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Abstract. In this paper, we study n—Ricci solitons on three-dimensional
f—Kenmotsu manifolds with respect to a quarter symmetric metric connection.
We obtain some results when the potential vector field is pointwise collinear
with the Reeb vector field, conformal Killing vector field and a torqued vector
field.
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1. Introduction

The concept of semi-symmetric metric connections on a differentiable mani-
fold was introduced by Friedman and Schouten in 1924 [6]. As generalizations
of these connections, the quarter symmetric metric connections were introduced
by Golab in 1975 [7]. An affine connection V in a Riemannian manifold M is
called a quarter symmetric metric connection if the torsion tensor T

T(U,V)=VyV - VyU - [U,V]
fulfills
TW,V)=n(V)eU —n(U)¢V,
where U,V are vector fields, 7 is a 1-form and ¢ is a (1,1)—tensor field on M.

When ¢U = U the quarter symmetric connection becomes a semi-symmetric
connection. If the connection V fulfills

(Vug)(V,W) =0,
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for all vector fields U,V,W on M, then the connection V is called quarter
symmetric metric connection; contrarily, it is a non-metric connection.

Quarter symmetric metric connections have been studied extensively by
many researchers, see [10],[11],[12],[19].

The notion of f—Kenmotsu manifolds was introduced by Jannsens and Van-
hecke in 1981 [9] by considering the f is a real constant. Afterwards, in 1991,
Olszak and Rosca defined the f—Kenmotsu manifolds by assuming the f as a
function [14]. Here, they studied geometry of normal locally conformal almost
cosymplectic manifolds.

On the other hand, let (M, g) be a Riemannian manifold of dimension n, (n >
2) such that {g(¢)} is the 1-parameter family of metrics and S(t) is its Ricci
tensor. In this case, the equation of Ricci flow is defined by [§]

898—?) = —=25(t)g(t).
The special solutions of the Ricci flow are famous as Ricci solitons. A Ricci
soliton is a triplet (g, X, () on a Riemannian manifold satisfying

Lxg+2S+2(g=0,

where Lx is the Lie derivative in the direction of the potential vector field X,
S is the Ricci tensor and ¢ is a real constant [1]. The generalized Ricci soliton
is defined by

Lxg+2vX’® X — 208 — 2¢g =0,

where X? is the canonical 1-form associated to X [13]. The concept of —Ricci
soliton was defined by Cho and Kimura [5] as

Lxg+25+2Cg+20n®n=0.

The n—Ricci solitons are generalizations of Ricci solitons. Subsequently, M. D.
Siddiqi defined the generalized n—Ricci soliton as [18]

Lxg+2vX"® X% 4+28+2Cg+20n@n=0.

In the present paper, we give some characterizations about generalized n—Ricci
solitons on f—Kenmotsu manifolds admitting quarter symmetric metric con-
nections. Throughout the paper, all geometric objects (curves, manifolds, vec-
tor fields, functions etc.) are assumed to be smooth.

2. Preliminaries

2.1. f-Kenmotsu Manifolds. Consider a 3-dimensional manifold M. If the
(1,1)-tensor field ¢, the vector field &, the 1-form 7 and the Riemannian metric
g satisfy the following relations, we say that the quartet (¢,&,7,¢) is a con-
tact metric structure on M and the quintet (M, ¢, &, 7, g) is a contact metric
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manifold:
noe =0,
€ =0,
n(€) =1, (2.1)
9(U, &) =n(U),
9(U,¢V) = —g(oU,V),
9(eU, V) = g(U,V) —=nU)n(V),
U = —U + (U,

where U,V are vector fields on M. The contact metric manifold M is called
f—Kenmotsu if it fulfills the following relation

(Vup)(V) = flg(pU, V)E = n(V)e(U)], (2.2)

where f is a function. This gives us

Vg = flU = nU)¢], (2.3)
and
(Vum)(V) = flg(U, V) = n(U)n(V)]. (2.4)
Using (2.3) and (2.4), we obtain
RUVE = —(f2+&)m(V)U = nU)V],
RO,V = (f*+&()lg(U,V)E = n(V)U],
REU)E = —(2+E())mU)E-U],

for every vector fields U,V on M. Here, R denotes the Riemannian curvature
tensor of M. The Ricci tensor of the f—Kenmotsu manifold M is expressed as

SWV) = (85 + 5+ F2)g(U.V) = (36(F) + 5 +3mU)n(V),  (25)

for every vector fields U,V on M. Here, r denotes the scalar curvature of M.
From (2.5), we get

S(U,€) = =2( 2+ €0 n(V), (2.6)

for every vector fields U on M.

