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Abstract. In this paper, we study η−Ricci solitons on three-dimensional

f−Kenmotsu manifolds with respect to a quarter symmetric metric connection.

We obtain some results when the potential vector field is pointwise collinear

with the Reeb vector field, conformal Killing vector field and a torqued vector

field.
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1. Introduction

The concept of semi-symmetric metric connections on a differentiable mani-

fold was introduced by Friedman and Schouten in 1924 [6]. As generalizations

of these connections, the quarter symmetric metric connections were introduced

by Golab in 1975 [7]. An affine connection ∇̃ in a Riemannian manifold M is

called a quarter symmetric metric connection if the torsion tensor T

T (U, V ) = ∇̃UV − ∇̃V U − [U, V ]

fulfills

T (U, V ) = η(V )φU − η(U)φV,

where U, V are vector fields, η is a 1-form and φ is a (1, 1)−tensor field on M .

When φU = U the quarter symmetric connection becomes a semi-symmetric

connection. If the connection ∇̃ fulfills

(∇̃Ug)(V,W ) = 0,
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for all vector fields U, V,W on M, then the connection ∇̃ is called quarter

symmetric metric connection; contrarily, it is a non-metric connection.

Quarter symmetric metric connections have been studied extensively by

many researchers, see [10],[11],[12],[19].

The notion of f−Kenmotsu manifolds was introduced by Jannsens and Van-

hecke in 1981 [9] by considering the f is a real constant. Afterwards, in 1991,

Olszak and Rosca defined the f−Kenmotsu manifolds by assuming the f as a

function [14]. Here, they studied geometry of normal locally conformal almost

cosymplectic manifolds.

On the other hand, let (M, g) be a Riemannian manifold of dimension n, (n ≥
2) such that {g(t)} is the 1-parameter family of metrics and S(t) is its Ricci

tensor. In this case, the equation of Ricci flow is defined by [8]

∂g(t)

∂t
= −2S(t)g(t).

The special solutions of the Ricci flow are famous as Ricci solitons. A Ricci

soliton is a triplet (g,X, ζ) on a Riemannian manifold satisfying

LXg + 2S + 2ζg = 0,

where LX is the Lie derivative in the direction of the potential vector field X,

S is the Ricci tensor and ζ is a real constant [1]. The generalized Ricci soliton

is defined by

LXg + 2νXb ⊗Xb − 2αS − 2ζg = 0,

where Xb is the canonical 1-form associated to X [13]. The concept of η−Ricci

soliton was defined by Cho and Kimura [5] as

LXg + 2S + 2ζg + 2ση ⊗ η = 0.

The η−Ricci solitons are generalizations of Ricci solitons. Subsequently, M. D.

Siddiqi defined the generalized η−Ricci soliton as [18]

LXg + 2νXb ⊗Xb + 2S + 2ζg + 2ση ⊗ η = 0.

In the present paper, we give some characterizations about generalized η−Ricci

solitons on f−Kenmotsu manifolds admitting quarter symmetric metric con-

nections. Throughout the paper, all geometric objects (curves, manifolds, vec-

tor fields, functions etc.) are assumed to be smooth.

2. Preliminaries

2.1. f-Kenmotsu Manifolds. Consider a 3-dimensional manifold M . If the

(1,1)-tensor field ϕ, the vector field ξ, the 1-form η and the Riemannian metric

g satisfy the following relations, we say that the quartet (ϕ, ξ, η, g) is a con-

tact metric structure on M and the quintet (M,ϕ, ξ, η, g) is a contact metric
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manifold:

η ◦ ϕ = 0,

ϕξ = 0,

η(ξ) = 1, (2.1)

g(U, ξ) = η(U),

g(U,ϕV ) = −g(ϕU, V ),

g(ϕU,ϕV ) = g(U, V )− η(U)η(V ),

ϕ2U = −U + η(U)ξ,

where U, V are vector fields on M. The contact metric manifold M is called

f−Kenmotsu if it fulfills the following relation

(∇Uϕ)(V ) = f [g(ϕU, V )ξ − η(V )ϕ(U)], (2.2)

where f is a function. This gives us

∇Uξ = f [U − η(U)ξ], (2.3)

and

(∇Uη)(V ) = f [g(U, V )− η(U)η(V )]. (2.4)

Using (2.3) and (2.4), we obtain

R(U, V )ξ = −(f2 + ξ(f))[η(V )U − η(U)V ],

R(U, ξ)V = (f2 + ξ(f))[g(U, V )ξ − η(V )U ],

R(ξ, U)ξ = −(f2 + ξ(f))[η(U)ξ − U ],

for every vector fields U, V on M. Here, R denotes the Riemannian curvature

tensor of M . The Ricci tensor of the f−Kenmotsu manifold M is expressed as

S(U, V ) =
(
ξ(f) +

r

2
+ f2

)
g(U, V )− (3ξ(f) +

r

2
+ 3f2)η(U)η(V ), (2.5)

for every vector fields U, V on M. Here, r denotes the scalar curvature of M .

