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ABSTRACT. When a suitable partial ordered relation is attached to a Γ-
semihyperring, it results into an ordered Γ-semihyperring. Concepts of an
ordered Γ-semihyperring, Γ-band, idempotent Γ-semihyperring, totally or-
dered Γ-semihyperring, positively ordered Γ-semihyperring, negatively or-
dered Γ-semihyperring are introduced which are useful to study derivation
on ordered Γ-semihyperrings. Derivation is nothing but an additive map-
ping fulfilling the Leibniz rule. In this paper, we introduce the concept
of (σ ,τ)-derivation which is a generalization of σ -derivation and deriva-
tion on Γ-semihyperring and study some properties of (σ ,τ)-derivation on
an ordered Γ-semihyperring. Some results reflecting different natures of
(σ ,τ)-derivation depending on natures of the endomorphisms are encoun-
tered.
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1. INTRODUCTION

Algebraic hyperstructures in which both hyperoperations are multivalued
have roots in algebraic structures. Thus, hyperoperation is playing a leading
role in an algebraic hyperstructure. The first step in the study of hyperstruc-
ture was taken by Marty [16] in 1934, by developing the notion of hypergroup
with properties at Eight Congress of Scandinavian Mathematics at Stockholm.
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Since then a lot of remarkable work was done in different algebraic hyperstruc-
tures such as semihypergroups, hypergroups, Γ-semihypergroups, hyperrings,
Γ-hyperrings etc. In an algebraic structure, two elements when operated gives
back an element, whereas, in an algebraic hyperstructure, one gets a non-empty
set when two elements are hyperoperated. Hyperstructure being very flexible,
is useful in several fields of science. Different applications of hyperstructure
are discussed in [6, 7] by Corsini and Leoreanu. Davvaz and Leoreanu-Fotea
[7] generalized ring to hyperring. Later, a generalization of semiring, semihy-
perring and Γ-semiring was done in [8] to produce a new hyperstructure which
is Γ-semihyperrings. In recent years, the theory of hyperstructure is flourished
intensely. For example, Pawar et al. [19] introduced and studied quasi-ideals
on Γ-semihyperrings. Types of Γ-semihyperrings like regular and strongly
regular Γ-semihyperring were introduced in [21]. In [20], uniformly strongly
prime Γ-semihyperring was introduced and studied with its properties. There,
some results dealing with an ideal were proved with the help of sp-system and
super sp-system.

When a partial order relation ≤ holding a monotone condition is connected
to an algebraic structure, there comes orderedness. Why ordered algebraic
structures became a center of attraction? The reason is that many character-
istics don’t work on rings, but same properties work when one considers an
ordered ring. Heidari and Davvaz [10] dealt with a semihypergroup (H,◦)
along with a partial order relation ≤ which turned as a binary relation which
is compatible with ◦. This gave ordered semihypergroups, a generalization of
ordered semigroups. Chvalina [4] gave a particular type of hypergroup known
as ordering hypergroups. Later, many researchers shew interest in ordered hy-
pergroups and gave their contribution, refer [5, 11, 12]. Characterization of
ordered bi-ideals in ordered Γ-semigroups was put forward by Iampan [13].

The theory of derivation along with algebraic structures and hyperstructures
is one of the most attractive research branches. This study on rings was initi-
ated by Posner [22] in 1957. Followed by him, in 1987, Jing [14] introduced
the notion of derivation on Γ-rings. Within a short period of time, this topic
of research got attraction of many researchers. Differential Krasner hyperrings
introduced by Asokkumar [3] in 2013 became a fascinating concept in the
study of hyperstructures. In [1], work on differential Γ-semihyperrings and Γ-
hyperrings was done. Moreover, in [17], various results on Γ-semihyperrings
equipped with derivations were encountered. Applications of the notion of
derivation are given in [18] by using derivation to comprehend the structure of
a Γ-semihyperring. The notion of derivation on ring has also been generalized
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in various directions such as right derivation, left derivation, reverse derivation,
orthogonal derivation, generalised derivation etc.

