- Araújo, D., Couceiro, M., Seifert, L., Sarmento, H., & Davids, K. (2021). Artificial intelligence in sport performance analysis: Routledge.
- Ayala, F., López-Valenciano, A., Martín, J. A. G., Croix, M. D. S., Vera-Garcia, F. J., del Pilar García-Vaquero, M., . . . Myer, G. D. (2019). A preventive model for hamstring injuries in professional soccer: Learning algorithms. International journal of sports medicine, 40(05), 344-353.
- Bullock, G. S., Collins, G. S., Peirce, N., Arden, N. K., & Filbay, S. R. (2020). Playing sport injured is associated with osteoarthritis, joint pain and worse health-related quality of life: a cross-sectional study. BMC musculoskeletal disorders, 21, 1-11.
- Carey, D. L., Ong, K., Whiteley, R., Crossley, K. M., Crow, J., & Morris, M. E. (2018). Predictive modelling of training loads and injury in Australian football. International Journal of Computer Science in Sport, 17(1), 49-66.
- Chelladurai, P. (2014). Managing organizations for sport and physical activity: A systems perspective: Taylor & Francis.
- Chmait, N., & Westerbeek, H. (2021). Artificial intelligence and machine learning in sport research: An introduction for non-data scientists. Frontiers in Sports and Active Living, 3, 363.
- Dijksma, I., Sharma, J., & Gabbett, T. J. (2021). Training load monitoring and injury prevention in military recruits: considerations for preparing soldiers to fight sustainably. Strength & Conditioning Journal, 43(2), 23-30.
- Faritha Banu, J., Neelakandan, S., Geetha, B., Selvalakshmi, V., Umadevi, A., & Martinson, E. O. (2022). Artificial intelligence based customer churn prediction model for business markets. Computational Intelligence and Neuroscience, 2022.
- Fasihi, L., Tartibian, B., & Eslami, R. (2022). Presenting a Model for Detecting Osteoporosis In Active Older Men Using the Support Vector Machine Algorithm. The Scientific Journal of Rehabilitation Medicine, 11(5), 742-753.
- Fasihi, L., Tartibian, B., Eslami, R., & Fasihi, H. (2022). Artificial intelligence used to diagnose osteoporosis from risk factors in clinical data and proposing sports protocols. Scientific Reports, 12(1), 18330.
- Fathollahi Parvaneh, O., Ameri, S., & Sajjadi, S. N. (2023). Designing a green management model for sports Facilities with Emphasis on Sustainable Development. Strategic Studies on Youth and Sports, 22(60), 289-316.
- Harifi, T., & Montazer, M. (2017). Application of nanotechnology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review. Journal of Industrial Textiles, 46(5), 1147-1169.
- Huang, C., & Jiang, L. (2021). Data monitoring and sports injury prediction model based on embedded system and machine learning algorithm. Microprocessors and Microsystems, 81, 103654.
- Huang, H., & Wen, S. (2022). Markov model-based sports training risk prediction model design and its training control. Journal of Sensors, 2022.
- Jiang, D. (2022). Risk Management of Sports Venues and Olympic Sports Cooperation Spirit under Complex Environment. Journal of Environmental and Public Health, 2022.
- Kampakis, S. (2016). Predictive modelling of football injuries. arXiv preprint arXiv:1609.07480.
- Landset, S., Bergeron, M. F., & Khoshgoftaar, T. M. (2017). Using Weather and Playing Surface to Predict the Occurrence of Injury in Major League Soccer Games: A Case Study. Paper presented at the 2017 IEEE International Conference on Information Reuse and Integration (IRI).
- Leventer, L., Eek, F., Hofstetter, S., & Lames, M. (2016). Injury patterns among elite football players: a media-based analysis over 6 seasons with emphasis on playing position. International journal of sports medicine, 898-908.
- López-Valenciano, A., Ayala, F., Puerta, J. M., Croix, M. D. S., Vera-García, F., Hernández-Sánchez, S., . . . Myer, G. (2018). A preventive model for muscle injuries: a novel approach based on learning algorithms. Medicine and science in sports and exercise, 50(5), 915.