2.2. A quarter symmetric metric connection on a f—Kenmotsu man-
ifold. Let V be an affine connection and V be the Levi-Civita connection of
f—Kenmotsu manifold M. The connection V is said to be a quarter symmetric
metric connection on M if

VoV =VyV —n(U)eV, (2.7)
for every vector fields U,V on M. From (2.1), (2.2) and (2.7), we get

(Voe)V = f|g(eU, V)E = n(V)eU . (2:8)
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From (2.3) and (2.7), we have

Vué = flU = n(U)E]. (2.9)
From (2.4) and (2.7), we occur
(Vom)V = fg(pU, V). (2.10)

The curvature tensor R the Ricci tensor S , the scalar curvature 7 and the
Ricci operator @ of the connection V in (2.7) are given by respectively:

RUVIW = RUVIW + f(n(V)e(U) = n(U)p(V))n(W)
+F(n(U)g(@V, W) = n(V)g(eU, W))E,

SUV)+ fg(eU, V) (2.11)

(§() + 5+ )g(U,V)

~BE() + 5 + 3OV

+Fg(eU,V),

QU = () + 5 + 1)U = (B(F) + 5+ 3F2m(U)E + foeU.

2
F=r (2.12)

S(U, V)

see [2],[15]. We also have
RUV)E=~(f2+EN) VU =n(U)V) + f(n(V)pU = n(U)eV),
REV)E=~(f2+ENmVIE-V) = foV,
S(V,€) = =2(f* +&())m(V).

For more details, see [17].

3. Main Results

The generalized n—Ricci soliton with respect to the quarter symmetric met-
ric connection is defined by

a§—|—gixg—i-qu@Xb—&—on@n—&—(g:Q (3.1)

where S is the Ricci tensor of the connection V, X" is the canonical 1-form
associated to X, i.e., X*(U) = g(U, X) for every vector fields U, ( is a function
and «, 8,v,0 are real constants satisfying (o, 8,v) # (0,0,0). The particular
cases of the generalized n—Ricci soliton are listed below:

(a) If a =1, v = 0 = 0, we obtain the Ricci soliton.

(b) If &« =1, v =0, we obtain the n—Ricci soliton.

(¢) If 0 = 0, we obtain the generalized Ricci soliton.

On the other hand, an f—Kenmotsu manifold is called n—Einstein if

S = fig+ fan@mn,
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where f1, fo are functions on M. Now, assume that M is an f—Kenmotsu
manifold satisfying the generalized n—Ricci soliton with respect to the quarter
symmetric metric connection (3.1). Consider the potential vector field X = 6¢,
in other words, let X be a pointwise collinear with the Reeb vector field £. Using
(2.9), we get

(Lac)(U.V) = UO(V) + (VOI(U) + 276{a(U.V) ~n@)n(V)}.  (32)
for every vector fields U,V on M. It is clear that
& U,V) =nU)n(V). (3.3)
Putting X = 6¢ and the relations (2.11), (3.2), (3.3) in (3.1), we deduce
o[V + £9U. V)] + 5{@OmV) + (Vo) }
+8£6{g(U.V) = n(©n(V)} + (v6* + 0)n(U)n(V) + Cg(U. V) = 0.
Taking V = ¢ in (3.4) and using (2.6) we obtain

o[ <202+ €O + LU0 + Ze@n(w) + 8 + 0+ On(U) = 0. (35)

Taking U = ¢ in (3.5) we get
BEO) = 2a(f* +&(f)) — (v0° + o + Q). (3.6)
Substituting (3.6) in (3.5) we have
BU(0) = 2a(f* +&(f)) — W8 + o + Qn(U),

(3.4)

which leads to

B0 = [2a(s2 + £(f)) = (0% + o + Q)| n. (3.7)
Putting (3.7) in (3.4) we get
aS(U,V) = (C+B816) [ = 9, V) +n(@m(V)]- (3.8)

Equation (3.8) gives us
aF = —2¢ — 2610.

