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Abstract— The optimum location of electric vehicle (EV) parking lots is critical in distribution network design for lowering costs,
boosting revenues, and enhancing dependability. However, conventional distribution network schedulers were not designed with these
variables in mind. Furthermore, the increased use of EVs for environmental reasons mandates the planning of EV parking spaces. As a
result, distribution network designers must examine network technical difficulties, design approaches, and changing consumer needs. The
placement of dispersed manufacturing resources and EV parking without sufficient planning and ideal location leads in economic challenges
for investors and technical concerns for the network. As a result, future distribution networks should prioritize the ideal placement of EV
parking lots and distributed production resources in order to maximize network capabilities and meet the needs of companies and power
applications in the digital society. According to the findings, the rate of EV parking installations is very high. When power consumers
remain connected to the grid during peak hours, distribution businesses benefit significantly, and the overall voltage profile improves.
Variations in electric vehicle (EV) battery capacity, power cost, EV adoption, and the weighting coefficients required for optimization will
all have different outcomes. It is critical to precisely determine the battery capacity of electric vehicles (EVs) as well as the efficiency of
inverters in order to produce more accurate results. According to the findings, increasing the number of parking lot for EVs in a network
enhances the benefit from minimizing losses, and providing peak load significantly. So that using 2 parking lot for EVs in a network can
increase the overall profit to 129%.
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1. INTRODUCTION

The electric vehicles (EVs) concept was first introduced to the
network with the presentation of the model, and the cost was
used in the direction of the company in the regulation market
and the side services market [1–5]. On the other hand, because
connecting an EVs to the grid has little effect on the power grid,
EVs have been introduced as distributed energy sources in the
electric energy market in some studies by introducing a new actor
called the aggregator, which encourages car owners to connect to
the grid while maintaining and establishing a relationship between
the independent user of the system and the car owners [6–11].
Due to the limited electrical capacity of the cars in Barghada,
they have no effect on the network; thus, in these studies, parking
lots with equipment that The ticket provide network connection
for the vehicle by placing the number of In terms of the vehicle
itself, the role of vehicle-to-grid as well as frequency regulation
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has been investigated in the field [12–18]. A study on the optimal
charge profile to increase consumption during off-peak hours was
conducted Yu [19], and Clement-Nyns et al. [20] investigated
the effect of the charge profile on the distribution network. In
general, most research in the field of EVs focuses on optimal
charging planning in order to achieve the desired level of various
indicators, such as losses and voltage profiles. Furthermore, using
the technology of connected cars as a storage system has focused
on the parking location of connected cars, taking into account the
limitation of losses and reliability as an economic limitation [21].
There are also studies on the presentation of the charging algorithm
that can increase the load in providing fewer hours, which has been
completed. The charging schedule for EVs is a common theme,
and due to the indecisiveness of EV owners, it is possible that
they will not participate [22]. Drops and reductions in the battery
life of an EV as a result of irregular and consecutive charging and
discharging are not always economically and technically feasible
[23].

One of the most important goals of distribution network
design is to reduce costs while increasing revenues, as well
as to reduce losses while improving reliability, which are two
important factors in distribution network design and the location
of production resources. The distribution network scheduler has
not been considered based on these factors. Is furthermore, with
the growing use of EVs for bio-environmental reasons, the need
for planning for the construction of EV parking lots is obvious.
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As a result, designers of distribution networks should consider
technical issues of the network, design approaches, and use the
network in accordance with the new needs of these consumers.
The placement of dispersed production resources and EV parking
in the distribution network without technical planning and optimal
location results in economic problems for the parking investor
and technical problems for the profit [24]. There is a distribution
network in place. The location of these two main elements of
future distribution networks is based on making better use of the
network’s capabilities for the needs of industries and electricity
applications in the digital society.