The notion of derivation on ring plays a vital role in understanding the de-
sign of ring. Like, in [23], derivation is used to determine whether the ring is
commutative or not. Kaya [15] generalises few results of derivation on ring to
a different type of derivation known by (σ ,τ)-derivation. Recently many au-
thors have worked on (σ ,τ)-derivations and have given interesting outcomes.
Under specific constraints, every Jordan (σ ,τ)-higher derivation is a (σ ,τ)-
higher derivation on ring R which is prime, this result was given by Khan,
Ashraf and Haetinger [2]. Golbas and Koc [9] proved the result showing ( f ,d)
derivation on a ring R is a generalized (σ ,τ)-derivation. Similarly, Rao [24]
studied some properties of ( f ,g) derivation of ordered Γ-semirings. We extend
here the study of (σ ,τ)-derivation on ordered Γ-semihyperrings and investi-
gate some properties of an additive mapping (σ ,τ)-derivation on an ordered
Γ-semihyperring R.

The present paper consists of five sections, section 2 is nothing but the com-
pilation of definitions which are necessary to understand a Γ-semihyperring.
In section 3, we have introduced the notion of an ordered Γ-semihyperring
along with some new definitions on an ordered Γ-semihyperring that are nec-
essary to prove the properties of (σ ,τ)-derivation. Definition of derivation
in context with an orderedness on Γ-semihyperring initiates section 4 and is
followed by that of σ -derivation and (σ ,τ)-derivation. Characterization of
(σ ,τ)-derivation d with the aid of an endomorphism have been taken into ac-
count.

2. PRELIMINARIES

This section is devoted to some vital terminologies which are necessary for
further discussion. For detailed study readers are requested to refer [8].

Definition 2.1. [8] A hypergroupoid is a couple (H,•) wherein H is a nonempty
set, • : H ×H →P∗(H) is a hyperoperation, in which P∗(H) represents a
cluster of all non-empty subsets of H.

Definition 2.2. [8] A hypergroupoid for which (x•y)• z = x• (y• z), for every
x, y, z ∈H is known as a semihypergroup, also, if for each x ∈H, x•H = H =
H • x, then (H,•) is known as a hypergroup.

Definition 2.3. [8] A hypergroup (H,•) is known as canonical if below prop-
erties are true

(1) H is commutative;
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(2) H must have an identity known as a scalar identity or a scalar unit, in
other words, there is e ∈ H such that x• e = {x}, for each x ∈ H;

(3) There exists a unique inverse for each element, that is, for each x ∈ H
there exists a unique x−1 ∈ H such that e ∈ x−1 • x;

(4) Reversibility must be hold by H, means for x∈ y•z, we have z∈ y−1•x
and y ∈ x• z−1.

One can turn attention to the detailed insights provided in reference [7] for
hypergroups and semihypergroups.

Definition 2.4. [8] A nonempty set S is known as a Γ-semihypergroup where
Γ is also a nonempty set if for each x,y,z ∈ S, α,β ∈ Γ, we get, xαy ⊆ S and
xα(yβ z) = (xαy)β z.

Definition 2.5. [8] The algebraic structure satisfying the ring like postulates is
called a hyperring, that is, hyperring (R,+, ·) in which hyperoperations are ‘+’
and ‘·’ and R forms a hypergroup with + and distributive property is satisfied
by an associated hyperoperation ·.

Hyperrings are distinguished into various kinds. To understand the notions of
Krasner hyperring, multiplicative hyperring and Γ-hyperring, refer [8].

Definition 2.6. [8] (R,+,Γ) is known as a Γ-semihyperring wherein R is a
commutative semihypergroup and Γ is a commutative group if there is a map
R×Γ×R→P∗(R) such that for each x,y∈ R, α ∈ Γ, xαy denotes the images
and P∗(R) stands for a cluster of all nonempty subsets of R fulfilling the
constraints:

(1) xα(y+ z) = xαy+ xαz;
(2) (x+ y)αz = xαz+ yαz;
(3) xα(yβ z) = (xαy)β z;
(4) x(α +β )y = xαy+ xβy.

Definition 2.7. [8] If R is a semigroup in above definition, then R is known as
a multiplicative Γ-semihyperring.

Definition 2.8. [8] If xαy = yαx(xαy
⋂

yαx 6= φ ), for each x,y ∈ R and α ∈ Γ,
then R is termed as commutative(weak commutative) Γ-semihyperring.

Definition 2.9. [8] A Γ-semihyperring R is said to be with zero if for each
x ∈ R, α ∈ Γ there exists 0 ∈ R such that x ∈ x+0, 0 ∈ xα0 and 0 ∈ 0αx.

