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SOFT INTERSECTION ABEL-GRASSMANN’S GROUPS

AMAN ULLAH, IMTIAZ AHMAD, FAZAL HAYAT, FARUK KARAASLAN,
MUHAMMAD RASHAD

Abstract. This paper is a bridging among soft set theory, set
theory and AG-groups, in which soft intersection AG-group (ab-
breviated by soft int-AG-group) is defined and investigated. The
concept of soft int-AG-group is further extended to define the no-
tions of conjugates soft int-AG-group, normal soft int-AG-group,
e-set and α-inclusion of soft int-AG-groups. Various properties of
these notions are investigated and supported by relevant examples
that are produced by GAP.
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1. Introduction

The researchers face uncertainty in various fields for example phys-
ical sciences, medical sciences, social sciences even in computer and in
economics etc. To deal with this uncertainty they used various mean of
mathematical tools that is not so much effective as required. Therefore,
Molodstov [16] was the first researcher who proposed soft set theory as
an alternative approach to probability theory, fuzzy set theory, rough set
theory and any other mathematical tool to describe uncertainty. Soft set
theory is a powerful mathematical tool for dealing with uncertainty, and
is a parameterized family of subset of the universal set, and free from
all the difficulties present in other existing mathematical tools. Soft set

Received: 4 April 2018, Accepted: 9 August 2018. Communicated by Irina Cristea;

∗Address correspondence to A. Ullah; E-mail: amanswt@hotmail.com.

c© 2018 University of Mohaghegh Ardabili.

149



150 Aman Ullah et al.

theory is easily applicable to daily life problems, and has lot of appli-
cations in many fields like: operation research, game theory, analysis
and many more. Due to its diverse applications, researchers are actively
involved and achieved various results both in theoretical and practical
aspects.

In 1971, Rosenfeld [17] defined fuzzy subgroup of a group. Since
then, various researchers have studied on fuzzy subgroup theory; and
similar results are derived from classical group theory. First study on
algebraic structure of soft sets was made by Aktaş and Çağman [2]
in 2007. They introduced concept of soft group, and derived some of
the basic properties of soft groups. Since then, many papers on soft
groups have been published [4-7]. Çağman et al. [7] proposed a new
algebraic concept called soft-int group by inspiring from definition of
fuzzy subgroups defined by Rosenfeld [17], and obtained some of its
properties existing in group theory. A large amount of the literature on
algebraic structures of soft sets can be found in [9, 23, 19, 12, 24, 25, 26,
27].

In 1987, concept of AG-groups (LA-groups) was defined by Mushtaq
and Kamran [15]. In generally an AG-group is non-associative, so an
AG-group is a different structure from classical group structure. Un-
like groups and other structures, commutativity and associativity imply
each other in AG-groups and thus AG-groups become Abelian group if
any one of them is allowed in AG-group. Many researchers studied on
algebraic structures of the soft sets constructed by using different alge-
braic structures such as group, ring, ideal, BCK/BCI algebra, near ring,
and LA-semigroup instead of the parameter set in soft sets. With this
motivation, in this paper, we define concept of soft int-AG-group as a
bridge among soft set theory, set theory and AG-group theory. Basic
difference between soft int-AG-group and soft int-group [7] is algebraic
structure corresponding to parameter set of soft set. After we obtain
some properties of soft int-AG-groups, based on definition and proper-
ties of soft int-AG-groups Since an AG-group is a generalization of a
group, it can be said that soft int-AG-group is a generalization of soft
int-group defined in [7]. Therefore, obtained some properties of soft
int-group given in [7] and [10] are available for soft int-AG-group. In
this study we point out these properties and obtain some new results
related to soft int-AG-groups. We also define some new concepts such
as conjugates soft int-AG-group, normal soft int-AG-groups, e-set and
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α-inclusion. Furthermore, we obtain some results of α-level sets of soft-
int-AG-groups. Also, we support defined new concepts with examples
to be more understandable.

2. Preliminaries

In this section, we recall definition and set theoretical operations of
soft sets, and present some properties of AG-groups.

Definition 2.1. [16, 8] Let U be the universal set, E be the set of
parameters and P (U) be the power set of U . Then a soft set, A is a set
of order pairs

A = {(ε, fA(ε)) : ε ∈ E } ,
where fA is a set valued function from E to P (U) and fA is called ap-
proximate function of soft set A. The subscript A in the function fA
denotes that fA approximate function of soft set A. fA(ε) may be arbi-
trary i.e for some ε ∈ E fA(ε) may be empty, some may have nonempty
intersection. Also, the set {fA(ε)|ε ∈ E} is called image of A and is
denoted by Im(A).

For convenience, if fA(ε) = ∅, (ε, fA(ε)) will not be appear in the set
A. The set of all soft sets over U is denoted by S(U).

Definition 2.2. [8] Let A,B ∈ S(U). Then,

(1) If fA(ε) = ∅ for all ε ∈ E, A is said to be a null soft set, denoted
by Φ.

(2) If fA(ε) = U for all ε ∈ E, A is said to be absolute soft set,

denoted by Û .
(3) A is soft subset of B, denoted by A⊆̃B, if fA(ε) ⊆ fB(ε) for all

ε ∈ E.
(4) A=̃B, if A⊆̃B and B⊆̃A.
(5) Soft union of A and B, denoted by A∪̃B, is a soft set over U

and defined by

A∪̃B = {(ε, (fA∪̃fB) (ε)) : ε ∈ E }
= {(ε, (fA(ε) ∪ fB(ε))) : ε ∈ E } .

(6) Soft intersection of A and B, denoted by A∩̃B, is a soft set over
U and defined by

A∩̃B = {(ε, (fA∩̃fB) (ε)) : ε ∈ E }
= {(ε, (fA(ε) ∩ fB(ε))) : ε ∈ E } .
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(7) Soft complement of A is denoted by Ac̃ and defined by Ac̃ =
U \ fA(ε) for all ε ∈ E.

Definition 2.3. [14] Let E = {ε1, ε2, ..., εn} be a set of parameters.
The NOT set of E denoted by eE is defined by eE = {¬ε1,¬ε2, ...,¬εn}
where ¬εi =not εi, ∀ 1 ≤ i ≤ n.

(It may be noted that e and ¬ are different operators also NOT operator
is different from the soft complement of A).

