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Abstract. This article is concerned with the linear continuous
time delay switching system with state uncertainties and observa-
tion noise. The goal of this study is to investigate how an internal
switching mechanism and the efficacy of a conventional proportional-
derivative ILC method is impacted by ambient noise for linear
continuous-time switching systems. The findings demonstrate that
learning gains and the dynamics of the subsystems, rather than the
time-driven switching rule, are primarily responsible for the con-
vergence and robustness of the control method. An appropriate
selection of learning gains can ensure the control algorithm’s con-
vergence and resilience given any arbitrary time-varying switching
rule.
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1. Introduction

Theoretical research and practical applications of switched systems,
which contain a given finite number of subsystems and switching sig-
nals, have recently received a great deal of interest. When a link in a
network fails or is created, the connection topology frequently changes.
Because the reference trajectory is established over a finite period, an
ILC system repeatedly performs the same finite duration operation. The
duration is referred to as the pass length, and each repetition is referred
to as a pass. The system is brought back to its starting point when
each pass is finished, so that the next pass may begin. The systems
might diverge as a result of the states being reset, which could result in
positioning problems. Through repeated completion of the same tasks,
an ILC law that combines the knowledge from past passes with that
from the current pass can eventually bring the output to the reference
trajectory. Many ILC laws, including PID-type, P-type, and D-type
ILC, PD-type, have been suggested for various kinds of systems. For
instance, a hard disc drive’s track following duty, a wafer manufactur-
ing process’s temperature management task, etc. When we refer to an
extensive system, it means one that is made up of several subsystems
that are connected by the system’s extensive state vector, but each of
which is managed based on its own input and output data. Examples of
typical large scale systems include petrochemical operations, electricity
systems, networked control systems, etc. According to Chen at. al. [1],
a system for learning at the beginning that operates between two suc-
cessive iterations, establishes the starting position at a certain location,
and asymptotically converges is suggested.

In 1993, according to Hwangat. al. [2] the Derivative type ILC is
built for reliable continuous-time systems, which are linear, and by this,
we mean that the systems are fed a comparison of tracking error. One
of the key issues that occurs with switched systems is stability, which
has drawn the most attention. To analyze the stability of switched
systems, a variety of techniques have been developed, and numerous
helpful stability criteria have been defined in some articles. In order to
ensure system stability and improve system performance, the dwell-time
approach has been successful in determining the proper switching signals
for switched systems that are subject to controlled switching signals

Ruan at. al. [4] offer a PID type control update method that follows
non-repeated goal trajectories. The technique is demonstrated to be
limited in the Lp norm sense. It is well knowledge that many engineering



Convergence analysis of proportional-derivative -type ILC for linear continuous... 353

systems inevitably have time delays. It is possible for the system to
become unstable if the time delays are not properly managed. A type
of time delay system known as a neutral system depends not only on
state delay but also on state derivative delay. In [3], the requirements
for switching delay systems’ delay-dependent exponential stability are
provided [5]-[10]. Due to its hybrid nature, a switched system typically
does not inherit subsystem characteristics [12].

In some cases, alternating between these reliable sub-systems may
even cause the switched system to become unstable. For instance, the
stability which is global exponential, trait of all subsystems cannot en-
sure the switched system has the same stability attribute. Therefore,
switched systems are not immediately applicable to typical design and
analysis techniques for systems without switching. Evidently, switched
systems are rife with uncertainty, which complicates the research of
switched systems even further. It is anticipated that adaptive control,
which is an effective method for researching ambiguous non-switched
systems, will also be useful for research of switched systems with un-
certainty [13]-[16]. In reality, this presumption is frequently unfounded
[9].

For a class of LCTSSs, which may be recognized by random time-
driven switching signals and observation noise interference, the learning
performance of a classic PD-type ILC scheme was examined by Xaun
Yang et al. in 2018 [18]. A necessary condition of convergence and ro-
bustness is derived by incorporating using some lemma, and the impact
of switching and noise is examined.

The rest of this essay is structured as follows. Preliminary, concept
property and lemma related information are given in Section 2. The
tracking effectiveness of a class of linear continuous time delay switched
systems with observation noise and state uncertainties using PD- type
ILC is examined in section 3. The paper is wrapped up in the final part.