Definition 2.10. [8] A Γ-semihyperring R with zero is a prime if 0 ∈ xαrβy,
for each x,y,r ∈ R, α,β ∈ Γ, then either x = 0 or y = 0.

Now, we are considering R as a multiplicative Γ-semihyperring onward.
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3. ORDERED Γ-SEMIHYPERRING

In introducing and studying an ordered Γ-semihyperring, which is a Γ-
semihyperring associated with a competent partial order relation, there is no
way to avoid new terms and definitions. Hence, this section aims to introduce
several new definitions and few examples. Definitions of Γ-band and idem-
potent Γ-semihyperring in reference to orderedness are introduced, which are
playing a key role in analysing the nature of (σ ,τ) derivation in the fourth
section of the paper.

Definition 3.1. [21] If there exists α ∈ Γ such that eαe = e, wherein e ∈ R,
then e is known as an idempotent element of a Γ-semihyperring R. Here e is
called α-idempotent.

Definition 3.2. A right(left) Γ-identity of a Γ-semihyperring R is an element
e ∈ R such that x = xαe(x = eαx), for each x ∈ R, α ∈ Γ.

Definition 3.3. [21] An element e in R such that xαe = eαx = x, for each
x ∈ R, α ∈ Γ is known as Γ-identity of a Γ-semihyperring.

Definition 3.4. Let (R,+,Γ) be a Γ-semihyperring. Then a semigroup (R,+)
is said to be a band if x = x+ x, for all x ∈ R.

Definition 3.5. A Γ-semihyperring (R,+,Γ) is said to be Γ-band if xαy =
xαy+ xαy, for all x,y ∈ R and α ∈ Γ.

Definition 3.6. If every element of a Γ-semihyperring R is an idempotent of
R and a semigroup (R,+) is a band, then R is said to be an idempotent Γ-
semihyperring.

Definition 3.7. A zero divisor of a Γ-semihyperring R containing zero is a
non-zero element x ∈ R such that 0 ∈ xαy and 0 ∈ yαx, wherein α ∈ Γ, for
some nonzero element y in R.

Definition 3.8. A Γ-semihyperring R with an identity as well as zero element
is known as an integral Γ-semihyperring if it has no zero divisor.

Definition 3.9. A Γ-semihyperring (R,+,Γ) with an appropriate partial order
≤ is known as an ordered Γ-semihyperring if

(1) For each x,y,z ∈ R, x≤ y, we have x+ z≤ y+ z i.e., for each a ∈ x+ z
there is b ∈ y+ z such that a≤ b.

(2) For each x,y,z ∈ R, α ∈ Γ, x≤ y and 0≤ z, we have xαz≤ yαz that is
for any a ∈ xαz there is b ∈ yαz such that a≤ b.

(3) For each x,y,z ∈ R, α ∈ Γ, x≤ y and 0≤ z, we have zαx≤ zαy.
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Definition 3.10. If any two elements of an ordered Γ-semihyperring R are
comparable, then R is known as totally ordered Γ-semihyperring.

Definition 3.11. In case of an ordered multiplicative Γ-semihyperring, R be-
comes a semigroup with +, hence,

(1) The semigroup (R,+) is known as positively ordered if x ≤ x+ y and
y≤ x+ y, for every x,y ∈ R.

(2) The semigroup (R,+) is known as negatively ordered if x+ y≤ x and
x+ y≤ y, for every x,y ∈ R.

(3) The Γ-semihypergroup is known as positively ordered if x ≤ xαy and
y≤ xαy, for every x,y ∈ R, α ∈ Γ.

(4) The Γ-semihypergroup is known as negatively ordered if xαy≤ x and
xαy≤ y, for every x,y ∈ R, α ∈ Γ.

Definition 3.12. An ordered Γ-semihyperring (R,+,Γ,≤) is known as posi-
tively(negatively) ordered if xαy≤ xαy+ zαw(xαy+ zαw≤ xαy) and zαw≤
xαy+ zαw(xαy+ zαw≤ zαw), for every x,y,z,w ∈ R, α ∈ Γ.

Definition 3.13. Let A be a nonempty subset of an ordered Γ-semihyperring R
satisfying the binary property under both the hyperoperations of R. Then A is
known as an ordered Γ-subsemihyperring.

Definition 3.14. A right (left) ideal of an ordered Γ-semihyperring R is a
non-empty subset I satisfying closure property with respect to + and IΓR ⊆
I(RΓI ⊆ I) and if for any x ∈ R, y ∈ I, x≤ y =⇒ x ∈ I.
I becomes an ideal of R if it is left and right ideal as well.