The positioning of distributed generation resources and electric
vehicle (EV) parking within the radio distribution network was
investigated in this study. A resource source in the field has been
identified: The one cultivated in the field. The labor used by
the companies to manufacture the fabric. With parking lots and
dispersed production resources, this study attempted to optimize the
existing distribution network so that the investor could guarantee
complete EV parking at the lowest possible cost. Nonetheless, the
distribution network vector will strive to minimize losses as much
as possible. The income generated by EV parking to provide peak
load, the cost of establishing the parking lot, the cost of charging
cars in the EV parking lot to provide peak load, and the cost of
charging EVs for driving purposes are all factors that influence the
optimal location of the EV parking lot. Version 1 of this model was
loaded with heavy and light loads using a multi-objective function
to optimize the placement of electric vehicle (EV) parking spaces
on a standard 13-bus system. The optimal parking problem for
electric vehicles was solved using the nervous system’s artificial
immune system algorithm (AISA).

2. MATERIALS AND METHODS
This section provides an explanation of the research overview

process. The subsequent section elucidates the process of modeling
the allocation of EV parking spaces in relation to the distribution of
dispersed production sources, taking into account the preferences
of the parking investor.

The parking investor’s decision-making index for selecting three
potential locations for bus construction is determined by evaluating
the reliability indicators, namely land price and the number of
users connected to each bus (bus attractiveness index). Parking
refers to the utilization of the distribution network. Subsequently,
the computation of the power output and the determination of
the quantity of individuals in attendance within the parking area
are conducted utilizing the probabilistic model. The distribution
company selects appropriate parking and distributed generation
(DG) points by minimizing losses, taking into account the input
from the parking investor and the model’s output regarding the
number and capacity of DGs to be installed in the network.
During this phase, the algorithm for the artificial security system
is employed to address the optimization problem. Fig. 1 illustrates
the procedural outline of the distributed generation and EV parking
location problem investigated in this study.

2.1. Probability modeling of EV parking
The first parameter is the expected travel distance. It was

employed a log-normal distribution to model the distance each
vehicle traveled. This distribution’s random variable N is generated
using the standard normal distribution of random numbers [25].
The first equation explains how to generate N random variables.

N =
√
−2 · ln (U1)× cos (2πU2) . (1)

Where U1,U2 are random variables with independent uniform
distributions in the interval and N(0,1] is a random variable with
a mean of zero and a variance of one. The expected distance
traveled based on statistical data is represented by Eq. (2).

Md = e(µm+σm·N). (2)

Where µm and σm are the parameters of the log-normal
probability distribution and Md is the expected distance traveled
by the EV. Using Eq. (3) and the mean and standard deviation of
the statistical data extracted from the distance traveled by EVs, the
log-normal distribution parameters are computed.
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Where µmd and σmd are respectively the mean and standard
deviation of the distance traveled by EVs based on statistical data.
The second parameter that affects the performance of the EV and
the amount of charging demand is the energy consumption over
the distance traveled. This parameter is calculated according to Eq.
(4).

Em= a · kb
EV. (4)

Where Em represents the energy consumption, a represents the
constant EV energy consumption, and b represents the constant
EV energy consumption. The ratio of electric energy to the total
energy consumption of the EV is represented in kV, and in this
study its value has been set to 1.

The maximum distance that can be covered when the battery is
fully charged is calculated from Eq. (5).

Mdmax=
BCAP

Em
. (5)

Where BCAP is the battery capacity of the EV in kilowatt
hours and Mdmax is the maximum distance that can be covered
with a full charge of the battery. The demand for car energy
charging (Edemand) is also calculated from Eq. (6).

Edemand=

{
BCAP ;Md ≥ Mdmax

Md · Em ;Md<Mdmax
. (6)

In the third parameter, the probability of cars arrival and
departure the parking lot is used to calculate the expected time for
the presence of an EV. Entry and exit times are calculated based
on the probabilities of a Gaussian distribution. This distribution is
the most accurate predictor of the behavior of private automobile
drivers. Based on statistical data, Eq. (7) is used to calculate the
probable arrival and departure.