- Lövdal, S. S., Den Hartigh, R. J., & Azzopardi, G. (2021). Injury prediction in competitive runners with machine learning. International Journal of Sports Physiology and Performance, 16(10), 1522-1531.
- Majumdar, A., Bakirov, R., Hodges, D., Scott, S., & Rees, T. (2022). Machine learning for understanding and predicting injuries in soccer. Sports Medicine-Open, 8(1).
- Meng, L., & Qiao, E. (2023). Analysis and design of dual-feature fusion neural network for sports injury estimation model. Neural Computing and Applications, 35(20), 14627-14639.
- Moustakidis, S., Siouras, A., Vassis, K., Misiris, I., Papageorgiou, E., & Tsaopoulos, D. (2022). Prediction of Injuries in CrossFit Training: A Machine Learning Perspective. Algorithms, 15(3), 77.
- Nozari, H., & Sadeghi, M. E. (2021). Artificial intelligence and Machine Learning for Real-world problems (A survey). International Journal of Innovation in Engineering, 1(3), 38-47.
- Organization, W. H. (2022). Towards a global guidance framework for the responsible use of life sciences: summary report of consultations on the principles, gaps and challenges of biorisk management, May 2022. Retrieved from
- Osisanwo, F., Akinsola, J., Awodele, O., Hinmikaiye, J., Olakanmi, O., & Akinjobi, J. (2017). Supervised machine learning algorithms: classification and comparison. International Journal of Computer Trends and Technology (IJCTT), 48(3), 128-138.
- Rault, T., Bouabdallah, A., Challal, Y., & Marin, F. (2017). A survey of energy-efficient context recognition systems using wearable sensors for healthcare applications. Pervasive and Mobile Computing, 37, 23-44.
- Rodas, G., Osaba, L., Arteta, D., Pruna, R., Fernández, D., & Lucia, A. (2019). Genomic prediction of tendinopathy risk in elite team sports. International Journal of Sports Physiology and Performance, 15(4), 489-495.
- Rossi, A., Pappalardo, L., & Cintia, P. (2021). A narrative review for a machine learning application in sports: an example based on injury forecasting in soccer. Sports, 10(1), 5.
- Rossi, A., Pappalardo, L., Cintia, P., Iaia, F. M., Fernández, J., & Medina, D. (2018). Effective injury forecasting in soccer with GPS training data and machine learning. PloS one, 13(7), e0201264.
- Ruddy, J. D., Shield, A. J., Maniar, N., Williams, M. D., Duhig, S. J., Timmins, R. G., . . . Opar, D. A. (2018). Predictive modeling of hamstring strain injuries in elite Australian footballers. Medicine & Science in Sports & Exercise, 50(5), 906-914.
- Sharma, B. (2016). A focus on reliability in developmental research through Cronbach’s Alpha among medical, dental and paramedical professionals. Asian Pacific Journal of Health Sciences, 3(4), 271-278.
- Shen, H. (2021). Prediction simulation of sports injury based on embedded system and neural network. Microprocessors and Microsystems, 82, 103900.
- Theron, G. F. (2020). The use of data mining for predicting injuries in professional football players.
- Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., & Tischer, T. (2021). Machine learning methods in sport injury prediction and prevention: a systematic review. Journal of experimental orthopaedics, 8, 1-15.
- Wang, S., & Lyu, B. (2022). Evidence-based sports medicine to prevent knee joint injury in triple jump. Revista Brasileira de Medicina do Esporte, 28, 195-198.
- Yang, S. X., Cheng, S., & Su, D. L. (2022). Sports injury and stressor-related disorder in competitive athletes: a systematic review and a new framework. Burns & Trauma, 10, tkac017.
- Dolatyari, E., Shahlaei Bagheri, J., Ghafouri, F., & keshkar, S. (2024). Comparison of the Refereeing Structure of Iranian football and selected Asian, Oceanic and European continents. Research in Sport Management and Marketing, (), -. doi: 10.22098/rsmm.2024.14684.1325
|