Example 3.15. Let X be a non-empty infinite set. Define the addition and
multiplication on P∗(X) as: A + B = A ∪ B and AαB = A ∩ B, for every
A,B ∈P∗(X), α ∈ Γ. Then (P∗(X),+,Γ,≤) is an ordered Γ-semihyperring
where the order relation ≤ is defined by
≤= {(A,A);(B,B);(C,C);(D,D); ...(A,B);(A,C);(B,D);(C,E);(D,F);(E,G); ...}.
The figure is given below:
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Here, P∗(X) is not totally ordered Γ-semihyperring. The semigroup (P∗(X),+)
is positively ordered semigroup but not negatively ordered. The Γ-semigroup
(P∗(X),Γ) is negatively ordered but not positively ordered. One can also
verify that, (P∗(X),+,Γ,≤) is positively ordered Γ-semihyperring but not
negatively ordered Γ-semihyperring.

Example 3.16. Let R = {a,b,c,d}. Then R is a commutative semigroup with
+.

+ a b c d
a {a} {b} {c} {d}
b {b} {b} {c} {d}
c {c} {c} {c} {d}
d {d} {d} {d} {d}

Let · be such that xαy =⇒ x · y, for all x,y ∈ R and α ∈ Γ.
· a b c d
a {a} {a, b} {a, b, c} R
b {a, b} {b} {b, c} {b, c, d}
c {a, b, c} {b, c} {c} {c, d}
d R {b, c, d} {c, d} {d}

Then (R,+,Γ) is a multiplicative Γ-semihyperring and R is an ordered Γ-
semihyperring with an order relation ≤ defined by
≤= {(a,a);(b,b);(c,c);(d,d);(a,d);(b,c)}. The figure of R is given below:

a

d

b

c
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Example 3.17. In the Example 3.15, I = {A} is both left ideal and right ideal
of P∗(X).

Definition 3.18. If (R,+,Γ,≤) is an ordered Γ-semihyperring, Then a func-
tion ψ : R→ R is known as a homomorphism if for each x,y ∈ R, α ∈ Γ the
following hold,

(1) ψ(x+ y) = ψ(x)+ψ(y);
(2) ψ(xαy)⊆ ψ(x)αψ(y);
(3) x≤ y gives ψ(x)≤ ψ(y).

ψ is a good homomorphism if equality holds in (2).

Definition 3.19. Let R be an ordered Γ-semihyperring. Then a mapping ψ :
R→ R is an isotone mapping on R if x≤ y =⇒ ψ(x)≤ ψ(y), for all x,y ∈ R.

Definition 3.20. A homomorphism ψ on an ordered Γ-semihyperring R is
called an endomorphism on R if ψ is onto.

4. (σ ,τ)-DERIVATION

In this section, we have encountered various results dealing with (σ ,τ)-
derivation on an ordered Γ-semihyperring. Here, one can justify that some
results of (σ ,τ)-derivation that we have proved in the present paper will not
be true on a Γ-semihyperring. But the same results are true on an ordered
Γ-semihyperring. This is possible due to the beauty of an appropriate partial
order relation attached to a Γ-semihyperring.

Definition 4.1. Let R be an ordered Γ-semihyperring. Then a mapping d : R→
R is called a derivation if, for all x,y ∈ R and α ∈ Γ,

(1) d(x+ y) = d(x)+d(y);
(2) d(xαy)⊆ d(x)αy+ xαd(y);
(3) If x≤ y, then d(x)≤ d(y).

Definition 4.2. Let R be an ordered Γ-semihyperring and σ be an endomor-
phism on R. Then a mapping d : R→ R is called a σ -derivation if, for all
x,y ∈ R and α ∈ Γ,

(1) d(x+ y) = d(x)+d(y);
(2) d(xαy)⊆ d(x)ασ(y)+σ(x)αd(y);
(3) If x≤ y, then d(x)≤ d(y).

Definition 4.3. Let R be an ordered Γ-semihyperring and σ ,τ be two endo-
morphisms on R. Then a mapping d : R→ R is called a (σ ,τ)-derivation if, for
all x,y ∈ R and α ∈ Γ,



236 L. P. Nerkar and K. F. Pawar

(1) d(x+ y) = d(x)+d(y);
(2) d(xαy)⊆ d(x)ασ(y)+ τ(x)αd(y);
(3) If x≤ y, then d(x)≤ d(y).