{
tarrival=µarrival+σarrival ·N1

tdeparture=µdeparture+σdeparture ·N2
. (7)

where µarrival, σarrival, and tarrival represent the mean,
standard deviation, and estimated arrival time of an EV to
the parking lot. µdeparture, σdeparture, and tdeparture are the
respective mean, standard deviation, and probable time of departure.
The rise of EV in parking lots and N1, N2 Using random variables
with a mean of zero and a standard deviation of one, the arrival
and departure must satisfy the tdeparture > tarrival constraint.
The Eq. (8) is used to calculate the expect time (tduration) for the
presence of the car in the parking lot.

tduration=tdeparture−tarrival. (8)

Based on the waiting time for the presence of the car in the
parking lot and the expected distance traveled by the car, the
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Table 1. Vehicle class parameters.

Vehicle class BCAP (kWh) a
(
kWh
mile

)
1 10 0.38
2 12 0.43
3 16 0.57
4 21 0.82

expected charge level is calculated. The probable desired charge
level (SOCdesired) is calculated from the Eq. (9).

SOCdesired =Min
{[
SOCinit +

Edemand
BCAP

]
,[

SOCinit +
tduration·chr

BCAP

]} . (9)

Where chr is the rate of charge and SOCinit is the initial level
of charge. For the modeling of EV parking, four car classes with
varying market shares are considered. The characteristics of this
class of automobiles are shown in Table 1. It is important to note
that index b is ineffective because cars can only run on batteries
and cannot use fossil fuel.

2.2. Parking lot best location for investors
In this section, the parking investor’s decision is modeled based

on three factors: reliability, land cost, and expected acceptance rate,
and three candidate points for each EV parking lot are introduced
to the distribution network operator.

• Realiblity Index
To expedite the evaluation of the dependability of various buses

for parking construction, a reliability index has been established
for each bus. The assessment of the dependability of various buses
for parking construction is expedited by evaluating the average
shutdown time index. This indicator is entirely predicated on the
electrical spatial positioning of the bus. Initially, the index is
computed for each individual bus, followed by its normalization
using the maximum value that has been chosen. To calculate this
index, the relationship between λ and r equation for series and
parallel elements was used. The average off time is calculated from
Eq. (10). λi indicates the failure rate of the i-th bus equivalent, ri
the repair time of the i-th bus equivalent, the average bus AITi
of the off-time of the i-ohm bus, and the average AIT busi of
the normalized off-time of the i-th bus. This index, which is a
number between zero and one, is one of the factors influencing
the decision of the parking lot investor.

AITBusi =
AITi

Max {AITj}
=

λiri
Max {AITj}

. (10)

• Buses attractiveness index for the parking lot
This index is calculated from the weighted sum of the number

of household, commercial, and industrial passengers in each bus
and dividing this sum by the weighted sum of all passengers.
This index has a direct correlation with the number of passengers
present in each bus for parking is calculated. The value of all
indices is then standardized based on the most obtained index. The
Eq. (11) describes the calculation of the bus attractiveness index.

BAIBusi =
(α×ni

residential)+(β×ni
commercial)+(γ×ni

industrial)
(α×ntotal

residential)+(β×ntotal
commercial)+(γ×ntotal

industrial)
Max{BAIBusj } .

(11)

Where α, β, and γ are the weighting coefficients for rating
residential, commercial, and industrial subscribers, nicustomergroup
is the number of subscribers of each group in different buses, and
ntotalcustomergroup is the total number of subscribers of each group in

the bus. BAIBusi , which also shows the bus attractiveness index
for i-th bus.