Now, we can express the following theorem and corollary.

Theorem 3.1. Let (M, g,p,&,m) be an f—Kenmotsu manifold admitting the
quarter symmetric metric connection defined by (2.7). If M is a generalized
n—Ricci soliton with the septet (g, X, o, §,v,0,() such that « #0 and X = 6¢
for a function 8 on M, then M is an n— FEinstein soliton and an n— Finstein
manifold with respect to the quarter symmetric metric connection.

Corollary 3.2. Let (M,g,¢,&,m) be an f—Kenmotsu manifold admitting the
quarter symmetric metric connection defined by (2.7). If M is a generalized
1n—Ricci soliton with the septet (g, X, «, B8,v,0,() such that « # 0 and X = 0¢
for a function 8 on M, then ar = —2( — 23 0.
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Now, we recall the definition of the conformal Killing and torse-forming
vector fields and give some results about them.

Definition 3.3. A vector field X is called a conformal Killing vector field if

for every vector fields U,V , where h is a function. The particular cases of a
conformal Killing vector field are listed below:

(i) If h = 0, we obtain Killing vector fields.

(ii) If h is a constant, we obtain homothetic vector fields.

(iii) If h is not a constant, we obtain proper vector fields.

Suppose that X is called a conformaﬁl Killing vector field with respect to the
quarter symmetric metric connection V, i.e.,
(Lxg)(U.V) = 2hg(U. V).
By (3.1), we have
aS(U, V) + Bhg(U, V) + vX (U)X (V) + on(U)n(V) + Cg(U, V) = 0. (3.9)
Taking V = ¢ in (3.9), we get

9((= 202 + £()§ + B + vn(X)X + 06 + (€, U) = 0.
So, we have

Theorem 3.4. Let (M,g,¢,&,n) be an f—Kenmotsu manifold admitting the
quarter symmetric metric connection defined by (2.7). If M is a generalized
1n—Ricci soliton with the septet (g, X, «, 8,v,0,() such that X is a conformal
Killing vector field, then

*Q(fz+§(f))+ﬂh+0+C}€+l/77(X)X:0.

Definition 3.5. A non-zero vector field X is called a torse-forming vector field
on a Riemannian manifold (M, g) [20] if

VuX = fU + w(U)X, (3.10)

for every wvector field U, where V is the Levi-Civita connection of g, f is a
function and w is a 1-form. The particular cases of a torse-forming vector field
are listed below:

(i) If w(U) =0 in (3.10), we obtain torqued vector fields [3].

(i) If f = w =0, we obtain parallel vector fields.

(#i) If w =0 and f =1, we obtain concurrent vector fields [16].

() If w = 0, we obtain concircular vector fields [4].

Assume that (g, X, a, 5, v, 0, () is a generalized n—Ricci soliton on an f—Kenmotsu

manifold M such that X is a a torse-forming vector field. Then we have

aS(U, V)+§(Exg)(U, V)4+v X (U)X (V) +on(U)n(V)+Cg(U, V) = 0. (3.11)
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Since
(Lxg)(U.V) = 2fg(U, V) + w(U)g(X, V) + w(V)g(X,U),
we rewrite (3.11) as

a8(U, V) + 87 +Clo(U, V) + on(@n(V) + 5 [wl@)g(X, V) +w(V)g(X, )

’ +rvg(X,U)g(X, V) =0.
Taking contraction in the above equation we get
af +3[8f + ¢ + o + Bw(X) +v|X|* =0.
Using (2.12) we can express the final theorem of the paper.

Theorem 3.6. Let (M, g,p,&,m) be an f—Kenmotsu manifold admitting the
quarter symmetric metric connection defined by (2.7). If M is a generalized
1n— Ricci soliton with the septet (g, X, a, 8, v, 0,() such that X is a torse-forming
vector field, then

C:—%[ar+a+ﬁw(X)+u|X|2} —Bf.
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