Definition 2.4. [8] Let A,B ∈ S(U). Then, ∧-product and ∨-product
of A and B, is denoted by A∧B and A∨B respectively, and is defined
by the approximate functions as follows:

fA∧B(ε, ε′) : E × E → P (U), fA∧B(ε, ε′) = fA(ε) ∩ fB(ε′),

and

fA∨B(ε, ε′) : E × E → P (U), fA∨B(ε, ε′) = fA(ε) ∪ fB(ε′).

Also, A ∧B and A ∨B can be written as a set of pairs as follows:

(A ∧B) =
{(

(ε, ε′), fA∧B(ε, ε′)
)

: ε, ε′ ∈ E
}

=
{(

(ε, ε′), fA(ε) ∩ fB(ε′)
)

: ε, ε′ ∈ E
}
,

and

(A ∨B) =
{(

(ε, ε′), fA∨B(ε, ε′)
)

: ε, ε′ ∈ E
}

=
{(

(ε, ε′), fA(ε) ∪ fB(ε′)
)

: ε, ε′ ∈ E
}
,

respectively.

In the rest of this paper, G denotes an AG-group and e denotes the left
identity of G unless otherwise stated. An AG-group is a non-associative
structure, in which commutativity and associativity imply each other
and thus AG-group become an abelian group if any one of the property
is allowed in AG-group. AG-group is a generalization of abelian group
and a special case of quasi-group. An AG-groupoid (or LA-semigroups)
is a non-associative groupoid in general, in which the left invertive law
(ab)c = (cb)a holds for all a, b, c ∈ G. An AG-groupoid G is called an
AG-group or left almost group (LA-group), if there exists a unique left
identity e in G (i.e. ea = a for all a ∈ G), and for all a ∈ G there exists
a−1 ∈ G such that aa−1 = a−1a = e. Now a day’s many researchers are
taking interest to fuzzify AG-groupoids and AG-groups and to develop
soft set theory for AG-groupoids and AG-groups [9-16].
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An AG-group (G, ∗) can easily be obtained from an abelian group (G1, ·)
by:

a ∗ b = a−1 · b or a ∗ b = b · a−1 ∀ a, b ∈ G1.

It is easy to prove that in an AG-group G the right identity become the
two sided identity, and that an AG-group G with right identity is an
abelian group. AG-group posses the property of cancellative like group.
A nonempty subset H of G is called an AG-subgroup of G, if H itself
is an AG-group under the same binary operation defined in G. In AG-
subgroup one can easily obtain the following results. Let φ 6= H ⊆ G,
then H is an AG-subgroup of G if and only if for any h1, h2 ∈ H ⇒
h1h2 ∈ H, and for all h−1 ∈ H for all h ∈ H. Similarly, let φ 6= H ⊆ G,
then H is an AG-subgroup of G if and only if h1h

−1
2 ∈ H ∀ h1, h2 ∈ H.

Let H and K be AG-subgroups of G of order m and n respectively,
where (m,n) = 1. Then

HK = {hk : h ∈ H, k ∈ K} ,
and has exactly mn elements and is also an AG-subgroup of G. Various
properties of AG-groups are explored in [21, 22] such as: if the order of a
finite group is prime then it has the trivial subgroup only. While, in AG-
group it is not necessary. The product of two AG-subgroups is always
an AG-subgroup, although it is not common in groups. Like groups,
conjugate classes of AG-groups also form a partition of G, unlike groups
the conjugate class of e ∈ G is not a singleton set. Therefore, if the
conjugate class of G contain e, then it is also an AG-group. If the order
of G is prime then it has single conjugate.

The following identities can be easily proved in an AG-group G:

Lemma 2.5. [21] Let e ∈ G, and a, b, c, d ∈ G, then
(1) (ab)(cd) = (ac)(bd) (medial law),
(2) a(bc) = b(ac),
(3) (ab)(cd) = (db)(ca) (paramedial law),
(4) (ab)(cd) = (dc)(ba),
(5) (ab)−1 = a−1b−1,

3. Soft Intersection AG-groups

In this section the basic definition of soft intersection AG-group (soft
int-AG-group) is given, some of the basic results along with suitable
examples are provided. The following definition is similar soft int-group
given in [7]. Basic difference of this definition from soft int-group is that
parameter set is an AG-group.
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Definition 3.1. Let G ⊆ E be a set of parameters, and A ∈ S(U) be a
soft set. Then, A is called soft int-AG-group over U if for all g, g′ ∈ G,
the following conditions are satisfied:

(1) fA(gg′) ⊇ fA(g) ∩ fA(g′),
(2) fA(g−1) = fA(g).

Example 3.2. Consider a non-associative AG-group G = {0, 1, 2} of or-
der 3 with left identity 0, defined in the following table:

. 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

Let A be a soft set over U = {u1, u2, . . . , u10}, defined by

A = {(0, fA(0)) , (1, fA(1)) , (2, fA(2))}
A = {(0, U) , (1, {u2, u4, u6}) , (2, {u2, u4, u6})} .

It can be easily verified that A is a soft int-AG-group over U .

Example 3.3. Consider a non-associative AG-group G = {a, b, c, d} of
order 4 with left identity d, defined in the following Cayley’s table:

. a b c d
a d a b c
b c d a b
c b c d a
d a b c d

Let A be a soft set over U = Z, defined by

A = {(a, fA(a)) , (b, fA(b)) , (c, fA(c)) , (d, fA(d))}
A = {(a, {1, 2, 4}) , (b, {1, 2, 3, 4}) , (c, {1, 2, 4}) , (d,Z)} .

It can be easily verified that A is a soft int-AG-group over U .

The set of all soft int-AG-groups over U is represented by S∩AG(U).

The following lemma is available for soft int-groups.

Lemma 3.4. Let A ∈ S∩AG(U). Then, fA(e) ⊇ fA(g) for all g ∈ G.

Proof. The proof can be made in similar way to proof of Theorem 1 in
[7] �
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Lemma 3.5. Let A ∈ S∩AG(U). Then fA(gg′) = fA(g′g) for all g, g′ ∈
G.

Proof. Let A ∈ S∩AG(U). Then for all g, g′ ∈ G,

fA(gg′) = fA((eg)g′)

= fA
(
(g′g)e

)
(by the left invertive law)

⊇ fA(g′g) ∩ fA(e)

= fA(g′g) (by Lemma 3.4)

⇒ fA(gg′) ⊇ fA(g′g).