2. Basic and Mathematical Formulation

Take into consideration a class of linear continuous time delay switch-
ing systems with state uncertainties:

(2.1)

{
ẋk(t) = Aσ(t)xk(t) +Dσ(t)xk(t− τ) +Bσ(t)uk(t) + ξk(t),

yk(t) = Cσ(t)xk(t) + wσ,k(t), t ∈ Ω = [0, T ],

here
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(1) k ∈ N represent the number of iterations, Ω = [0, T ] denotes
the time interval and t ∈ Ω denotes variable for time, τ denotes
delay in time;

(2) xk(t) be element Rn,, which stands for state vector, uk(t) is an
element in ∈ Rm, which stands for input vector and yk(t) is
element in Rl is output vector.

(3) wσ,k(t) ∈ Rl and ξk(t) denotes the bounded state disturbance
bounded observation noise with ‖wσ(i),k‖p ≤ wi,0 and ‖ξk(t)‖p ≤
bξ;

(4) Aσ(t) be the matrix in ∈ Rn×n, Bσ(t) be the matrix in Rn×m and

Cσ(t) are also matrix in Rl×n, this all type of matirx are known
as system matrices;

(5) σ : [0, T ] → Q, Q = {1, 2, · · · , q} over a period of time, [0, T ]
denotes a piecewise constant function which is known as the
switching rule.

Without harming generality, it is thought to be characterized as

(2.2) σ(t) = i =


1, t belong to [0, t1),

2, t belong to [t1, t2),
...

q, t belong to [tq−1, T ].

Therefore, the matrices group (Aσ(t), Bσ(t), Cσ(t), Dσ(t)), for σ(t) belong
to Q = {1, 2, · · · , q} are a component of the ensuing the following set

{(A1, B1, C1, D1), (A2, B2, C2, D2), · · · , (Aq, Bq, Cq, Dq)}
Satisfied (2.2), the system (2.1) is perhaps reformed as

(2.3)

{
ẋk(t) = Aixk(t) +Biuk(t) +Dixk(t− τ) + ξk(t),

yk(t) = Cixk(t) + wi,k(t), t belong to Ω = [0, T ], i ∈ Q.

Keep in mind that the dynamic system (2.3) can function repeatedly
across the range [0, T ] of time, which is finite, even if the precise dynam-
ics may not be known.

Consider the scheme, which is known as PD- type ILC as follows:
(2.4)
uk+1(t) = uk(t) + Γp,iek(t) + Γd,iėk(t), i ∈ Q = {1, 2, ·, q}, k = 1, 2, 3, ...

is imposed the kth term of error, which is denoted by ek(t) and define
as ek(t) = yd(t) − yk(t), for any t belong to finite time interval [0, T ]
is known as the tracking error, and Γd,i ∈ Rm×l and Γp,i ∈ Rm×l are
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known as derivative gains and proportional gains, respectively. The
purpose is that the output of the system (2.3) asymptotically converges
to the given targeted or reference trajectory, which is indicated by yd(t),
in time period t ∈ [0, T ] as exactly as feasible or when the iteration
number tence to infinity follows into the vicinity of yd(t), that is,

lim
k→∞
‖ek+1(·)‖p = 0 or lim

k→∞
sup‖ek+1(·)‖p ≤ η.

To object of this problem, to find the sequence {uk(t) : k ∈ Z+} such
that {yk(t)} tends to yd(t) for (2.1) with PD-type ILC scheme(2.2).

Definition 2.1. [18] Consider the vector valued function g : I ⊆ R+ →
Rn defined by

g(t) = [g1(t), g2(t), · · · , gn(t)]T ,

its Lebesgue -p norm is defined as

‖g(·)‖p =

[∫
I

(
max
1≤j≤n

{|gj(t)|}
)p

dy

] 1
p

, 1 ≤ p ≤ ∞.

Definition 2.2. [19]
For a given vector valued function f(t) ∈ Rn, g(t) ∈ Rn, the convolu-

tion integral is described as

(f ∗ g)(t) =

∫
I
f(t− s)g(s)ds.

From definition (2.1) and (2.2), The convolution integrals generalized
Young inequality (GYI) is stated as

(2.5) ‖f(·)‖q‖g(·)‖p ≥‖(f ∗ g)(·)‖r,
for all 1 ≤ p, q, r <∞ satisfying

1/r = 1/p+ 1/q.

In particular, if p and r are equal, then inequality (2.5) , we get

(2.6) ‖f‖1‖g‖p ≥‖f ∗ g‖p,
when p = r.