• Land cost
This index includes only the cost of purchasing land for a

parking lot’s construction. Other costs, including the cost of
purchasing electricity from the network, the cost of parking, and
the cost of charging equipment for EVs, are identical for all buses.
For the purpose of calculating this index, the standard index of
land cost was considered for each item. This indicator of the land
price distribution in the geographical area of the bus under study
is the geographical maximum; it is defined and calculated using
Eq. (12) for the set of buses of each feeder.

PCbusi =
LCbusi

Max
{
LCbusj

} . (12)

Based on the three introduced indicators, Eq. (13) is used to
calculate the parking investor’s decision-making index for each
bus.

PIDMIi =
(
η1 ×AITBusi

)
−
(
η2 ×BAIBusi

)
+
(
η3 × PCBusi

)
.

η1, η2, η3 ≥ 0
(13)

Where, the defined coefficients η1, η2, η3 have been taken into
account to apply the restrictions of the investor.

2.3. Optimization algorithm
The presumptive architecture of the smart grid enables the power

system operator to analyze and monitor the distribution network
using measurement instruments and smart grid infrastructure [26].
According to the infrastructure and structure of the intelligent
distribution network, the operator can define and optimize a variety
of objective functions.

The immune system is an intelligent system that protects the
body from antigens, also known as toxins and foreign substances.
When an antigen enters the body, it stimulates the immune
system to produce the appropriate antibody to defend against
it. An intelligent, antigen-optimized procedure is required to
generate the appropriate antibody. The algorithm for the artificial
immune system is a proposed optimization algorithm based on a
mathematical model of appropriate antibody production. Although
this algorithm shares similarities with the genetic algorithm, it
appears to be more effective at locating the global optimal point.
Transcendence and correction of the receiver are two essential
security system features. By utilizing the memory function of
this algorithm, they contribute to the evolution of new antibodies
with a higher affinity for combining with antigens than the
previous antibodies. Both permutation and the mutation operator
in the genetic algorithm introduce random changes to the search
space to increase its diversity. But their difference lies in the
modification rate, which depends on the combination of antigens.
In general, antibodies with low antigen-combination affinity are
more prevalent than antibodies with high antigen-combination
affinity. This phenomenon, which governs the process, is known as
correction. This operator is represented by the Eq. (14) [27], [28].

X = X +
(
β · e−f∗

)
·N (0, 1) . (14)

Where X is the true value of the variables of an antibody, β is
a constant rib for the mutation step that is usually chosen between
zero and one, f∗ is the normalized value of f (antibody fitness
value), and N(0,1) is a random value that follows the normal
probability density function with a mean of zero and a standard
deviation of 1. The value of f∗ is obtained from Eq. (15).

Where fmax and fmin represent the maximum and minimum
merit values for this generation, respectively. In fact, with this
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normalization, we attribute a value between zero and one to every
antibody. This normalized ability will equal zero for antibodies
with lower ability and one for those with greater ability. As is
evident from Eq. (14), the mutation step for a creature with a
greater anti-wind ability will be smaller.

f∗ = f − fmin

fmax − fmin
. (15)

Using the proposed algorithm, there is no specific criterion for
terminating an optimization program. Depending on the operator’s
identification, the algorithm completion criterion may be the
program’s execution time, the number of algorithm repetitions, or
the maximum value of the objective function. The time criterion
indicates that the program will terminate after a certain amount of
time has passed since the execution of this algorithm. Regarding
this criterion, it should be noted that if only a brief amount of time
is considered, it might be reached out the end of the algorithm
before obtaining the desired result. In the maximum value criterion,
the program terminates when an answer is discovered for which
the value of the calculated objective function is less than the
specified value [29], [30]. In this study, it is considered both the
number of optimization loop iterations and the maximum objective
function value.

AISA is a computational technique inspired by the natural
immune system’s processes and mechanisms. Modeled after the
human immune system, which defends the body against harmful
pathogens, the AISA applies principles such as pattern recognition,
learning, and memory to problem-solving in various domains.
This algorithm employs a decentralized and distributed approach,
mimicking the way the immune system operates with a vast
network of interacting agents.