Similarly, we can show that fA(g′g) ⊇ fA(gg′). Hence, fA(gg′) = fA(g′g)
for all g, g′ ∈ G. �

Note that, this lemma is available in soft int-groups only when pa-
rameter set (group) of soft int-group is an Abelian group. However, in a
soft int-AG-group, it is not necessary that parameter set is an Abelian
group.

The following theorem is available both soft int-groups and soft int-
AG-groups.

Theorem 3.6. A soft set A over U is a soft int-AG group over U if
and only if fA(gg′−1) ⊇ fA(g) ∩ fA(g′) for all g, g′ ∈ G.

Proof. The proof can be made in similar way to proof of Theorem 2
given in [7]. �

Lemma 3.7. Let A ∈ S∩AG(U). Then, for all g, g′ ∈ G, fA(gg′) =
fA(g′) if and only if fA(g) = fA(e).

Proof. Let A ∈ S∩AG(U) and fA(gg′) = fA(g′) for all g, g′ ∈ G. By
choosing g′ = e we get

fA(ge) = fA(e)

⇒ fA(eg) = fA(e) (by Lemma 3.5)

⇒ fA(g) = fA(e).

Conversely, suppose that fA(g) = fA(e) ∀ g ∈ G. Then,

fA(gg′) ⊇ fA(g) ∩ fA(g′)

= fA(e) ∩ fA(g′)

= fA(g′) (by Lemma 3.4)
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This implies that

(3.1) fA(gg′) ⊇ fA(g′).

Also,

fA(g′) = fA(eg′) = fA((g−1g)g′)

= fA
(
(g′g)g−1

)
(by the left invertive law)

⊇ fA(g′g) ∩ fA(g−1)

= fA(gg′) ∩ fA(g) (by Lemma 3.5)

= fA(gg′) ∩ fA(e)

= fA(gg′) (by Lemma 3.4)

This implies that

(3.2) fA(g′) ⊇ fA(gg′).

Consequently, Equations (3.1) and (3.2) implies that, fA(g′) ⊇ fA(gg′) ⊇
fA(g′). Hence, fA(gg′) = fA(g′). �

Lemma 3.8. Let A ∈ S∩AG(U). If fA(gg′−1) = fA(e) then fA(g) =
fA(g′) for all g, g′ ∈ G.

Proof. Let A ∈ S∩AG(U) such that fA(gg′−1) = fA(e). Therefore, for
all g, g′ ∈ G

fA(g) = fA(e · g) = fA((g′g′−1)g)

= fA
(
(gg′−1)g′

)
(by the left invertive law)

⊇ fA(gg′−1) ∩ fA(g′)

= fA(e) ∩ fA(g′)

= fA(g′). (by Lemma 3.4)

Thus

(3.3) fA(g) ⊇ fA(g′).

And

fA(g′) = fA(g′−1) = fA(e · g′−1) = fA((g−1g)g′−1)

= fA
(
(g′−1g)g−1

)
(by the left invertive law)

⊇ fA(g′−1g) ∩ fA(g−1)

= fA(gg′−1) ∩ fA(g) (by Lemma 3.5)

= fA(g). (by Lemma 3.4)
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Thus

(3.4) fA(g′) ⊇ fA(g).

Hence, by Equations (3.3) and (3.4) we get, fA(g) = fA(g′) for all g, g′ ∈
G. �

Note that, Lemma 3.8 is similar Theorem 3.2 in [10]. In [10], since
parameter set is a group, proof of the theorem is made by using associa-
tive law. But an AG-group is non-associative. Therefore we make proof
of lemma by using left invertive law, Lemma (3.5) and (3.4).

The following theorem is available for both soft int-groups and soft
int-AG-groups.

Theorem 3.9. Let A,B ∈ S∩AG(U). Then, A ∧B ∈ S∩AG(U).

Proof. The proof can be made by similar way to proof of Theorem 4. in
[7]. �

Note that A∨B of any two soft sets A and B may or may not be a soft
int-AG-group as given by the following counter example.

Example 3.10. Assume that U = {u1, u2, . . . , u6} is the universal set.
Let G be any AG-group of order 4 as defined in the following table

· 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 3 2 1 0
3 2 3 0 1

Consider soft sets A,B over U as follows:

A = {(0, U) , (1, {u2, u4}) , (2, {u2}) , (3, {u2})} ,
and

B = {(0, U) , (1, {u1, u3}) , (2, {u3}) , (3, {u3})} .
It is clear that both A,B ∈ S∩AG(U). Now, take

(fA ∨ fB)
(
(1, 1) · (0, 2)−1

)
= (fA ∨ fB) ((1, 1) · (0, 3))

(fA ∨ fB) (1 · 0, 1 · 3)

= (fA ∨ fB) (1, 2)

= (fA) (1) ∨ (fB) (2) = {u2, u3, u4},
and

(fA ∨ fB) (1, 1)∩(fA ∨ fB) (0, 2) = {u1, u2, u3, u4}∩U = {u1, u2, u3, u4},
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this implies that

(fA ∨ fB)((1, 1) · (0, 2)−1) ) (fA ∨ fB)(1, 1) ∩ (fA ∨ fB)(0, 2).

Hence, A ∨B is not a soft int-AG-group over U .

Definition 3.11. Let A,B ∈ S∩AG(U) on AG-groups G1 and G2 re-
spectively. Then, the product of A and B is denoted by A × B and
is defined by

A×B =
{{

(g, g′), (fA×B) (g, g′)
}

: ∀ (g, g′) ∈ G1 ×G2

}
=

{{
(g, g′),

(
fA(g)× fB(g′)

) }
: ∀ (g, g′) ∈ G1 ×G2

}
.

Example 3.12. Let U = {0,−1, 1} is the universal set, andG1 = {a, b, c, d}
and G2 = {x, y, z} are AG-groups of order 4 and 3 defined in the follow-
ing tables (i) and (ii) respectively:

. a b c d . x y z
a d a b c x x y z
b c d a b y z x y
c b c d a z y z x
d a b c d

(i) (ii)

Let A,B ∈ S∩AG(U) on AG-groups G1 and G2 respectively defined by:

fA(a) = {0} = fA(c), fA(b) = {0,−1}, fA(d) = {0,−1, 1},
and

fB(x) = {0,−1, 1} , fB(y) = {−1} = fB(z).