The following are the system’s (2.3) basic presumptions:
Assumption 1: Every operation begins at the same starting place. In
this paper, it’s thought to be so yd(0) = yk(0), for all k = 1, 2, · · · .
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Assumption 2: The given targeted or reference or desired output
yd(t) is invariant in the process of iteration over a time interval [0, T ].

Assumption 3: The switched sequence σ(t) still maintains iteration
invariance and at the first iteration, it is randomly chosen.

Assumption 4: For every t ∈ [0, T ], there is ∆xk(−t) = 0.

Assumption 5: Over every time sub-interval [ti−1, ti], i ∈ Q,, the ob-
servation noise is arbitrarily constrained, it means, wi,k(t) ≤ wi,0 where,
each time subinterval’s value of wi,0 is to little enough non-negative con-
stant.

Assumption 6: The state uncertainty (disturbance) is bounded, that
is, ‖ξk‖p ≤ bξ.

Assumption 7: Regarding the specified intended result
yd(t), the only thing present is a desired control input ud(t) and a

desired xd(t) s. t.{
ẋd(t) = Aixd(t) +Dixd(t− τ) +Biud(t) + ξd(t),

yd(t) = Cixd(t), t ∈ Ω = [0, T ], i ∈ Q.

Here τ denotes the time delay so that the dwell times of every subsystem
exceed the delay times. That is,

τ < ti − ti−1, ∀i ∈ Q.

3. Main Results

Lemma 3.1. [19] Assume that {bk} is a positive sequence of a real
sequence defined as follows:

bk ≤ c1bk−1 + c2bk−2 + · · ·+ cnbk−n + εk, k = n+ 1, n+ 2, · · · ,

with the starting value bl for every l = 1, 2, · · · , n, where {εk} is another
specified real sequence. If the coefficient satisfy cj ≥ 0 and

c =

n∑
j=1

cj < 1,
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then the lim supk→∞ εk ≤ ε implies that

lim sup
k→∞

bk ≤
ε

1− c
.

In particular, limk→∞ bk = 0, provided that ε = 0.

Theorem 3.2. Consider the scheme (2.4) that is imposed on the system
(2.3), which is defined by the switching rule (2.4) and is affected by
uncertainties and noise. Assume that the system (2.3) satisfies assumes
from A1 to A7. If the Ai, Bi, Ci and Di are system dynamics together
with the learning gains Γd,i and Γp,i satisfy

(3.1) ‖Ci exp(Ai · (·))(AiBiΓd,i +BiΓp,i)‖1+‖I −CiBiΓd,i‖∞ = ρi < 1,

for every sub-system, then the system output yk(t) can approach the
neighborhood of the targeted trajectory yd(t) in the whole time interval,
as the iteration num tends to infinity.

Proof. Firstly, consider the input control signal uk(t) in the kth trial over
time sub interval [ti−1, ti](i ∈ Q), the state response trajectory of the
system (2.3) is formally represented as

xk+1(t) = exp(Ai · (t− ti−1))xk+1(ti−1)

+

∫ t

ti−1

exp(Ai · (t− s))Dixk+1(s− τ)(s)ds

+

∫ t

ti−1

exp(Ai · (t− s))Biuk+1(s)ds

+

∫ t

ti−1

exp(Ai · (t− s))ξk+1(s)ds.
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Using the recursive relationship of tracking errors, the tracking error
ek+1(t) is therefore described as follows:

ek+1(t) = yd(t)− yk+1(t)

= yd(t)− yk(t)− [yk+1(t)− yk(t)]
= ek(t)− Ci exp(Ai · (t− ti−1))(xk+1(ti−1)− xk(ti−1))

− Ci
∫ t

ti

exp(Ai · (t− s))Di[xk+1(s− τ)− xk(s− τ)ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))Bi[uk+1(s)− uk(s)]ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))[ξk+1(s)− ξk(s)ds− (wi,k+1(t)− wi,k).

(3.2)

Now, we consider the PD type ILC as an updating law (2.4), which is a
substitute in the above equation (3.2), we can easily calculate as follows:

ek+1(t) = ek(t)− Ci exp(Ai · (t− ti−1))(xk+1(ti−1)− xk(ti−1))

− Ci
∫ t

ti

exp(Ai · (t− s))Di[xk+1(s− τ)− xk(s− τ)ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))Bi[Γp,iek(s) + Γd,iėk(s)]ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))[ξk+1(s)− ξk(s)ds− (wi,k+1(t)− wi,k)

= ek(t)− Ci exp(Ai · (t− ti−1))(xk+1(ti−1)− xk(ti−1))

