- 1. T. Aikou, Some remarks on the geometry of tangent bundles of Finsler spaces, Tensor,
N. S. 52(1993), 234-242.
- 2. M. Amini, On weakly Landsberg 3-dimensional Finsler Spaces, J. Finsler. Geom. 1(2)
(2020), 63-72.
- 3. S. B´acs´o and Z. Szilasi, On the direction independence of two remarkable Finsler tensors,
Differ. Geom. Appl. (2008), 397-406.
- 4. D. Bao and Z. Shen, On the volume of unit tangent spheres in a Finsler space, Results
in Math. 26(1994), 1-17.
- 5. D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S3,J. London. Math. Soc. 66(2002), 453-467.
- 6. L. Berwald, On Finsler and Cartan geometries III, Two-dimensional Finsler spaces with
rectilinear extremals, Ann. of Math. 42(1941), 84-112.
- 7. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J.
Math. 169(2009), 317-340.
- 8. X. Cheng, Z. Shen and G. Yang, On a class of two-dimensional Finsler manifolds of
isotropic S-curvature, Sci. China Math. 61(2018), 57-72.
- 9. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg
curvature, Publ. Math. Debrecen. 72(2008), 475-485.
- 10. S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific J. Math.
207(2002), 149157.
- 11. J. Majidi and A. Haji-Badali, Two classes of weakly Landsberg Finsler metrics, J. Finsler.
Geom. 4(2) (2023), 92-102.
- 12. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24(1972), 29-37.
- 13. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31(1992),
43-84.
- 14. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor.
N. S. 32(1978), 225-230.
- 15. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev.
59(1941), 195-199.
- 16. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
- 17. V. S. Sabau and H. Shimada, Classes of Finsler spaces with (α, β)-metrics, Rep. Math.
Phys. 47(2001), 31-48.
- 18. A. Tayebi and B. Najafi, On homogeneous Landsberg surfaces, J. Geom. Phys. 168(2021),
104314.
- 19. A. Tayebi and M. Rafie. Rad, S-curvature of isotropic Berwald metrics, Sci. China. Series
A: Math. 51(2008), 2198-2204.
- 20. C. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear
connections preserving the Finslerian length of tangent vectors, Europ. J. Math. 3(2017), 1098-1171.
|