From (2.5), we get

S(U, ξ) = −2
(
f2 + ξ(f)

)
η(U), (2.6)

for every vector fields U on M.

2.2. A quarter symmetric metric connection on a f−Kenmotsu man-

ifold. Let ∇̃ be an affine connection and ∇ be the Levi-Civita connection of

f−Kenmotsu manifold M . The connection ∇̃ is said to be a quarter symmetric

metric connection on M if

∇̃UV = ∇UV − η(U)ϕV, (2.7)

for every vector fields U, V on M. From (2.1), (2.2) and (2.7), we get

(∇̃Uϕ)V = f
[
g(ϕU, V )ξ − η(V )ϕU

]
. (2.8)
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From (2.3) and (2.7), we have

∇̃Uξ = f [U − η(U)ξ]. (2.9)

From (2.4) and (2.7), we occur

(∇̃Uη)V = fg(ϕU,ϕV ). (2.10)

The curvature tensor R̃, the Ricci tensor S̃, the scalar curvature r̃ and the

Ricci operator Q̃ of the connection ∇̃ in (2.7) are given by respectively:

R̃(U, V )W = R(U, V )W + f(η(V )ϕ(U)− η(U)ϕ(V ))η(W )

+f(η(U)g(φV,W )− η(V )g(φU,W ))ξ,

S̃(U, V ) = S(U, V ) + fg(ϕU, V ) (2.11)

= (ξ(f) +
r

2
+ f2)g(U, V )

−(3ξ(f) +
r

2
+ 3f2)η(U)η(V )

+fg(ϕU, V ),

Q̃U = (ξ(f) +
r

2
+ f2)U − (3ξ(f) +

r

2
+ 3f2)η(U)ξ + fgϕU,

r̃ = r (2.12)

see [2],[15]. We also have

R̃(U, V )ξ = −(f2 + ξ(f))(η(V )U − η(U)V ) + f(η(V )ϕU − η(U)ϕV ),

R̃(ξ, V )ξ = −(f2 + ξ(f))(η(V )ξ − V )− fϕV,

S̃(V, ξ) = −2(f2 + ξ(f))η(V ).

For more details, see [17].

3. Main Results

The generalized η−Ricci soliton with respect to the quarter symmetric met-

ric connection is defined by

αS̃ +
β

2
L̃Xg + νXb ⊗Xb + ση ⊗ η + ζg = 0, (3.1)

where S̃ is the Ricci tensor of the connection ∇̃, Xb is the canonical 1-form

associated to X, i.e., Xb(U) = g(U,X) for every vector fields U, ζ is a function

and α, β, ν, σ are real constants satisfying (α, β, ν) 6= (0, 0, 0). The particular

cases of the generalized η−Ricci soliton are listed below:

(a) If α = 1, ν = σ = 0, we obtain the Ricci soliton.

(b) If α = 1, ν = 0, we obtain the η−Ricci soliton.

(c) If σ = 0, we obtain the generalized Ricci soliton.

On the other hand, an f−Kenmotsu manifold is called η−Einstein if

S = f1g + f2η ⊗ η,
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where f1, f2 are functions on M. Now, assume that M is an f−Kenmotsu

manifold satisfying the generalized η−Ricci soliton with respect to the quarter

symmetric metric connection (3.1). Consider the potential vector field X = θξ,

in other words, let X be a pointwise collinear with the Reeb vector field ξ. Using

(2.9), we get

(L̃θξg)(U, V ) = (Uθ)η(V ) + (V θ)η(U) + 2fθ
{
g(U, V )− η(U)η(V )

}
, (3.2)

for every vector fields U, V on M. It is clear that

ξb ⊗ ξb(U, V ) = η(U)η(V ). (3.3)

Putting X = θξ and the relations (2.11), (3.2), (3.3) in (3.1), we deduce

α
[
S(U, V ) + fg(U,ϕV )

]
+ β

2

{
(Uθ)η(V ) + (V θ)η(U)

}
+βfθ

{
g(U, V )− η(U)η(V )

}
+
(
νθ2 + σ

)
η(U)η(V ) + ζg(U, V ) = 0.

