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1. Introduction

Finsler geometry has its genesis in integrals of the form∫ b

a

F
(
x1, x2, . . . , xn;

dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

)
dt.

The function F (x1, . . . , xn; y1, . . . , yn) is positive unless all the yi are zero.

Finsler geometry also asserts itself in applications, most notably in theory of

relativity, control theory and mathematical biology.

The special case of Finsler metrics we are going to discuss are expressed in

terms of a Riemannian metric α =
√
aijyiyj and a 1-form β = biy

i. They

are called (α, β)- metric. The notion of (α, β)- metrics are introduced by Mat-

sumoto [11]. If F = α + β, then we get the Randers metric. This metric is

an (α, β)- metric that introduced by Ingarden. An (α, β)- metric is a Finsler
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metric of the form F = αφ(s), s = β/α where α =
√
ãij(x)yiyj is induced

by a Riemannian metric ã = ãijdx
i ⊗ dxj on a connected smooth n- dimen-

sional manifold M and β = bi(x)y
i is a 1- form on M . We note that, the

important kinds of (α, β)- metrics are Kropina metric F = α2/β, square met-

ric F = (α + β)2/α, exponential metric F = α exp(β/α), Matsumoto metric

F = α2/(α − β) and infinite series metric F = β2/(β − α). (For some details

see [1, 4, 8, 9, 10, 14]).

The important concepts in Finsler geometry is geodesics. Geodesics in a

manifold is the generalization of concept of a straight line in an Euclidean

space. A geodesic in a homogeneous Finsler space (G/H,F ) is called homoge-

neous geodesic if it is an orbit of a one-parameter subgroup of G. Homogeneous

geodesics on homogeneous Riemannian manifolds have been studied by many

authors. Latifi has extended the concept of homogeneous geodesics in homo-

geneous Finsler spaces [7].

Suppose (M,F ) be a connected homogeneous Finsler space, G is a connected

transitive group of isometries of M and H is the isotropy subgroup at a point

o ∈ M . Therefore, M is naturally identified with the coset space G/H with

G- invariant Finsler metric F . Also, in this case the Lie algebra g of G has a

reductive decomposition

g = m+ h,

where m ⊂ g is a subspace of g isomorphic to the ToM and h is the Lie algebra

of H.

In this paper, we study geodesics vectors of left invariant infinite series (α, β)-

metrics on left invariant hypercomplex four dimensional simply connected Lie

groups.

2. Preliminaries

LetM be an n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M and by TM := ∪x∈MTxM the tangent bundle of M . The dual space

of TxM is T ∗
xM , called the cotangent space at x. The union T ∗M := ∪x∈MT ∗

xM

is the cotangent bundle of M .

Definition 2.1. A Finsler structure of M is a function

F : TM → [0,∞),

with the following properties [2]:

(1) F is smooth on the slit tangent bundle TM0 := TM\{0}.
(2) F (x, λy) = λF (x, y) for any x ∈ M , y ∈ TxM and λ > 0.

(3) The n× n Hessian matrix

(gij) :=

([1
2
F 2
]
yiyj

)
,
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is positive-definite at every point of TM0.

Let α =
√

ãij (x) yiyj be a norm induced by a Riemannian metric ã and

β (x, y) = bi(x)y
i be a 1-form on an n- dimensional manifold M . Let

b := ∥β(x)∥α :=
√

ãij(x)bi(x)bj(x).

Now, let the function F is defined as follows

F := αφ(s), s =
β

α
, (2.1)

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying

φ (s)− sφ′ (s) +
(
b2 − s2

)
φ′′ (s) > 0, |s| ≤ b < b0.

Then F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M . A Finsler metric in

the form (2.1) is called an (α, β)- metric [13].