− Ci
∫ t

ti

exp(Ai · (t− s))Di[xk+1(s− τ)− xk(s− τ)ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))BiΓp,iek(s)ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))[ξk+1(s)− ξk(s)ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))BiΓd,iėk(s)ds− (wi,k+1(t)− wi,k).(3.3)
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By using the partial integration approach, it is possible to rearrange the
last term in equation (3.3) to become as follows:

Ci

∫ t

ti−1

exp(Ai · (t− s))BiΓd,iėk(s)ds

= Ci exp(Ai · (t− s))BiΓd,iek(s)
∣∣s=t
s=ti−1

− Ci
∫ t

ti−1

exp(Ai · (t− s))(AiBiΓd,i

+BiΓp,i)ek(s)ds.(3.4)

Substituing (3.4) into (3.3) yields

ek+1(t) = ek(t)− Ci exp(Ai · (t− ti−1))(xk+1(ti−1)− xk(ti−1))

− Ci
∫ t

ti

exp(Ai · (t− s))Di[xk+1(s− τ)− xk(s− τ)ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))BiΓp,iek(s)ds

− Ci
∫ t

ti−1

exp(Ai · (t− s))[ξk+1(s)− ξk(s)ds

− Ci exp(Ai · (t− s))BiΓd,iek(s)
∣∣s=t
s=ti−1

− Ci
∫ t

ti−1

exp(Ai · (t− s))(AiBiΓd,i +BiΓp,i)ek(s)ds

− (wi,k+1(t)− wi,k).(3.5)

Step 1: If t belongs to the first sub-interval t ∈ Ω1. The first subsys-
tem is turned on in this situation. Taking t0 = 0, the tracking error’s
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recursive connection (3.4) becomes

ek+1(t) = ek(t)− Ci exp(A1 · (t))(xk+1(0)− xk(0))

− C1

∫ t

0
exp(A1 · (t− s))D1[xk+1(s− τ)− xk(s− τ)]ds

− C1

∫ t

0
exp(A1 · (t− s))B1Γp,iek(s)ds

− C1

∫ t

0
exp(A1 · (t− s))[ξk+1(s)− ξk(s)]ds

− C1 exp(A1 · (t− s))B1Γd,1ek(s)
∣∣s=t
s=ti−1

− C1

∫ t

0
exp(A1 · (t− s))(A1B1Γd,1

+B1Γp,1)ek(s)ds.− (w1,k+1(t)− w1,k).(3.6)

Using first assumption A1, which is (xk+1(0) − xk(0)) = 0. Thus, we
have

ek+1(t) = (I − C1B1Γd,1)ek(t)

− C1

∫ t

0
exp(A1 · (t− s))(A1B1Γd,1 +B1Γp,1)ek(s)ds

− C1

∫ t

0
exp(A1 · (t− s))D1[xk+1(s− τ)− xk(s− τ)]ds

− C1

∫ t

0
exp(A1 · (t− s))[ξk+1(s)− ξk(s)]ds

− (w1,k+1(t)− w1,k).(3.7)

Since ∆w1,k(t) = w1,k+1(t)− w1,k, then we get as follows:

ek+1(t) = (I − C1B1Γd,i)ek(t)− C1

∫ t

0
exp(A1(t− s))(A1 ·B1Γd,1

+B1Γp,1)ek(s)ds− C1

∫ t

0
exp(A1 · (t− s))D1∆xk(s− τ)ds

− C1

∫ t

t0

exp(A1 · (t− s))∆ξk(s)ds−∆w1,k(t).(3.8)

where ∆xk(s − τ) = xk+1(s − τ) − xk(s − τ), ∆ξk(s) = ξk+1(s) − ξk(s)
and ∆w1,k = w1,k+1(t)−w1,k(t). Firstly, applying the Lebesgue-p norm
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on two sides of the equation (3.8) and using the definitions (2.1) and
(2.2), we get

‖ek+1(·)‖p ≤ (‖(I − C1B1Γd,1)‖∞+‖C1 exp(A1(t− s))(A1 ·B1Γd,i

+B1Γp,1)‖1)ek(·)‖p+‖C1 exp(A1 · (t− s))D1‖p‖∆xk(s− τ)‖p
+‖ exp(A1(t− s)‖p‖∆ξk(t)‖p+‖∆w1,k(t)‖p
≤‖(I − C1B1Γd,1)‖∞‖ek(·)‖p+‖C1 exp(A1 · (t− s))