Definition 4.4. If in above definition equality holds in (2), then d : R→ R is
called a strong (σ ,τ)-derivation on R.

Example 4.5. Let R be an ordered Γ-semihyperring. Then d(x) = 0, for all
x ∈ R is a (σ ,τ)-derivation on R.

An identity mapping is not a (σ ,τ)-derivation on R. But under certain con-
ditions an identity mapping becomes a (σ ,τ)-derivation which is given as the
current section unfolds.

Example 4.6. Consider the Example 3.15. Let σl : P∗(X)→P∗(X) be such
that

σl =



B for x = A,
D for x = B,
F for x = D,

H for x = F,
...

...

and d(A) = A, for all A ∈P∗(X). Then σl is an endomorphism and d is a σl
derivation.
Moreover, if τ : P∗(X)→P∗(X) be such that

τ =



...
...

G for x = I,
F for x = H,

E for x = G,

D for x = F,
C for x = E,
B for x = D,

A for x =C,

A for x = B.

and τ(A) = A, then τ being an endomorphism, d becomes a (σl,τ)-derivation
on P∗(X).
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Remark 4.7. If in above Example, σr =



C for x = A,
E for x =C,

G for x = E,
I for x = G,
...

...
and d(A)=A, for all A∈P∗(X), then with the same τ , d is a (σr,τ)-derivation
on P∗(X).

Example 4.8. Consider the Example 3.16. Let σ : R→ R be such that σ(x) =
x+a and τ(x) = x+ x, for all x ∈ R. Then both σ and τ are endomorphisms.
If d(x) = a, then d is individually σ derivation and τ derivation. Here, d is a
(σ ,τ)-derivation on R as well.

Proposition 4.9. Let R be a Γ-band ordered Γ-semihyperring. Then d(x) = x,
for all x ∈ R is a (σ ,τ)-derivation on R, where σ(x)≤ x and τ(x)≤ x.

Proof. Straight forward. �

The following five theorems speak about how σ , τ make an effect on derivation
d.

Theorem 4.10. Let R be an idempotent ordered Γ-semihyperring in which Γ-
semihypergroup is negatively ordered and d be a (σ ,τ) derivation such that
σ(x)≤ x and τ(x)≤ x, for all x ∈ R. Then d(x)≤ x.

Proof. Let x ∈ R. Then there exists α ∈ Γ such that x = xαx and d(x) =
d(xαx)⊆ d(x)ασ(x)+ τ(x)αd(x)≤ σ(x)+ τ(x)≤ x+ x≤ x. Hence, d(x)≤
x. �

Theorem 4.11. Let R be an ordered Γ-semihyperring in which Γ-semihypergroup
is negatively ordered and σ(x)≤ x, τ(x)≤ x. Then d(xαy)≤ d(x+ y), where
d is a (σ ,τ) derivation.

Proof. Suppose x,y∈ R. Then d(xαy)⊆ d(x)ασ(y)+τ(x)αd(y)≤ d(x)αy+
xαd(y)≤ d(x)+d(y)≤ d(x+ y). Hence, proved. �

Theorem 4.12. Let d be a (σ ,τ)-derivation of an ordered Γ-semihyperring R.
If σ(0) = τ(0) = 0, then d(0) = 0.

Proof. Proof is elementary. �

Theorem 4.13. Let R be an ordered Γ-band Γ-semihyperring and d,σ ,τ be
an identity function from R→ R. Then d is a (σ ,τ) derivation on R if and only
if d is a homomorphism from R→ R.
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Proof. Consider, d(xαy) ⊆ d(x)ασ(y) + τ(x)αd(y) ⊆ xαy + xαy ⊆ xαy ⊆
d(x)αd(y). Similarly, d(x + y) = d(x) + d(y), which means d is a homo-
morphism. Conversely, suppose d is a homomorphism from R → R. Let
x,y ∈ R. Then d(xαy) ⊆ d(x)αd(y) ⊆ xαy ⊆ xαy+ xαy. Hence, d(xαy) ⊆
d(x)ασ(y)+ τ(x)αd(y). Now consider, x ≤ y. Since, d is a homomorphism,
d(x)≤ d(y). Therefore, d is a (σ ,τ) derivation on R. �

Theorem 4.14. Let R be a commutative ordered Γ-band Γ-semihyperring.
Then a mapping da(x) = xαa, for all x ∈ R is a (σ ,τ) derivation on R, where
σ and τ are identity functions.