Then,

A×B =
{{

(g, g′),
(
fA(g)× fB(g′)

) }
: ∀ (g, g′) ∈ G1 ×G2

}
,

=
{
{(a, x) , ((0, 0) , (0,−1) , (0, 1))} , {(a, y) , (0,−1)} , {(a, z) , (0,−1)} ,

{(b, x) , ((0, 0) , (0,−1) , (0, 1) , (−1, 0) , (−1,−1) , (−1, 1))} ,
{(b, y) , ((0,−1) , (−1,−1))} , {(b, z) , ((0,−1) , (−1,−1))} ,
{(c, x) , ((0, 0) , (0,−1) , (0, 1))} , {(c, y) , (0,−1)} , {(c, z) , (0,−1)} ,
{(d, x) , ((0, 0) , (0,−1) , (0, 1) , (−1, 0) , (−1,−1) , (−1, 1) , (1, 0) ,

(1,−1) , (−1, 1))}, {(d, y) , ((0,−1) , (−1,−1) , (1,−1))} ,

{(d, z) , ((0,−1) , (−1,−1) , (1,−1))}
}
.
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Theorem 3.13. Let A,B ∈ S∩AG(U) on G1 and G2 respectively. Then
A×B ∈ S∩AG(U × U).

Proof. For any (x1, y1), (x2, y2) ∈ G1 ×G2,

(fA×B) ((x1, y1), (x2, y2)
−1) = (fA×B) ((x1, y1), (x2, y2)

−1)

= (fA×B) ((x1, y1), (x
−1
2 , y−12 ))

= (fA×B) ((x1x
−1
2 , y1y

−1
2 )

= fA(x1x
−1
2 )× fB(y1y

−1
2 ) (by Definition 3.11)

⊇ (fA(x1) ∩ fA(x2))× (fB(y1) ∩ fB(y2))

= (fA(x1)× fB(y1)) ∩ (fA(x2)× fB(y2))

= (fA×B) (x1, y1) ∩ (fA×B) (x2, y2).

Hence, A×B ∈ S∩AG(U × U). �

Theorem 3.14. Let A,B ∈ S∩AG(U), then A∩̃B ∈ S∩AG(U).

Proof. Since A,B ∈ S∩AG(U). Therefore, A∩̃B 6= Φ. For any x, y ∈
A∩̃B, we have

(fA∩̃fB) (xy−1) = fA(xy−1) ∩ fB(xy−1) (by Definition 2.2-(v))

⊇ (fA(x) ∩ fA(y)) ∩ (fB(x) ∩ fB(y))

= (fA(x) ∩ fB(x)) ∩ (fA(y) ∩ fB(y))

= (fA∩̃fB) (x) ∩ (fA∩̃fB) (y).

Hence, A∩̃B ∈ S∩AG(U). �

Note that A∪̃B may not be a soft int-AG-group over U as given by the
following counter example.

Example 3.15. Let G = {0, 1, 2, 3, 4, 5} be an AG-group of order 6 de-
fined in the following table:

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 2 0 1 5 3 4
2 1 2 0 4 5 3
3 3 4 5 0 1 2
4 5 3 4 2 0 1
5 4 5 3 1 2 0
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Let A and B are any two soft int-AG-groups over U = Z defined as
follow:

fA(0) = Z | fB(0) = Z
fA(1) = {0, 1, 4} = fA(5) | fB(1) = {6, 7} = fB(5)

fA(2) = {0, 1, 4, 11} = fA(4) | fB(2) = {6, 7, 10, 13} = fB(4)

fA(3) = {0, 1, 4, 12, 13} | fB(3) = {6, 7, 8, 9}
It is clear that

(3.5) (fA∪̃fB)
(
2 · 4−1

)
= (fA∪̃fB) (5) = fA(5)∪fB(5) = {0, 1, 4, 6, 7},

and

((fA∪̃fB) (2)) ∩ ((fA∪̃fB) (4)) = (fA(2) ∪ fB(2)) ∩ (fA(4) ∪ fB(4))

= {0, 1, 4, 6, 7, 10, 11, 13},
this implies that

(3.6) ((fA∪̃fB) (2)) ∩ ((fA∪̃fB) (4)) = {0, 1, 4, 6, 7, 10, 11, 13}.
From Equations (3.5) and (3.6) it is clear that

(fA∪̃fB)
(
2 · 4−1

)
) ((fA∪̃fB) (2)) ∩ ((fA∪̃fB) (4)) .

Hence the union of two soft int-AG-groups may not be a soft int-AG-
group.

Definition 3.16. Let H be an AG-subgroup of an AG-group G, A ∈
S∩AG(U) on G, and Φ 6= B ∈ S(U) on H. If B ∈ S∩AG(U) on H, then
B is called a soft int-AG-subgroup of A over U , on H and denoted
by B≤̃A.

Example 3.17. Let U = {u1, u2, . . . , u10} be the universal set and G be
any AG-group of order 9 defined in the following table,

· 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 2 0 1 4 5 3 7 8 6
2 1 2 0 5 3 4 8 6 7
3 7 6 8 0 2 1 5 3 4
4 6 8 7 1 0 2 4 5 3
5 8 7 6 2 1 0 3 4 5
6 4 3 5 8 6 7 0 2 1
7 3 5 4 7 8 6 1 0 2
8 5 4 3 6 7 8 2 1 0
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Define a soft int-AG-group A as follows:

fA(0) = U,

fA(3) = {u1, u2, u3, u4} = fA(7),

fA(1) = {u1, u2} = fA(2) = fA(4) = fA(5) = fA(6) = fA(8).

Let H1 = {0, 3, 7} and H2 = {0, 1, 2} be two AG-subgroups of G. Define
soft int-AG-groups B and C

B = {(0, U) , (3, {u2, u4}) , (7, {u2, u4})} ,
and

C = {(0, U) , (1, {u1, u2}) , (2, {u1, u2})} .
As B,C⊆̃A. Therefore, B, C≤̃A.

Theorem 3.18. Let B, C≤̃A. Then, B∩̃C≤̃A.