(A1B1Γd,1 +B1Γp,1)‖1‖ek(·)‖p
+‖C1 exp(A1(t− s))D1‖pγ0+‖C1 exp(A1 · (t− s)‖pbξ + 2bw1,0(3.9)

Where ‖∆xk(s− τ)‖p ≤ γ0, and we can observe that

‖∆ξk(t)‖p ≤‖ξk+1(t)‖p+‖ξk(t)‖p ≤ 2bξ,

‖∆w1,k(t)‖p ≤‖w1,k+1(t)‖p+‖w1,k(t)‖p ≤ 2w1,0,

So, ‖∆ξk(t)‖p and ‖∆w1,k(t)‖p are bounded by 2bξ and 2w1,0 respec-
tively. Taking the supremum of the equation (3.9) with the assumption
ρ1 < 1 and applying the Lemma 3.1, we conclude that

lim
k→∞
‖ek+1(·)‖p ≤

‖C1 exp(A1 · (t− s))D1‖pγ0
1− ρ1

+‖C1 exp(A1 · (t− s)‖pbξ + 2bw1,0

1− ρ1
=

δ1
1− ρ1

,(3.10)

over [0, t1), where δ1 =‖C1 exp(A1 · (t − s))D1‖pγ0+‖C1 exp(A1 · (t −
s)‖pbξ + 2bw1,0 . In other words, the 1st sub-system’s output can follow
the targeted trajectory towards a neighborhood on Ω1 = [0, t1).
Step 2: In the second step, t belongs to the second sub-system, [t1, t2),
The second subsystem is switched on in this situation. The tracking
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error (3.6) is expressed as follows:

ek+1(t) = ek(t)− C2 exp(A2 · (t− t1))(xk+1(t1)− xk(t1))

− C2

∫ t

t1

exp(A2 · (t− s))D2[xk+1(s− τ)− xk(s− τ)]ds

− C2

∫ t

t1

exp(A2 · (t− s))[ξk+1(s)− ξk(s)]ds

− C2 exp(A2 · (t− s))B2Γd,2ek(s)
∣∣s=t
s=t1

− C2

∫ t

t1

exp(A2 · (t− s))(A2B2Γd,2 +B2Γp,2)ek(s)ds

− (w2,k+1(t)− w2,k)

= (I − C2B2Γd,i)ek(t)

− C2

∫ t

t1

exp(A2 · (t− s))(A2B2Γd,2 +B2Γp,2)ek(s)ds

− C2 exp(A2 · (t− t1))∆xk(t1) + C2 exp(A2 · (t− t1))B2Γd,2ek(t1)

− C2

∫ t

t1

exp(A2 · (t− s))D2∆xk(s− τ)ds

− C2

∫ t

t1

exp(A2 · (t− s))∆ξk(s)ds+ ∆w2,k(t).

(3.11)

Where ∆x(t1) is equal to xk+1(t1)−xk(t1), ∆xk(s− τ) = xk+1(s− τ)−
xk(s− τ), ∆ξk(s) = ξk+1(s)− ξk(s) and ∆w2,k = w2,k+1(t)− w2,k(t).

Using the generalized Young inequality of the convolution integral
and the taking Lebesgue -p norm on both sides of the equation (3.11),
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and applying the definition (2.1) and (2.2), we can formulate as

‖ek+1(·)‖p
≤ (‖I − C2B2Γd,2‖∞+‖C2 exp(A2 · (·))(A2B2Γd,2 +B2Γp,2)‖1)‖ek(·)‖p

+‖C2 exp(A2 · (t− t1))‖p‖∆xk(t1)‖p+‖C2 exp(A2 · (·))D2‖p‖∆xk(s− τ)‖p
+‖C2 exp(A2 · (·))‖p‖∆ξk(t)‖p+‖C2 exp(A2 · (·))B2Γd,2‖p‖ek(t1)‖p

+‖∆w2,k(t)‖p

≤ (‖(I − C2B2Γd,2)‖∞+‖C2 exp(A2 · (·))(A2B2Γd,2 +B2Γp,2)‖1)‖ek(·)‖p
+‖C2 exp(A2 · (t− t1))‖p‖∆xk(t1)‖p+‖C2 exp(A2 · (·))D2‖pγ1
+‖C2 exp(A2 · (·))B2Γd,2‖p‖ek(t1)‖p+‖C2 exp(A2 · (·))‖pbξ + 2bw2,0

