer function of voltage loop can be expressed as:

GV oi (S) = Gicl (S)Gvoil (S) (46)

Fig. 9 shows bode diagram of Eq. (46). To compensate voltage,
loop a PD compensate can be used [19–26]:

Gv (s) = Gvo

(
1 + S

ωvz

)
(

1 + S
ωvp

) (47)

For phase margin of 50 degrees and crossover frequency of 1/4
fs Hz, the controller can be found as:

Gv (s) =
1.64

S

(
1 + S

8417.84

)(
1 + S

11724583

) (48)
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The objective of this paper was to model and control the voltage and current modes of an amplifier 

DC-DC converter based on inductance and a super lift structure. The main operating modes of the 

proposed converter were described in continuous mode. To simplify the modelling of the converter, two 

primary modes of operation were considered. Additionally, compensating design for the proposed 

converter was performed based on the conversion functions obtained from modelling the small signal 

Fig. 16. The voltage across diode D1.

7. SIMULATION AND EXPERIMENTAL RESULTS

Simulation and experimental results are used to validate the
theorical analysis. Table 2 shows the values used to simulate the
proposed converter. Fig. 10 shows the results obtained from the
simulation and modelling of the proposed converter. As shown in
the figure, with a change of 1% in the amount of duty cycle in
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0.03 second, the output voltage waveform and the inductor current
resulting from the modelling follow the waveforms resulting from
the simulation, which confirms the modelling relations. Fig. 11
shows the value of the converter output voltage by applying the
control method presented in the previous section. As shown in the
figure, the value of the output voltage under changes of 2,3 and
4 times in the value of load resistance, remains constant at the
desired value (Reference values are 100 and 80), which confirms
the proposed control method. Fig. 12 shows the output voltage
waveform of the proposed converter under changes of 20% in the
input voltage, as it is clear that the output voltage value remains
constant by applying these changes to the desired value, which
confirms the proposed control method.

Fig. 13 depicts the experimental prototype of the proposed
converter with Figs. 14-17 showing the experimental waveforms
including the switching signal for clarity. In Fig. 14 the voltage
of the diodes D3 and D4 is displayed. As expected, when the
switching signal is high, diodes D3 and D4 are off, and according
to Fig. 16 the switching signal is synchronized with the turning off
and on of the active switch. Also, according to Fig. 16, when the
switching signal is high, diodes D3 and D4 are on. Furthermore,
it is observable that Eqs. (24) to (29) hold true. The dynamic
response of the converter by changing the reference value from
80 to 100 V is shown in Fig. 17. Based on the Fig. 18, it can
be inferred that the circuit’s efficiency falls within the range of
93% to 94%. This makes it an optimal choice for renewable
energy applications where high efficiency is a crucial requirement
for choosing a converter. The obtained result is evidence of the
proposed converter’s outstanding performance.

8. CONCLUSION
The objective of this paper was to model and control the

voltage and current modes of an amplifier DC-DC converter based
on inductance and a super lift structure. The main operating
modes of the proposed converter were described in continuous
mode. To simplify the modelling of the converter, two primary
modes of operation were considered. Additionally, compensating
design for the proposed converter was performed based on the
conversion functions obtained from modelling the small signal
circuit and its diagram. Finally, the voltage and current controllers
were successfully implemented on the proposed converter using
the derived relationships.
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