A Finsler space having the Finsler function:

F (x, y) =
β2(x, y)

β(x, y)− α(x, y)
,

is called a infinite series space. We note that the Riemannian metric ã induces

an inner product on any cotangent space T ∗
xM such that ⟨dxi(x), dxj(x)⟩ =

ãij(x). The induced inner product on T ∗
xM induces a linear isomorphism be-

tween T ∗
xM and TxM . Then the 1-form β corresponds to a vector field X̃ on

M such that

ã(y, X̃(x)) = β(x, y). (2.2)

Also we have ∥β(x)∥α = ∥X̃(x)∥α . Therefore we can write infinite series metric

as follows:

F (x, y) =
ã(X, y)2

ã(X, y)−
√
ã(y, y)

. (2.3)

Now, consider the Chern connection on π∗TM whose coefficients are denoted

by Γi
jk. Let γ(t) be a smooth regular curve in M with velocity field V . Suppose

W (t) := W i(t) ∂
∂xi be a vector field along γ. Then the covariant derivative

DV W with reference vector V have the form

[dW i

dt
+W jV k(Γi

jk)(γ,V )

] ∂

∂xi
|γ(t).

A curve γ(t) with the velocity V = γ̇(t), is a Finslerian geodesic if

DV

[ V

F (V )

]
= 0, with reference vector V.
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Definition 2.2. Suppose (G/H,F ) be a homogeneous Finsler manifold with a

fixed origin o. Let g and h be the Lie algebra of G and H respectively and g =

m + h a reductive decomposition. Therefore, a homogeneous geodesic through

the o ∈ G/H is a geodesic γ(t) of the form

γ(t) = exp(tZ)(o), t ∈ R, (2.4)

where Z is a nonzero vector of g.

In Riemannian setting the authors in [6], proved that a X ∈ g − {0} is a

geodesic vector if and only if

⟨[X,Y ]m, Xm⟩ = 0, ∀Y ∈ m. (2.5)

After this, Latifi in Finsler setting shown that:

Lemma 2.3. [7] Suppose (G/H,F ) be a homogeneous Finsler space with a

reductive decomposition

g = h+m.

Therefore, Y ∈ g− {0} is a geodesic vector if and only if

gYm
(Ym, [Y,Z]m) = 0, ∀Z ∈ m, (2.6)

where the subscript m indicates the projection of a vector from g to m.

3. Geodesic Vectors of Infinite Series metric on Four Dimensional

Lie Group

An almost complex structure on a real differentiable manifold M is a tensor

field J which is an endomorphism of the tangent space TxM such that J2 = −1,

where 1 denotes the identity transformation of TxM , at every point x of M .

Note that for any two vector fields X and Y , we define the Nijenhuis tensor N

as

N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X,JY ]− [JX, JY ]. (3.1)

A hypercomplex manifold is a manifold M with three globally-defined, in-

tegrable complex structures I, J,K satisfying the quaternion identities

I2 = J2 = K2 = −1, and IJ = K = −JI. (3.2)

Obata [12] proved that a hypercomplex manifold admits a unique torsion-

free connection ∇ such that

∇I = ∇J = ∇K = 0.

Now let M be a 4-dimensional manifold. A hypercomplex structure on M

is a family H = {Jα}α=1,2,3 of fiber-wise endomorphism of TM such that

−J2J1 = J1J2 = J3, J2
α = −IdTM , α = 1, 2, 3, (3.3)

Nα = 0, α = 1, 2, 3, (3.4)
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where Nα is the Nijenhuis tensor (torsion) corresponding to Jα.

We note that, an almost complex structure is a complex structure if and

only if it has no torsion [5]. Then the complex structures Jα, α = 1, 2, 3, on a

4-dimensional manifold M form a hypercomplex if they satisfy in the relation

3.3.

Definition 3.1. A Riemannian metric ã on a hypercomplex manifold (M,H)

is called hyper-Hermitian if for all vector fields X and Y on M and for all

α = 1, 2, 3 we have

ã(JαX, JαY ) = ã(X,Y ).

Definition 3.2. A hypercomplex structure H = {Jα}α=1,2,3 on a Lie group G

is said to be left invariant if for any t ∈ G we have

Jα = T lt ◦ Jα ◦ T lt−1 ,

where T lt is the differential function of the left translation lt.