AISA involves the creation of artificial antibodies that represent
solutions to a given problem. Through processes like affinity
maturation and clonal selection, the algorithm refines these
antibodies based on their effectiveness in addressing the problem
at hand. The AISA adaptability and self-regulation make it
particularly suitable for dynamic and complex environments,
where it can continuously evolve and improve its performance
over time. The algorithm’s inspiration from the immune system
provides a unique perspective on problem-solving, contributing to
its effectiveness in addressing complex and dynamic challenges
across various fields.

3. RESULTS AND DISCUSSION
In this section, we present and compare simulation results for a

13-bus distribution system under two distinct scenarios, aiming to
conduct a detailed analysis. Fig. 1 illustrates the configuration of
the investigated network, while Table 2 outlines the characteristics
of the distributed loads. For the EV parking lot integrated into the
distribution network, specific criteria are applied in the simulations.
During off-peak hours, Electric Vehicles (EVs) are mandated to
receive 20% of their battery capacity from the network, returning
10% each hour during two peak hours. The network load varies
across three levels: low, medium, and high. In the simulation
model, the parking lot is represented as a bus with no reactive
power, exhibiting negative active power during charging and
discharging modes. The buses designated for connection to the EV
parking lot are depicted in Fig. 1, with a total fleet size of 120
cars.

Fig. 2-a portrays the hourly variations in the number of vehicles
parked in the lot over one year for a fleet of 120 EVs. Notably,
EVs predominantly remain in park mode during this period. For
a more focused analysis, Fig. 2-b illustrates the number of EVs
parked over 120 hours. Furthermore, Fig. 2-c displays the clustered
production power of the EV fleet for 120 consecutive hours,
derived from Fig. 2-a. The fleet’s power output is categorized into
discrete states of 0.00 MW, 0.20 MW, and 0.40 MW, corresponding

Table 2. Distributed loads on IEEE 13 node test feeder.

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3
Model kW kVAr kW kVAr kW kVAr

634 Y-PQ 160 110 120 90 120 90
645 Y-PQ - - 170 125 - -
646 D-Z - - 230 132 - -
652 Y-Z 128 86 - - - -
671 D-PQ 385 220 385 220 385 220
675 Y-PQ 485 190 68 60 290 212
692 D-I - - - - 170 151
611 Y-I - - - - 170 80
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Fig. 1. IEEE 13-buses test feeder scheme.

to the powers generated by a fleet of EVs with a maximum
production power of 4.00 MW. This detailed examination provides
insights into the nuanced dynamics of the EV fleet’s contribution
to the distribution system under different load conditions.

To facilitate the analysis of the simulation outcomes, two
distinct scenarios have been taken into account, both of which will
be thoroughly examined in the subsequent sections.

3.1. Scenario 1
The constraints imposed by lines, transformers, and parking

management intricacies preclude the establishment of a singular,
extensive charging and discharging area for Electric Vehicles
(EVs). Consequently, three network buses (646, 611, and 608)
were identified as potential parking locations in this study. Under
this scenario, EV parking lots with varying penetration levels
(100%, 70%, and 30%) are integrated into the network for a
duration of one year, spanning both peak (12 p.m.) and off-peak
(3 p.m.) hours. A penetration level of 100% signifies the full
participation of all EVs in the lot during that hour. Fig. 3 illustrates
the network load curve, contrasting scenarios without EV parking
and with a 120 EV penetration level.

With 100% and 70% penetration level, the ultimate profit
resulting from EV parking installations amounts to $1,418,950
and $1,044,911, respectively. This represents a decrease in final
profit compared to a 100% automobile penetration scenario. The
optimization problem details are outlined in Table 3. Notably,
at 100% and 70% penetration levels, the optimal number of
EV fleets remains consistent, but the gains in terms of loss
reduction, enhanced reliability, and peak load provision are more
pronounced with a 100% EV penetration. Conversely, at a 30%
EV penetration, the optimal number of EV fleets increases, yet the
benefits associated with loss reduction, reliability improvement,
and peak load provision exhibit a significant decline. Hence, the
overall advantage is contingent upon the level of EV penetration
in the parking lot. It underscores the importance of devising ample
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incentives to encourage EV owners to utilize EV parking lots
during peak hours.