Proof. By Çağman et al. ([7], Theorem 7), we have the proof for two
soft int-groups. Let us prove for two soft int-AG-groups. Since B, C≤̃A,
B∩̃C 6= Φ. Let x, y ∈ B∩̃C. Then

(fB∩̃fC) (xy−1) =
(
(fB∩̃C) (xy−1)

)
= fB(xy−1) ∩ fC(xy−1)

⊇ (fB(x) ∩ fB(y)) ∩ (fC(x) ∩ fC(y))

= (fB(x) ∩ fC(x)) ∩ (fB(y) ∩ fC(y))

= fB∩̃C(x) ∩ fB∩̃C(y).

Thus, xy−1 ∈ B∩̃C. Hence, B∩̃C≤̃ A. �

Theorem 3.19. Let {Bi : i ∈ I} ≤̃A for all i ∈ I. Then ∪i∈IBi≤̃A.

Proof. By Kaygısız ([10], Theorem 3.4), we have the proof for soft int-
groups. We can prove by similar way for soft int-AG-groups. Since
{Bi : i ∈ I} ≤̃A for all i ∈ I, ∩i∈IBi 6= Φ. Let x, y ∈ ∩i∈IBi. Then,

(∩̃i∈IfBi) (xy−1) =
((
f∩̃i∈IBi

)
(xy−1)

)
= ∩i∈I

(
fBi(xy

−1) : i ∈ I
)

⊇ ∩̃i ∈ I ((fBi(x) ∩ fBi(y)) : i ∈ I)

= (∩i∈I (fBi(x) : i ∈ I)) ∩ (∩i∈I (fBi(y) : i ∈ I))

=
((
f∩̃i∈IBi

)
(x)
)
∩
((
f∩̃i∈IBi

)
(y)
)
.

Thus, xy−1 ∈ ∩̃i∈IBi. Hence, ∩̃i∈IBi≤̃A. �
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Note that if B, C≤̃A. Then it is not necessary that, B∪̃C≤̃A in general.

Example 3.20. From, Example 3.17, it can be easily shown that:
(3.7)

(fB∪̃fC) (3 · 2−1) = (fB∪̃C) (3 · 2) = (fB∪̃C) (8) = fB(8) ∪ fC(8) = ∅,

and

((fB∪̃fC) (3)) ∩ ((fB∪̃fC) (2)) = (fB(3) ∪ fC(3)) ∩ (fB(2) ∪ fC(2))

= {u2, u4} ∩ {u1, u2} ,

this implies that

(3.8) ((fB∪̃fC) (3)) ∩ ((fB∪̃fC) (2)) = {u2} .

By Equations (3.7) and (3.8), we get

(fB∪̃fC) (3 · 2−1) ) ((fB∪̃fC) (3)) ∩ ((fB∪̃fC) (2)) .

Hence, B∪̃C�̃A.

4. Conjugate Soft int-AG-groups

Definition 4.1. Let A ∈ S∩AG(U) and u ∈ G. Then Au is called
conjugate soft int-AG-group (with respect to u) denoted by Au∼cA,
and is given as

fAu(x) = fA
(
(ux)u−1

)
, for all x ∈ G.

Remark 4.2. It is noted that a conjugate soft int-AG-group may or may
not be a soft-int-AG-group.

Example 4.3. Consider an AG-group G of order 6 defined in Example
3.15. Let A ∈ S∩AG(Z), defined as follows:

fA(0) = Z,
fA(2) = {1, 3, . . . , 9} = fA(4),

fA(1) = {3, 6, 9} = fA(3) = fA(5).

The conjugates soft int-AG-group A is given by:
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fA0(0) = fA3(0) = fA(0) = Z,
fA0(1) = fA3(1) = fA(5) = {3, 6, 9} ,
fA0(2) = fA3(2) = fA(4) = {1, 3, . . . , 9} ,
fA0(3) = fA3(3) = fA(3) = {3, 6, 9} ,
fA0(4) = fA3(4) = fA(2) = {1, 3, . . . , 9} ,
fA0(5) = fA3(5) = fA(1) = {3, 6, 9} .

fA1(0) = fA4(0) = fA(2) = {1, 3, . . . , 9},
fA1(1) = fA4(1) = fA(1) = {3, 6, 9} ,
fA1(2) = fA4(2) = fA(0) = Z,
fA1(3) = fA4(3) = fA(5) = {3, 6, 9} ,
fA1(4) = fA4(4) = fA(4) = {1, 3, . . . , 9} ,
fA1(5) = fA4(5) = fA(3) = {3, 6, 9} .

fA2(0) = fA5(0) = fA(4) = {1, 3, . . . , 9},
fA2(1) = fA5(1) = fA(3) = {3, 6, 9} ,
fA2(2) = fA5(2) = fA(2) = {1, 3, . . . , 9} ,
fA2(3) = fA5(3) = fA(1) = {3, 6, 9} ,
fA2(4) = fA5(4) = fA(0) = Z,
fA2(5) = fA5(5) = fA(5) = {3, 6, 9} .

A1 and A2 are conjugate soft int-AG-groups but are not soft int-AG-
groups over Z, as

fA1(2 · 2) = fA1(0) = {1, 3, . . . , 9} ) fA1(2) ∩ fA1(2) = Z,

and

fA2(4 · 4) = fA2(0) = {1, 3, . . . 9} ) fA2(4) ∩ fA2(4) = Z.

Definition 4.4. Let A ∈ S∩AG(U). Then A is called a normal soft
int-AG-group over U if

fA
(
(xy)x−1

)
= fA(y) ∀ x, y ∈ G.

Or in other words A is a normal soft int-AG-group over U , if A is self
conjugate soft int-AG-group.

The set of all normal soft int-AG-groups over U is represented byNS∩AG(U).
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Example 4.5. Let G be an AG-group of order 6 defined as in Example
3.15. Let A ∈ S∩AG(Z), defined by

fA(0) = Z = fA(2) = fA(4),

fA(1) = {2, 4, 6, 8, 10} = fA(3) = fA(5).