In this section, we consider left invariant hyper-Hermitian Riemannian met-

rics on left invariant hypercomplex 4-dimensional simply connected Lie groups.

Barberis shown that in this spaces, g is either Abelian or isomorphic to one of

the following Lie algebras:

(1)

[e2, e3] = e4, [e3, e4] = e2, [e4, e2] = e3, e1 : central, (3.5)

(2)

[e1, e3] = e1, [e2, e3] = e2, [e1, e4] = e2, [e2, e4] = −e1, (3.6)

(3)

[e1, e2] = e2, [e1, e3] = e3, [e1, e4] = e4, (3.7)

(4)

[e1, e2] = e2, [e1, e3] =
1

2
e3, [e1, e4] =

1

2
e4, [e3, e4] =

1

2
e2. (3.8)

where {e1, e2, e3, e4} is an orthonormal basis.

Now we want to describe all geodesics vectors of left invariant infinite series

metrics F defined by relation

F (x, y) =
ã(X, y)2

ã(X, y)−
√
ã(y, y)

.

By using the formula

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0,
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and some computations we get:

gy(u, v) =
ã(X, y)2(

ã(X, y)−
√

ã(y, y)
)4
[
ã(X, y)2ã(X, v)ã(X,u)− 4ã(y, y)3/2ã(X, v)ã(X,u)

+ 6ã(y, y)ã(X, v)ã(X,u) +
ã(X, y)2ã(X, v)ã(u, y)

ã(y, y)1/2
− 4ã(X, y)ã(X, v)ã(u, y)

− ã(X, y)3ã(u, y)ã(v, y)

ã(y, y)3/2
+

ã(X, y)3ã(u, v)

ã(y, y)1/2
+

4ã(X, y)2ã(u, y)ã(v, y)

ã(y, y)

− ã(X, y)2ã(u, v) +
ã(X, y)2ã(X,u)ã(v, y)

ã(y, y)1/2
− 4ã(X, y)ã(X,u)ã(v, y)

]
.

(3.9)

Therefore, for all z ∈ g we have:

gy(y, [y, z]) =
ã(X, y)3(

ã(X, y)− ã(y, y)1/2
)4
[
ã(X, [y, z])

(
ã(X, y)2 − 4ã(y, y)3/2

+ ã(X, y)ã(y, y)1/2 + 2ã(y, y)
)
+ ã(y, [y, z])

( ã(X, y)2

ã(y, y)1/2
− ã(X, y)

)]
,

which is equal to

gy(y, [y, z]) = ã(MNX, [y, z]) + ã(MPy, [y, z])

= ã(MNX +MPy, [y, z]), (3.10)

where

M =
ã(X, y)3(

ã(X, y)− ã(y, y)1/2
)4 ,

N = ã(X, y)2 − 4ã(y, y)3/2 + ã(X, y)ã(y, y)1/2 + 2ã(y, y),

P =
ã(X, y)2

ã(y, y)1/2
− ã(X, y).

Now, by using Lemma 2.3 and equation (3) a vector y =
∑4

i=1 yiei of g is a

geodesic vector if and only if for each j = 1, 2, 3, 4

ã
(
MN

4∑
i=1

xiei +MP

4∑
i=1

yiei, [

4∑
i=1

yiei, ej ]
)
= 0, (3.11)

where

M =
(
∑4

i=1 xiyi)
3(∑4

i=1 xiyi − (
∑4

i=1 y
2
i )

1/2
)4 ,

N = (

4∑
i=1

xiyi)
2 − 4(

4∑
i=1

y2i )
3/2 +

4∑
i=1

xiyi(

4∑
i=1

y2i )
1/2 + 2

4∑
i=1

y2i ,
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and

P =
(
∑4

i=1 xiyi)
2

(
∑4

i=1 y
2
i )

1/2
−

4∑
i=1

xiyi.

So we get the following cases:

3.1. Case (1). 
j = 2 → MN(x3y4 − x4y3) = 0,

j = 3 → MN(x4y2 − x2y4) = 0,

j = 4 → MN(x2y3 − x3y2) = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if

and only if y ∈ Span{e1}.