Proof. Consider, da(x+ y) = (x+ y)αa = xαa+ yαa = da(x)+da(y).
Similarly,

da(xαy) = (xαy)αa

= (xαy)αa+(xαy)αa

= xα(yαa)+(xαa)αy

= xαda(y)+da(x)αy

= da(x)αy+ xαda(y)

= da(x)ασ(y)+ τ(x)αda(y).

Hence, da(xαy) ⊆ da(x)ασ(y)+ τ(x)αda(y). Similarly, let x ≤ y. Then for
a ∈ R, xαa≤ yαa. Therefore, d(x)≤ d(y). Hence, d is a (σ ,τ) derivation on
R. �

In next two theorems, d is influenced by any one of the endomorphisms.

Theorem 4.15. Let d be a (σ ,τ)-derivation of an idempotent commutative
ordered Γ-semihyperring R in which a Γ-semihypergroup is negatively ordered
and a semigroup (R,+) is positively ordered.

(1) If σ(x)≤ τ(x), for all x ∈ R, then d(x)≤ τ(x), for all x ∈ R.
(2) If τ(x)≤ σ(x), for all x ∈ R, then d(x)≤ σ(x), for all x ∈ R.

Proof. (1) Suppose σ(x)≤ τ(x), for all x ∈ R, then σ(x)+ τ(x)≤ τ(x)+
τ(x) implies σ(x) + τ(x) ≤ τ(x) ≤ σ(x) + τ(x). Therefore, σ(x) +
τ(x) = τ(x). Now, as R is idempotent for x ∈ R there exists α ∈ Γ

such that x = xαx implies d(x) = d(xαx)⊆ d(x)ασ(x)+τ(x)αd(x) =
d(x)α(σ(x)+ τ(x)) = d(x)ατ(x). That is d(x) ⊆ d(x)ατ(x) ≤ τ(x).
Hence, d(x)≤ τ(x), for all x ∈ R.

(2) We can similarly proof this statement.
�
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Theorem 4.16. Let R be negatively ordered Γ-semihyperring and d be a (σ ,τ)
derivation such that d(e) = e.

(1) If R has right Γ-identity and τ(x) = x, then d(x)≤ x, for all x ∈ R.
(2) If R has left Γ-identity and σ(x) = x, then d(x)≤ x, for all x ∈ R.

Proof. (1) Let x ∈ R. Then there exists α ∈ Γ, for all x ∈ R such that x =
xαe implies d(x) = d(xαe)⊆ d(x)ασ(e)+τ(x)αd(e)≤ τ(x)αd(e)≤
τ(x)αe≤ xαe = x. Therefore, d(x)≤ x.

(2) On the similar lines of proof of (1).
�

Theorem 4.17. Let σ ,τ be two endomorphisms on an ordered idempotent Γ-
band Γ-semihyperring R in which a semigroup (R,+) is positively ordered.
Then σ and τ are (σ ,τ)-derivations.

Proof. Let x,y ∈ R and α ∈ Γ. Then

σ(xαy)⊆ σ(x)ασ(y)

⊆ σ(x)ασ(y)+σ(x)ασ(y)

⊆ σ(x)ασ(y)+(σ(x)+ τ(x))ασ(y)

⊆ σ(x)ασ(y)+σ(x)ασ(y)+ τ(x)ασ(y)

⊆ σ(x)ασ(y)+ τ(x)ασ(y).

As σ is an endomorphism, σ(x+ y) = σ(x)+σ(y) and x ≤ y implies σ(x)≤
σ(y). Hence, σ is a (σ ,τ)-derivation.
One can similarly prove that τ is a (σ ,τ)-derivation. �

Theorem 4.18. Let d be a (σ ,τ) derivation on an ordered prime Γ-semihyperring
R. If a ∈ R and α ∈ Γ such that aαd(x) = 0, for all x ∈ R, then a = 0 or d = 0.

Proof. Proof is simple. �

Corollary 4.19. Let d be a (σ ,τ) derivation on an ordered prime Γ-semihyperring
R and a be a non-zero element of R. If aαd(x) = 0, for all x ∈ R, then d is a
zero derivation on R.