The conjugates soft int-AG-groups of A, are given by:

fA0(0) = fA3(0) = fA(0) = Z,
fA0(1) = fA3(1) = fA(5) = {2, 4, 6, 8, 10} ,
fA0(2) = fA3(2) = fA(4) = Z,
fA0(3) = fA3(3) = fA(3) = {2, 4, 6, 8, 10} ,
fA0(4) = fA3(4) = fA(2) = Z,
fA0(5) = fA3(5) = fA(1) = {2, 4, 6, 8, 10} .

fA1(0) = fA4(0) = fA(2) = Z,
fA1(1) = fA4(1) = fA(1) = {2, 4, 6, 8, 10} ,
fA1(2) = fA4(2) = fA(0) = Z,
fA1(3) = fA4(3) = fA(5) = {2, 4, 6, 8, 10} ,
fA1(4) = fA4(4) = fA(4) = Z,
fA1(5) = fA4(5) = fA(3) = {2, 4, 6, 8, 10} .

fA2(0) = fA5(0) = fA(4) = Z,
fA2(1) = fA5(1) = fA(3) = {2, 4, 6, 8, 10} ,
fA2(2) = fA5(2) = fA(2) = Z,
fA2(3) = fA5(3) = fA(1) = {2, 4, 6, 8, 10} ,
fA2(4) = fA5(4) = fA(0) = Z,
fA2(5) = fA5(5) = fA(5) = {2, 4, 6, 8, 10} .

Hence, A ∈ NS∩AG(Z), as A is self conjugate soft int-AG-group.

Theorem 4.6. Let A ∈ S∩AG(U). Then the following assertions are
equivalent for all x, y ∈ G,

(1) fA
(
(xy)x−1

)
= fA(y),

(2) fA
(
(xy)x−1

)
⊇ fA(y),

(3) fA
(
(xy)x−1

)
⊆ fA(y).

Proof. (i)⇒ (ii): Obvious.
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(ii)⇒ (iii): Assume that (ii) holds. Consider,

fA
(
(xy)x−1

)
⊆ fA

((
x−1

(
(xy)x−1

)) (
(x−1)−1

))
= fA

((
x−1

(
(xy)x−1

))
x
)

= fA
((
x
(
(xy)x−1

))
x−1

)
(by the left invertive law)

= fA
((

(xy)
(
xx−1

))
x−1

)
(by Lemma 2.5-(ii))

= fA
(
((xy) e)x−1

)
= fA

(
((ey)x)x−1

)
(by the left invertive law)

= fA
(
(yx)x−1

)
= fA

((
x−1x

)
y
)

(by the left invertive law)

= fA (ey) = fA(y)

⇒ fA
(
(xy)x−1

)
⊆ fA(y) ∀ x, y ∈ G.

(iii)⇒ (i): Assume that (iii) holds. Consider,

fA
(
(xy)x−1

)
⊇ fA

((
x−1

(
(xy)x−1

)) ((
x−1

)−1))
= fA(y), as in the proof (ii)⇒ (iii)

⇒ fA
(
(xy)x−1

)
⊇ fA(y) ∀ x, y ∈ G.

Consequently, fA
(
(xy)x−1

)
⊆ fA(y) ⊆ fA

(
(xy)x−1

)
. Hence, fA

(
(xy)x−1

)
=

fA(y). �

Theorem 4.7. Let A ∈ S∩AG(U). Then A ∈ NS∩AG(U) if and only if
fA([x, y]) ⊇ fA(x) ∀ x, y ∈ G, where [x, y] = xy · y−1x−1 is a commuta-
tor of x and y in AG-group G.

Proof. Let A ∈ NS∩AG(U). Then,

fA([x, y]) = fA
(
(xy)

(
y−1x−1

))
(by Definition of Commutator’s in G)

= fA
((
y−1x−1

)
(xy)

)
(by Lemma 3.5 )

= fA
(
(yx)

(
x−1y−1

))
(by Lemma 2.5-(iv))

= fA
(
x−1

(
(yx) y−1

))
(by Lemma 2.5-(ii))

⊇ fA
(
x−1

)
∩ fA

(
(yx) y−1

)
= fA(x) ∩ fA(x) (as A ∈ NS∩AG(U))

= fA(x).

Hence, fA([x, y]) ⊇ fA(x) ∀ x, y ∈ G.
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Conversely, assume that fA([x, y]) ⊇ fA(x) ∀ x, y ∈ G. Then, for
any z ∈ G,

fA
(
(xz)x−1

)
= fA

(
e
(
(xz)x−1

))
= fA

((
zz−1

) (
(xz)x−1

))
= fA

(((
(xz)x−1

)
z−1
)
z
)

(by the left invertive law)

= fA
(((

z−1x−1
)

(xz)
)
z
)

(by the left invertive law)

= fA
((

(zx)
(
x−1z−1

))
z
)

(by Lemma 2.5-(iv))

= fA ([z, x]z)

⊇ fA([z, x]) ∩ fA(z)

⊇ fA(z) ∩ fA(z) = fA(z).

This implies that fA
(
(xz)x−1

)
⊇ fA(z) ∀ x ∈ G. Now by Theorem 4.6,

we have fA
(
(xz)x−1

)
= fA(z) ∀ x ∈ G. Hence, A ∈ NS∩AG(U). �

Proposition 4.8. Let A ∈ S∩AG(U). Then fA([x, y]) = fA(e) ∀ x, y ∈
G if and only if A ∈ NS∩AG(U).

Proof. Let A ∈ NS∩AG(U). Then,

fA
(
(yx) y−1

)
= fA(x) ∀ x, y ∈ G

⇔ fA
(
e
(
(yx) y−1

))
= fA(x)

⇔ fA
((
xx−1

) (
(yx) y−1

))
= fA(x)

⇔ fA
(((

(yx) y−1
)
x−1

)
x
)

= fA(x) (by the left invertive law)

⇔ fA
(((

x−1y−1
)

(yx)
)
x
)

= fA(x) (by the left invertive law)

⇔ fA
((

(xy)
(
y−1x−1

))
x
)

= fA(x) (by Lemma 2.5-(iv))

⇔ fA (([x, y])x) = fA(x)

⇔ fA([x, y]) = fA(e). ( by Lemma 3.7)

Hence, A ∈ NS∩AG(G) if and only if µA([x, y]) = µA(e) ∀ x, y ∈ G. �

5. α-inclusion of Soft Int-AG-groups

Definition 5.1. Let A ∈ S∩AG(U). Then, e-set of A is denoted by Aẽ
and defined by

Aẽ = {x ∈ G : fA(x) = fA(e)} .

Example 5.2. In Example 3.3, Aẽ = {d}.