Fig. 4 illustrates the voltage profile delivered to the distribution
network by the EV parking lot at peak load and with a 100%
EV penetration. Evidently, the voltage profile of specific buses
experiences an enhancement, validating the positive impact of EV
parking lots on the distribution network’s voltage stability.

3.2. Scenario 2
In this scenario, the EV parking lot with varying levels of EV

penetration is connected to the network during two high-load hours
(12 and 13) and two low-load hours (3 and 4). Fig. 5 depicts the
network load curve without accounting for the parking of EVs and
accounting for EVs with a penetration level of 100 percent EVs.

The strategic deployment of an EV parking lot with varying
penetration rates (100%, 70%, and 30%) has been thoroughly
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The strategic deployment of an EV parking lot with varying penetration rates (100%, 70%, and 30%) has been thoroughly 

investigated. The resulting financial outcomes reveal that the final profit derived from EV parking installations with 

penetration rates of 100% and 70% amounts to $5,558,100 and $4,232,200, respectively. This represents a reduction in 

marginal profit compared to the scenario where automobile penetration was at 100%. A comprehensive analysis of the 

optimization problem under Scenario 2 is presented in Table 3. Notably, at penetration levels of 100% and 70%, the 

optimal number of EV fleets remains consistent. However, at a 100% EV penetration, the benefits derived from loss 

reduction, increased reliability, and peak load provision are more pronounced. Conversely, assuming a 30% EV 

penetration, the optimal number of EV fleets has increased, but the associated benefits have substantially diminished. 

Exploring different usage scenarios, if the EV parking lot is utilized for two hours of high load and two hours of low load, 

the benefits of reducing losses, enhancing reliability, and providing peak load exhibit a significant increase compared to 

a scenario with two hours of high load and two hours of low load. This emphasizes the economic advantage for the 

company in extending the connection of EV parking lots to the network for more hours, without altering the lot's size, 

especially considering electricity distribution. 

Similar to the first scenario, certain buses in the second scenario demonstrate an improved voltage profile during peak 

load with a 100% EV penetration from the EV parking lot. However, in the second scenario, this improvement is notably 

more substantial than in the first scenario. As depicted in Figure 7, the rate of growth in the voltage profile enhancement 

is significantly amplified, indicating a heightened positive impact on the distribution network's stability and performance. 

 
Fig. 7. Voltage variation profile in different buses (scenario 2) 

3.3. Scenario 3 

The ideal location of electric car parking has been done in this scenario on buses 646 and 611 vs single node 675. During 

the first six months of the year, EVs parking with penetration levels of 100%, 70%, and 30% are connected to the network 

in one peak hour (12 p.m.) and one off-peak hour (3 p.m.). Table 3 outlines the results explored on two buses in Scenario 

3. According to the findings, increasing the number of parking places for EVs in a network enhances the benefit from 

minimizing losses, and providing peak load significantly. 

 

Fig. 5. Network load curve in a high load hour and a low load hour
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investigated. The resulting financial outcomes reveal that the final
profit derived from EV parking installations with penetration
rates of 100% and 70% amounts to $5,558,100 and $4,232,200,
respectively. This represents a reduction in marginal profit
compared to the scenario where automobile penetration was at
100%. A comprehensive analysis of the optimization problem
under Scenario 2 is presented in Table 3. Notably, at penetration
levels of 100% and 70%, the optimal number of EV fleets remains
consistent. However, at a 100% EV penetration, the benefits
derived from loss reduction, increased reliability, and peak load
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Table 3. Scenario 3 comparative results.