Proof. One can easily prove this corollary. �

In the following four theorems, we will see certain equalities involving compo-
sition of derivation and endomorphisms to study the various nature of a (σ ,τ)
derivation.

Theorem 4.20. Let R be an ordered Γ-semihyperring which is also an idempo-
tent, d be a strong (σ ,τ) derivation over R such that d ◦d = d and σ ◦d = σ .
Then for each x ∈ R there exists α ∈ Γ such that d(xαd(x)) = d(x).
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Proof. Let x∈R. Then there exists α ∈Γ such that x= xαx. Now, d(xαd(x))=
d(x)ασ(d(x))+τ(x)αd(d(x))= d(x)α(σ ◦d(x))+τ(x)α(d◦d(x))= d(x)ασ(x)+
τ(x)αd(x) = d(xαx) = d(x). Hence, d(xαd(x)) = d(x). �

Theorem 4.21. Let R be 2-torsion free prime ordered Γ-semihyperring, d be a
(σ ,τ) derivation on R such that σ ◦d = d ◦σ and τ(x) be an identity function
for all x ∈ R. If d2 = 0, then d = 0.

Proof. Consider,

d(xαy)⊆ d(x)ασ(y)+ τ(x)αd(y)

d(d(xαy))⊆ d(d(x)ασ(y)+ τ(x)αd(y))

d2(xαy)⊆ d(d(x))ασ(σ(y))+ τ(d(x))αd(σ(y))+d(τ(x))ασ(d(y))

+τ(τ(x))αd(d(y)).

Since, d2 = 0, we get,

0⊆ d(x)αd(σ(y))+d(x)ασ(d(y))

⊆ d(x)α(d(σ(y))+d(σ(y)))

⊆ d(x)α(2d(σ(y)).

That is, 0 ∈ d(x)α(2d(σ(y)). As R is prime, d(x) = 0 or 2d(σ(y)) = 0. Thus
d = 0. �

Theorem 4.22. Let R be negatively ordered Γ-semihyperring and a Γ-semihypergroup
is negatively ordered with d ◦d = d, σ ◦d = σ and τ ◦d = τ and d is a (σ ,τ)
derivation. Then d(d(x)αd(y))≤ d(x) or d(y).

Proof. Consider, d(d(x)αd(y))⊆ d(d(x))ασ(d(y))+τ(d(x))αd(d(y))⊆ d ◦
d(x)ασ ◦d(y)+ τ ◦d(x)αd ◦d(y)≤ d(x)ασ(y)+ τ(x)αd(y)≤ d(x)ασ(y)≤
d(x). Hence, d(d(x)αd(y))≤ d(x).
Similarly, it can be proved that d(d(x)αd(y))≤ d(y). �

Theorem 4.23. Let R be a commutative ordered Γ-semihyperring and d1 and
d2 be strong (σ ,τ) derivation on R where τ ◦d2 = τ ◦d1,d1◦τ = d2◦τ,σ ◦d2 =
σ ◦d1,d1 ◦σ = d2 ◦σ ,σ ◦σ = σ and τ ◦ τ = τ .

(1) If d1d2(x) = 0, then d2d1 is a strong (σ ,τ) derivation on R.
(2) If d2d1(x) = 0, then d1d2 is a strong (σ ,τ) derivation on R.
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Proof. (1) Suppose d1d2 = 0, for all x,y ∈ R and α ∈ Γ, then

d1d2(xαy) = 0

d1(d2(x)ασ(y)+ τ(x)αd2(y)) = 0

d1(d2(x)ασ(y))+d1(τ(x)αd2(y)) = 0

d1d2(x)ασ(σ(y))+ τ(d2(x))αd1(σ(y))+d1(τ(x))ασ(d2(y))+ τ(τ(x))αd1d2(y) = 0

τ(d2(x))αd1(σ(y))+d1(τ(x))ασ(d2(y)) = 0

τ ◦d2(x)αd1 ◦σ(y)+d1 ◦ τ(x)ασ ◦d2(y) = 0.

(4.1) τ ◦d1(x)αd2 ◦σ(y)+d2 ◦ τ(x)ασ ◦d1(y) = 0.

Consider,

d2d1(xαy) = d2(d1(x)ασ(y)+ τ(x)αd1(y)) = d2(d1(x))ασ ◦σ(y)

+ τ ◦d1(x)αd2 ◦σ(y)+d2 ◦ τ(x)ασ ◦d1(y)+ τ ◦ τ(x)αd2(d1(y)).