Soft int-AG-groups 167

Theorem 5.3. Let A ∈ S∩AG(U). Then, Aẽ is an AG-subgroup of G.

Proof. By definition of Aẽ, it is obvious that Aẽ 6= ∅. Let x, y ∈ Aẽ.
Then, fA(x) = fA(e) = fA(y). Consider,

fA(xy−1) ⊇ fA(x) ∩ fA(y)

= fA(e) ∩ fA(e)

= fA(e),

also by Theorem 3.4, fA(e) ⊇ fA(xy−1) ∀ x, y ∈ G. Consequently,
fA(xy−1) = fA(e). This implies that xy−1 ∈ Aẽ. Hence Aẽ is an AG-
subgroup of G. �

Definition 5.4. Let A ∈ S∩AG(U) and α ∈ P (U). Then α-inclusion of
A, is denoted by Aα̃, and defined by

Aα̃ = {x ∈ G : fA(x) ⊇ α} ,
while the set

Aα̃+ = {x ∈ G : fA(x) ⊃ α} ,
is called the strong α-inclusion of A.

Note that if α = ∅. Then Aα̃ = {x ∈ G : fA(x) 6= ∅}, and is called
support of A, and denoted by supp(A).

Example 5.5. Let U = {u1, u2, u3, u4, u5, u6, u7} be the universal set and
G = {0, 1, 2, 3, 4, 5} be an AG-group of order 6 defined as in Example
3.15. If we define soft int-AG-group A over U by:

fA(0) = U,
fA(1) = {u2, u3, u4, u5, u6} = fA(5),
fA(2) = {u1, u2, u3, u4, u5, u6} = fA(4),
fA(3) = {u2, u3, u4, u5, u6, u7} .

Let α = {u1, u2, u3, u4, u5, u6}, then Aα̃ = {0, 2, 4} and Aα̃+ = {0}.

Corollary 5.6, Theorem 5.7, 5.9 and 5.10 are available for both soft
int-group and soft int-AG-groups. Therefore, proofs of them is similar
in [7] and [10].

Corollary 5.6. Let B,C≤̃A. Then, the following assertions hold;

(1) B⊆̃C, α ∈ P (U). Then Bα̃ ⊆ Cα̃,
(2) Let α1 ⊆ α2, α1, α2 ∈ P (U). Then Bα̃2 ⊆ Bα̃1,
(3) B=̃C ⇔ Bα̃ = Cα̃, for all α ∈ P (U).
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Proof. Let B,C≤̃A.

(1) Let x ∈ Bα̃, then, fB(x) ⊇ α. Since fB⊆̃fC , α ∈ P (U). This
implies that α ⊆ fB⊆̃fC ⇒ fC(x) ⊇ α ⇒ x ∈ Cα̃. Hence
Bα̃ ⊆ Cα̃.

(2) Let α1 ⊆ α2, α1, α2 ∈ P (U), and x ∈ Bα̃2 . Then fB(x) ⊇ α2.
Since, α1 ⊆ α2 implies that fB(x) ⊇ α1 ⇒ x ∈ Bα̃1 . Therefore,
Bα̃2 ⊆ Bα̃1 .

(3) The proof is straight forward. �

Theorem 5.7. Let B,C≤̃A and α ∈ P (U). Then,

(1) Bα̃ ∪ Cα̃ ⊆ (B∪̃C)α̃,
(2) Bα̃ ∩ Cα̃ = (B∩̃C)α̃.

Proof. Let B,C≤̃A, and G be the corresponding AG-group then:

(1) For any x ∈ G, let

x ∈ Bα̃ ∪ Cα̃ ⇒ x ∈ Bα̃ or x ∈ Cα̃
⇒ fB(x) ⊇ α or fC(x) ⊇ α,
⇒ fB(x) ∪ fC(x) ⊇ α,
⇒ fB∪̃C(x) ⊇ α,
⇒ x ∈ (B∪̃C)α̃ .

Therefore, Bα̃ ∪ Cα̃ ⊆ (B∪̃C)α̃.
(2) Again, for any x ∈ G, let x ∈ Bα̃ ∩ Cα̃. Then,

x ∈ Bα̃ ∩ Cα̃ ⇔ x ∈ Bα̃ and x ∈ Cα̃
⇔ fB(x) ⊇ α and fC(x) ⊇ α,
⇔ fB(x) ∩ fC(x) ⊇ α,
⇔ fB∩̃C(x) ⊇ α,
⇔ x ∈ (B∩̃C)α̃ .

Hence, Bα̃ ∩ Cα̃ = (B∩̃C)α̃. �

Example 5.8. Let U = {u1, u2, . . . , u10} be the universal set and G be
any AG-group of order 8, defined by:
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· 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 5 4 7 6 1 0 3 2
5 4 5 6 7 0 1 2 3
6 7 6 5 4 3 2 1 0
7 6 7 4 5 2 3 0 1

Define a soft int-AG-group A as follows:

fA(0) = U,

fA(1) = {u1, u2, . . . , u6} ,
fA(2) = {u1, u2, u3, u4} = fA(3),

fA(4) = {u1, u2} = fA(5) = fA(6) = fA(7).

Let H1 = {0, 1, 2, 3} and H2 = {0, 1} be any AG-subgroups of G. Define
soft int-AG-groups B and C on H1 and H2 respectively as follows:

B = {(0, U) , (1, {u1, u2}) , (2, {u1}) , (3, {u1})} ,
and

C = {(0, U) , (1, {u3})} .
As B,C⊆̃A. Therefore, B, C≤̃A.
Now, let α = {u1, u2, u3}, then Bα̃ = {0} and Cα̃ = {0}. Therefore,
Bα̃ ∪ Cα̃ = {0} and Bα̃ ∩ Cα̃ = {0}.
Also,

B∪̃C = {(0, U) , (1, {u1, u2, u3}) , (2, {u1}) , (3, {u1})} ,
and,

B∩̃C = {(0, U)} ,

(B∪̃C)α̃ = {0, 1} and (B∩̃C)α̃ = {0}.
Hence, Bα̃ ∪ Cα̃ ⊆ (B∪̃C)α̃. While, Bα̃ ∩ Cα̃ = (B∩̃C)α̃.

Theorem 5.9. Let {Bi : i ∈ I} be the family of soft int-AG-subgroups
of A over U . Then, for any α ∈ P (U),

(1)
⋃
i∈I (Biα̃) ⊆ (∪̃i∈IBi)α̃,

(2) ∩i∈I (Biα̃) = (∩̃i∈IBi)α̃.