Penetration Level Item 1 buses 2 buses

100%

Number of EVs 18 49
Minimizing Losses ($) 5,481 9,897
Peak Load Supply ($) 106,770 247,600

Overall Profit ($) 112,251 257,497

70%

Number of EVs 18 49
Minimizing Losses ($) 4,686 8,701
Peak Load Supply ($) 438,810 937,700

Overall Profit ($) 44,3496 946,401

30%

Number of EVs 18 48
Minimizing Losses ($) 1,590 1,959
Peak Load Supply ($) 97,940 218,100

Overall Profit ($) 99,530 220,059

provision are more pronounced. Conversely, assuming a 30% EV
penetration, the optimal number of EV fleets has increased, but
the associated benefits have substantially diminished.

Exploring different usage scenarios, if the EV parking lot is
utilized for two hours of high load and two hours of low load,
the benefits of reducing losses, enhancing reliability, and providing
peak load exhibit a significant increase compared to a scenario
with two hours of high load and two hours of low load. This
emphasizes the economic advantage for the company in extending
the connection of EV parking lots to the network for more hours,
without altering the lot’s size, especially considering electricity
distribution.

Similar to the first scenario, certain buses in the second scenario
demonstrate an improved voltage profile during peak load with a
100% EV penetration from the EV parking lot. However, in the
second scenario, this improvement is notably more substantial than
in the first scenario. As depicted in Fig. 6, the rate of growth in the
voltage profile enhancement is significantly amplified, indicating a
heightened positive impact on the distribution network’s stability
and performance.
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3.3. Scenario 3

The ideal location of electric car parking has been done in this
scenario on buses 646 and 611 vs single node 675. During the
first six months of the year, EVs parking with penetration levels
of 100%, 70%, and 30% are connected to the network in one peak
hour (12 p.m.) and one off-peak hour (3 p.m.). Table 3 outlines
the results explored on two buses in Scenario 3. According to
the findings, increasing the number of parking places for EVs
in a network enhances the benefit from minimizing losses, and
providing peak load significantly.

4. CONCLUSION

EVs to the network, and the cost served as a compass for
the company in the markets for regulation and ancillary services.
In some studies, EVs have been introduced as distributed energy
sources in the electric energy market. This has been accomplished
by introducing a new actor known as the aggregator, who
encourages car owners to connect to the grid while simultaneously
maintaining and establishing a relationship between the independent
user of the system and the car owners. This is possible because
connecting EVs to the grid has very little impact on the power
grid.

The current research proposed a multi-objective function for
locating the parking spots for EVs within the distribution system
in order to meet the demand for electricity during peak hours.
When peak demand occurs, an AISA optimization model applied
to a fleet of electric vehicles can determine the optimal capacity
and location for parking those vehicles. The objective of the
optimization that has been suggested is, from the point of view of
the company that is responsible for the distribution of electricity,
to increase the overall profit. The proposed model is evaluated
in this study by using fundamental data as well as prices from
the electricity market. According to the findings, the penetration
rate of electric vehicle parking installations is quite high. If they
are connected to the grid during peak hours, the distribution
companies will receive significant benefits, and the voltage profile
will be improved. Both of these outcomes are dependent on the
availability of the resources. Electrified vehicles’ battery capacities,
the cost of electricity, the percentage of the total market that
is occupied by EVs, and the weighting coefficients that are
necessary for optimization will all have an impact on the results.
In order to achieve more accurate results, it is necessary to
precisely determine both the battery capacity of electric vehicles
and the inverter efficiency. According to the findings, increasing
the number of parking lots for electric vehicles (EVs) in a network
significantly increases the benefit from minimizing losses while
also significantly increasing the amount of peak load that can be
provided. Therefore, including two parking lots specifically for
electric vehicles in a network can bring the total profit up to 129
percent.
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