Using Eq. 4.1, we get,
d2d1(xαy) = d2(d1(x))ασ ◦ σ(y) + τ ◦ τ(x)αd2(d1(y))
= d2d1(x)ασ(y)+τ(x)αd2d1(y). Hence, d2d1 is a strong (σ ,τ) deriva-
tion on R.

(2) Similarly one can prove this statement.
�

Theorem 4.24. Let d1 and d2 be two (σ ,τ) derivations. Then d1d2 is also
(σ ,τ) derivation where R is 2-torsion free ordered Γ-semihyperring with char-
acteristic 2 and τ ◦d2 = d1 ◦ τ,d1 ◦σ = σ ◦d2,σ ◦σ = σ and τ ◦ τ = τ .

Proof. Applying d1d2 on xαy and using the identities given in the statement of
the theorem generate the proof. �

Definition 4.25. Let d be a derivation on an ordered Γ-semihyperring R. Then
the set of all the elements x∈ R such that d(x) = 0 is called as kernel d denoted
by Kerd.

Proposition 4.26. Let d be a (σ ,τ) derivation on an ordered Γ-semihyperring
R. Then Kerd is a Γ-subsemihyperring of R.

Proof. Proof is elementary. �

The following three theorems explain the interconnection between the deriva-
tion on ideal and derivation on an ordered Γ-semihyperring R.
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Theorem 4.27. Let I be a non-zero ideal of an ordered integral Γ-semihyperring
R in which a Γ-semihypergroup is negatively ordered. If d is a non-zero (σ ,τ)-
derivation on R where τ is a non-zero function on I, then d is a non-zero
(σ ,τ)-derivation on I.

Proof. Let d be a (σ ,τ)-derivation on I and τ be a non-zero function on I.
Suppose, x∈ I such that τ(x) 6= 0,d(x) = 0 and y∈ R,α ∈ Γ, we have, xαy≤ x
implies d(xαy)≤ d(x) = 0. Hence, 0 = d(xαy)⊆ d(x)ασ(y)+ τ(x)αd(y)⊆
τ(x)αd(y). Hence, 0 ∈ τ(x)αd(y). As, τ(x) 6= 0 and R is an integral ordered
Γ-semihyperring, we have, d(y) = 0 implies d is zero (σ ,τ)-derivation on R,
which is a contradiction. Hence, d is non-zero (σ ,τ)-derivation on I. �

A stronger argument of the above theorem is given below, where
Γ-semihypergroup need not be negatively ordered.

Theorem 4.28. Let I be a proper ideal of an ordered integral Γ-semihyperring
R. If d is a non-zero (σ ,τ) derivation on R where τ is a non-zero on I, then d
is a non-zero on I.

Proof. Let I be a proper ideal of an ordered integral Γ-semihyperring R and d
is a non-zero (σ ,τ) derivation on R. Suppose, d(x) = 0, for all x∈ I. Let y∈ R.
Then d(y) 6= 0. Now, as x ∈ I and y ∈ R, hence, xαy ∈ I, thus, 0 = d(xαy) ⊆
d(x)ασ(y) + τ(x)αd(y) ⊆ τ(x)αd(y). As R is an integral d(y) = 0, for all
y ∈ R, which is a contradiction to d is a non-zero derivation on R. Hence, d is
a non-zero derivation on I. �

Theorem 4.29. Let R be an ordered prime Γ-semihyperring and I be a proper
ideal of R. If d is a (σ ,τ) derivation on R such that d(u) = 0, for all u ∈ I
where σ , τ are non-zero automorphisms, then d(r) = 0, for all r ∈ R.

Proof. Suppose, 0 6= u ∈ I and x ∈ R, then xαu ∈ I, therefore, d(xαu) = 0.
Consider, 0= d(xαu)⊆ d(x)ασ(u)+τ(x)αd(u)⊆ d(x)ασ(u). Now, replace,
x by rαu. Hence, 0⊆ d(rαu)ασ(u)⊆ d(r)ασ(u)ασ(u)+ τ(r)αd(u)ασ(u).
That is 0⊆ d(r)ασ(u)ασ(u). Thus, R being prime and σ is non-zero, d(r) =
0, for all r ∈ R. Hence, d(r) = 0, for all r ∈ R. �
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