Proof. The proof is straight forward. �
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Theorem 5.10. Let A ∈ S∩AG(U) and {αi : i ∈ I} be a family of non-
empty subsets of P (U). If β = ∩{αi : i ∈ I}, and γ = ∪{αi : i ∈ I}.
Then the following assertions hold,

(1) ∪i∈I Aα̃i ⊆ Aβ,
(2) ∩i∈I Aα̃i = Aγ.

Proof. The proof is clear from Definition 5.4. �

Theorem 5.11. Let G be an AG-group and α ∈ P (U). Then A ∈
S∩AG(U) if and only if Aα̃ is a subgroup of G, where Aα̃ 6= ∅.

Proof. Let A ∈ S∩AG(U) and Aα̃ 6= ∅. Suppose that x, y ∈ Aα̃, then
fA(x) ⊇ α and fA(y) ⊇ α. Therefore,

fA(xy−1) ⊇ fA(x) ∩ fA(y) ⊇ α.
By definition of α-inclusion, xy−1 ∈ Aα̃. Hence, Aα̃ is a subgroup of G.

Conversely, suppose that Aα̃ is a subgroup of G for any Aα̃ 6= ∅.
Let x, y ∈ G such that fA(x) = β and fA(y) = γ and let δ = β ∩ γ.
Then x, y ∈ Aδ̃ and Aδ̃ ≤ G by hypothesis. So xy−1 ∈ Aδ̃. Therefore,

fA(xy−1) ⊇ δ = β ∩ γ = fA(x) ∩ fA(y). Hence, A ∈ S∩AG(U). �

Theorem 5.12. Let A ∈ NS∩AG(U). Then, Aẽ is a normal AG-
subgroup of G.

Proof. By Theorem 5.3, Aẽ ≤ G. Let x ∈ Aẽ and g ∈ G. Then, by
Definition 4.4, we get

fA(gx · g−1) = fA(x) = fA(e)⇒ gx · g−1 ∈ Aẽ.
Hence, Aẽ is a normal AG-subgroup of G. �

Lemma 5.13. Let G be an AG-group and A ∈ S(U). Then, A ∈
S∩AG(U) if and only if Aα̃ is a AG-subgroup of G ∀α ∈ Im(A) ∪ {β ∈
P (U) : β ⊆ fA(e)}.

Proof. Let A ∈ S∩AG(U) and α ∈ Im(G). As fA(e) ⊇ fA(x) for all
x ∈ G, e ∈ Aα̃. Therefore Aα̃ 6= ∅. For x, y ∈ Aα̃ fA(x) ⊇ α and
fA(y) ⊇ α. Since A is soft int-AG-group, fA(xy−1) ⊇ fA(x) ∩ fA(y) ⊇
α ∩ α = α. Thus xy−1 ∈ Aα̃. Similarly, if α ⊆ fA(e), then it can
be shown that Aα̃ is an AG-subgroup of G. Conversely, let Aα̃ be an
AG-subgroup of G for all α ∈ Im(A) ∪ {β ∈ P (U) : β ⊆ fA(e)}. Then
for all α ∈ Im(A) we must have e ∈ Aα̃ and so fA(e) ⊇ α. Suppose
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x, y ∈ G and fA(x) = α, fA(y) = β. Let γ = α ∩ β. Then x, y ∈ Aγ̃
and γ ⊆ fA(e). By hypothesis, Aγ̃ is an AG-subgroup of G and so
xy−1 ∈ Aγ̃ . Thus fA(xy−1) ⊇ γ = α ∩ β = fA(x) ∩ fA(y). Hence A is
soft int-AG-group of G.

�

Theorem 5.14. Let G be an AG-group and A ∈ S(U). Then, A ∈
NS∩AG(U) if and only if Aα̃ is a normal AG-subgroup of G ∀α ∈
Im(A) ∪ {β ∈ P (U) : β ⊆ fA(e)}.

Proof. Suppose that A ∈ NS∩AG(U) and α ∈ Im(A) ∪ {β ∈ P (U) :
β ⊆ fA(e)}. Since A is a soft int-AG-group, Aα̃ is a subgroup of G
by Theorem 5.11. If x ∈ G and y ∈ Aα̃, from Definition 4.4, we know
that fA(xy · x−1) = fA(y) ⊇ α. Hence xy · y−1 ∈ Aα̃. Thus Aα̃ is a
normal AG-subgroup of G. Conversely, suppose that Aα̃ is a normal
AG-subgroup of G for all α ∈ Im(A) ∪ {β ∈ P (U) : β ⊆ fA(e)}. From
Lemma 5.13, A ∈ S∩AG(U). Assume that x, y ∈ G and α = fA(y).
Then y ∈ Aα̃ and so xy · x−1 ∈ Aα̃. Thus fA(xy · x−1) ⊇ α = fA(y).
This shows that A satisfies condition (iii) of Theorem 4.6. Consequently,
from Theorem 4.6 A ∈ NS∩AG(U). �

6. Conclusion

In this paper one of the most interesting concepts of soft set theory ”Soft
Intersection group” is extended to soft intersection AG-group. The no-
tion of conjugates soft int-AG-group, normal soft int-AG-group, e-set
and α-inclusion of soft int-AG-groups are presented and investigated. In
future, these concepts can further be generalized to bipolar soft inter-
section AG-groups and soft intersection AG-rings. Moreover the study
of homomorphism theorems in soft intersection AG-group may also be
a nice work in this area.
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[3] A. Aygünoğlu, H. Aygün, Introduction to fuzzy soft groups, Computer and Math-
ematics with Applications, 58 (2009), 1279-1286.

[4] I. Ahmad, Amanullah, M. Shah, Fuzzy AG-subgroups, Life Science Journal, 9(4)
(2012), 3931-3936.

[5] Amanullah, Imtiaz Ahmad, and Faruk Karaaslan, Cubic Abel-grassmann’s sub-
groups, Journal of Computational and Theoretical Nanoscience, 13(1) (2016),
628-635,.

[6] Amanullah, I. Ahmad, M. Shah, On the equal-height elements of fuzzy AG-
subgroups, Life Science Journal, 10(4) (2013), 3143-3146, .
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