(3.4)

Taking V = ξ in (3.4) and using (2.6) we obtain

α
[
− 2(f2 + ξ(f))η(U)

]
+
β

2
U(θ) +

β

2
ξ(θ)η(U) + (νθ2 + σ+ ζ)η(U) = 0. (3.5)

Taking U = ξ in (3.5) we get

βξ(θ) = 2α(f2 + ξ(f))− (νθ2 + σ + ζ). (3.6)

Substituting (3.6) in (3.5) we have

βU(θ) = [2α(f2 + ξ(f))− (νθ2 + σ + ζ)]η(U),

which leads to

βdθ =
[
2α(f2 + ξ(f))− (νθ2 + σ + ζ)

]
η. (3.7)

Putting (3.7) in (3.4) we get

αS̃(U, V ) =
(
ζ + βfθ

)[
− g(U, V ) + η(U)η(V )

]
. (3.8)

Equation (3.8) gives us

αr̃ = −2ζ − 2βfθ.

Now, we can express the following theorem and corollary.

Theorem 3.1. Let (M, g, ϕ, ξ, η) be an f−Kenmotsu manifold admitting the

quarter symmetric metric connection defined by (2.7). If M is a generalized

η−Ricci soliton with the septet (g,X, α, β, ν, σ, ζ) such that α 6= 0 and X = θξ

for a function θ on M, then M is an η−Einstein soliton and an η−Einstein

manifold with respect to the quarter symmetric metric connection.

Corollary 3.2. Let (M, g, ϕ, ξ, η) be an f−Kenmotsu manifold admitting the

quarter symmetric metric connection defined by (2.7). If M is a generalized

η−Ricci soliton with the septet (g,X, α, β, ν, σ, ζ) such that α 6= 0 and X = θξ

for a function θ on M, then αr̃ = −2ζ − 2βfθ.
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Now, we recall the definition of the conformal Killing and torse-forming

vector fields and give some results about them.

Definition 3.3. A vector field X is called a conformal Killing vector field if

(LXg)(U, V ) = 2hg(U, V ),

for every vector fields U, V , where h is a function. The particular cases of a

conformal Killing vector field are listed below:

(i) If h = 0, we obtain Killing vector fields.

(ii) If h is a constant, we obtain homothetic vector fields.

(iii) If h is not a constant, we obtain proper vector fields.

Suppose that X is called a conformal Killing vector field with respect to the

quarter symmetric metric connection ∇̃, i.e.,

(L̃Xg)(U, V ) = 2hg(U, V ).

By (3.1), we have

αS̃(U, V ) + βhg(U, V ) + νXb(U)Xb(V ) + ση(U)η(V ) + ζg(U, V ) = 0. (3.9)

Taking V = ξ in (3.9), we get

g
(
− 2(f2 + ξ(f)

)
ξ + βhξ + νη(X)X + σξ + ζξ, U) = 0.

So, we have

Theorem 3.4. Let (M, g, ϕ, ξ, η) be an f−Kenmotsu manifold admitting the

quarter symmetric metric connection defined by (2.7). If M is a generalized

η−Ricci soliton with the septet (g,X, α, β, ν, σ, ζ) such that X is a conformal

Killing vector field, then[
− 2(f2 + ξ(f)) + βh+ σ + ζ

]
ξ + νη(X)X = 0.

Definition 3.5. A non-zero vector field X is called a torse-forming vector field

on a Riemannian manifold (M, g) [20] if

∇UX = fU + ω(U)X, (3.10)

for every vector field U, where ∇ is the Levi-Civita connection of g, f is a

function and ω is a 1-form. The particular cases of a torse-forming vector field

are listed below:

(i) If ω(U) = 0 in (3.10), we obtain torqued vector fields [3].

(ii) If f = ω = 0, we obtain parallel vector fields.

(iii) If ω = 0 and f = 1, we obtain concurrent vector fields [16].

(iv) If ω = 0, we obtain concircular vector fields [4].

Assume that (g,X, α, β, ν, σ, ζ) is a generalized η−Ricci soliton on an f−Kenmotsu

manifold M such that X is a a torse-forming vector field. Then we have

αS̃(U, V )+
β

2
(L̃Xg)(U, V )+νXb(U)Xb(V )+ση(U)η(V )+ζg(U, V ) = 0. (3.11)
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Since

(L̃Xg)(U, V ) = 2fg(U, V ) + ω(U)g(X,V ) + ω(V )g(X,U),

we rewrite (3.11) as

αS̃(U, V ) + [βf + ζ]g(U, V ) + ση(U)η(V ) +
β

2

[
ω(U)g(X,V ) + ω(V )g(X,U)

]
+νg(X,U)g(X,V ) = 0.

Taking contraction in the above equation we get

αr̃ + 3[βf + ζ] + σ + βω(X) + ν |X|2 = 0.

Using (2.12) we can express the final theorem of the paper.

Theorem 3.6. Let (M, g, ϕ, ξ, η) be an f−Kenmotsu manifold admitting the

quarter symmetric metric connection defined by (2.7). If M is a generalized

η−Ricci soliton with the septet (g,X, α, β, ν, σ, ζ) such that X is a torse-forming

vector field, then

ζ = −1

3

[
αr + σ + βω(X) + ν |X|2

]
− βf.
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