= ρ2‖ek(·)‖p+‖C2 exp(A2 · (t− t1))‖p‖∆xk(t1)‖p
+‖C2 exp(A2 · (t− s))D2‖pγ1

+‖C2 exp(A2 · (·))B2Γd,2‖p‖ek(t1)‖p+‖C2 exp(A2 · (t− s))‖pbξ + 2bw2,0 .
(3.12)

where ‖∆xk(s − τ)‖p ≤ γ1, ‖∆ξk‖p ≤ 2bξ, ‖∆w2,k‖p ≤ 2bw2,0 . It is seen
that the proving procedure starts with the first sub-interval Ω1 that

lim
k→∞
‖ek+1(·)‖p

≤
‖C1 exp(A1 · (t− s))D1‖pγ0+‖C1 exp(A1 · (t− s)‖pbξ + 2bw1,0

1− ρ1

=
δ1

1− ρ1
,

Where δ1 =‖C1 exp(A1 · (t− s))D1‖pγ0+‖C1 exp(A1 · (t− s)‖pbξ + 2bw1,0

satiesfy on first subinterval Ω1, which implies both limk→∞ sup‖∆xk(t1)‖p <
∞ and limk→∞ sup‖ek(t1)‖p <∞ are satiesfied. Now indecating
limk→∞ sup‖∆xk(t1)‖p = α1 and limk→∞ sup‖ek(t1)‖p = β1, the in-
equality (3.12) can be written as follows:

lim
k→∞

sup‖ek+1(·)‖p ≤ ρ2‖ek(·)‖p+‖C2 exp(A2 · (·))‖pα1

+‖C2 exp(A2 · (·))D2‖pγ1
+‖C2 exp(A2 · (·))B2Γd,2‖pβ1
+‖C2 exp(A2 · (·))‖pbξ + 2bw2,0 .(3.13)
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Again, applying Lemma 3.1, it follows that

lim
k→∞

sup‖ek+1(·)‖p ≤
1

ρ2
‖C2 exp(A2 · (·))‖pα1+‖C2 exp(A2 · (·))D2‖pγ1

+‖C2 exp(A2 · (·))B2Γd,2‖pβ1+‖C2 exp(A2 · (·))‖pbξ
+ 2bw2,0

=
δ2

1− ρ2
.(3.14)

where δ2 =‖C2 exp(A2 · (·))‖pα1+‖C2 exp(A2 · (·))D2‖pγ1+‖C2 exp(A2 ·
(·))B2Γd,2‖pβ1
+‖C2 exp(A2 · (·))‖pbξ + 2bw2,0 . Comparably repeating the aforemen-

tioned proof procedure for t l belong to ith sub-interval, that is t ∈
Ωi, (i = 1, 2, ·, q) and indicating limk→∞ sup‖∆xk(ti−1)‖p = αi−1 and
limk→∞ sup‖ek(ti−1)‖p = βi−1, In light of the inequalities, we may say

lim
k→∞

sup‖ek+1(·)‖p ≤
‖Ci exp(Ai · (·))‖pαi−1+‖Ci exp(Ai · (·))Di‖pγi−1

1− ρi

+
‖Ci exp(Ai · (·))BiΓd,i‖pβi−1+‖Ci exp(Ai · (·))‖pbξ + 2bwi,0

1− ρi

=
δi

1− ρi
,

(3.15)

satisfied on the time sub-interval Ωi, (i = 1, 2, · · · , q), where δi =‖Ci exp(Ai·
(·))‖pαi−1+‖Ci exp(Ai · (·))Di‖pγi−1
+‖Ci exp(Ai · (·))BiΓd,i‖pβi−1+‖Ci exp(Ai · (·))‖pbξ + 2bwi,0 . In other
words, throughout successive time intervals from Ω1 to Ωq, the output
can converge into a neighborhood of the targeted or reference or desired
output trajectory yd(t), and it also does for the whole time period Ω.
This proof is complete. �

Remark 3.3. If xk(t− τ) = 0 and ξk(0) = 0, ∀k ∈ N, then result become
same as in [18].

4. Conclusion

The impact of traditional PD-type ILC on the LCTDSS with state
uncertainties and observation noise has been examined in this study.
The findings demonstrate that the control method is convergent, despite
the fact that switching may take place at any instant when noise is
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present, and resilience may be ensured in the presence of bounded noise.
We examine the impact of environmental noise and state time delay on
tracking performance. There is also the option to analyze different ILC
types for systems with many inputs and outputs that have a nonlinear
continuous time delay.
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