Corollary 3.3. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X =
∑4

i=1 xiei
on left invariant hypercomplex 4-dimensional simply connected Lie group and

let (3.5) holds. Then geodesic vectors depending on x2, x3 and x4.

Theorem 3.4. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X = x1e1 on left

invariant hypercomplex 4-dimensional simply connected Lie group and let (3.5)

holds. Then y ∈ g is a geodesic vector of (M,F ) if and only if y is a geodesic

vector of (M, ã).

Proof. Let y ∈
∑4

i=1 yiei ∈ g. Let y is a geodesic vector of (M, ã). By using

(2.5) we have

ã(y, [y, ei]) = 0, for each i = 1, 2, 3, 4.

Therefore by using (3.11), y is a geodesic of (M,F ).

Conversely, let

y =
5∑

i=1

yiei ∈ g

be a geodesic vector of (M,F ), because ã(X, [y, ei]) = 0 for each i = 1, 2, 3, 4,

by using (3.11) we have

ã(y, [y, ei]) = 0.

This completes the proof. □

3.2. Case (2).
j = 1 → MNx1y3 +MPy1y3 +MNx2y4 +MPy2y4 = 0,

j = 2 → MNx1y4 +MPy1y4 − (MNx2y3 +MPy2y3) = 0,

j = 3 → MNx1y1 +MPy21 +MNx2y2 +MPy22 = 0,

j = 4 → MN(x2y1 − x1y2) = 0.
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As a special case, if X = x3e3 + x4e4, then a vector y of g is a geodesic

vector if and only if y ∈ Span{e3, e4}.

Corollary 3.5. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X =
∑4

i=1 xiei
on left invariant hypercomplex 4-dimensional simply connected Lie group and

let (3.6) holds. Then geodesic vectors depending on x1 and x2.

Theorem 3.6. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X = x3e3+x4e4
on left invariant hypercomplex 4-dimensional simply connected Lie group and

let (3.6) holds. Then y ∈ g is a geodesic vector of (M,F ) if and only if y is a

geodesic vector of (M, ã).

Proof. The proof is the same as before. □

3.3. Case (3).
j = 1 → MN(x2y2 + x3y3 + x4y4) +MP (y22 + y23 + y24) = 0,

j = 2 → MNx2y1 +MPy2y1 = 0,

j = 3 → MNx3y1 +MPy3y1 = 0,

j = 4 → MNx4y1 +MPy4y1 = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if

and only if y ∈ Span{e1}.

Corollary 3.7. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X =
∑4

i=1 xiei
on left invariant hypercomplex 4-dimensional simply connected Lie group and

let (3.7) holds. Then geodesic vectors depending on x2, x3 and x4.

Theorem 3.8. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X = x1e1 on left

invariant hypercomplex 4-dimensional simply connected Lie group and let (3.7)

holds. Then y ∈ g is a geodesic vector of (M,F ) if and only if y is a geodesic

vector of (M, ã).

Proof. The proof is the same as before. □

3.4. Case (4).
j = 1 → MN(2x2y2 + x3y3 + x4y4) +MP (2y22 + y23 + y24) = 0,

j = 2 → MNx2y1 +MPy2y1 = 0,

j = 3 → MN(x3y1 − x2y4) +MP (y3y1 − y2y4) = 0,

j = 4 → MN(x2y3 + x4y1) +MP (y4y1 + y2y3) = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if

and only if y ∈ Span{e1}.
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Corollary 3.9. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X =
∑4

i=1 xiei
on left invariant hypercomplex 4-dimensional simply connected Lie group and

let (3.8) holds. Then geodesic vectors depending on x2, x3 and x4.

Theorem 3.10. Let (M,F ) be a Finsler space with infinite series metric F

defined by an invariant metric ã and an invariant vector field X = x1e1 on left

invariant hypercomplex 4-dimensional simply connected Lie group and let (3.8)

holds. Then y ∈ g is a geodesic vector of (M,F ) if and only if y is a geodesic

vector of (M, ã).

Proof. The proof is the same as before. □
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