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A WEIGHTED ALGORITHM TO SOLVE THE

CONFORMABLE TIME FRACTIONAL

REACTION-DIFFUSION-CONVECTION PROBLEM

A. MOHAMMADPOUR

Abstract. A simple algorithm is applied in this paper to solve
the conformable time fractional reaction-diffusion-convection prob-
lem (CTFRDCP) with varriable coefficients. The aim of applying
this algorithm is to overcome the inability of the differential trans-
form method to solve such problems. The differential transform
method is implemented twice. Once with initial condition, again
with boundary conditions. A convex combination of two solutions
is considered as solution of the problem.
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1. Introduction

The fractional heat equation includes a fractional derivative with re-
spect to space and/or time variable. By replacing the first-order time
derivative with a fractional derivative of order α ∈ (0, 1) to the standard
heat equation, we have a time fractional heat equation [1]. For example,
models that describe heat conduction in materials with non-standard
structure, such as porous materials, ploymers and so on, use derivatives
of fractional-order [2, 3]. Many articles have been written to obtain an-
alytical and numerical solutions of fractional heat conduction equation
[5, 6, 7, 8, 9]. A method that gives the exact solutions or approximate
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solutions by power series, namely, differential transform method (DTM),
proposed by Zhou [10] for solving some boundary value problems in or-
dinary dierential equations. To solve some PDEs, the 2D DTM was
proposed by Chen and Ho [11]. An alternative technique which is simi-
lar to DTM and derived from the power series expansion, named reduced
differential transform method (RDTM), proposed by Keskin and Otu-
ranc [12] to solve linear and nonlinear PDEs. In this paper, by applying
the fractional power series expansions where proposed by Abdeljawad
[13], the RDTM is adapted to conformable fractional derivative [14] to
solve CTFRDCP of the form
(1.1)
∂αu(x, t)

∂tα
+ a0(x)u(x, t) + a1(x)

∂u(x, t)

∂x
+ a2(x)

∂2u(x, t)

∂x2
− f(x, t) = 0,

(x, t) ∈ [0, L]× [0, T ],

with the conditions

u(x, 0) = φ(x), 0 ≤ x ≤ L,(1.2)

u(0, t) = g(t), 0 ≤ t ≤ T,(1.3)

ux(0, t) = h(t), 0 ≤ t ≤ T,(1.4)

where a0(x), a1(x), a2(x), f(x, t), φ(x), g(t) and h(t) are given functions

and
∂αu

∂tα
is the conformable time fractional derivative of order α defined

in [14].
The arrangement of this paper is in the following plan: In section 2, the
conformable fractional derivative is reviewed. In Section 3, the RDTM
is given based on the conformable fractional derivative and a weighted
algorithm is introduced. Finally, in Section 4, some test problems are
solved in order to show the ability and efficiency of the algorithm.

2. The conformable fractional derivative

In this section, some necessary definitions and mathematical prelimi-
naries of the conformable fractional derivative required for our work are
reviewed.

Definition 2.1. [14] Given a function f : [0,∞) → R. Then, the
conformable fractional derivative of f of order α is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε
,
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for all t > 0, α ∈ (0, 1). If f is α-differentiable in some (0, a), a > 0 and

limt→0+ f
(α)(t) exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

Tα(f)(t) satisfies all the properties in the following theorem.

Theorem 2.2. [14] Let α ∈ (0, 1] and f, g be α-differentiable at a point
t > 0, then
i. Tα(c1f + c2g)(t) = c1Tα(f)(t) + c2Tα(g)(t).
ii. Tα(tβ) = βtβ−α for all β ∈ R.
iii. Tα(C) = 0 for all constant C.
iv. Tα(fg)(t) = f(t)Tα(g)(t) + g(t)Tα(f)(t).

v. Tα(fg )(t) = g(t)Tα(f)(t)−f(t)Tα(g)(t)
g2(t)

.

Specially for certain function we have [14]
1) Tα(sin 1

α t
α) = cos 1

α t
α.

2) Tα(cos 1
α t
α) = sin 1

α t
α.

3) Tα(e
1
α tα) = e

1
α tα.

Theorem 2.3. [13] Assume f is an infinitely α-differentiable function,
for some 0 < α ≤ 1 at a neighborhood of a point t0. Then f has the
fractional power series expansion:

f(t) =

∞∑
k=0

(
T t0α f

)(k)
(t0)(t− t0)kα

αkk!
, t0 < t < t0 +R

1
α , R > 0.

Here
(
T t0α f

)(k)
(t0) means the application of the conformable fractional

derivative k times.

3. Conformable differential transform method

in this section, at first, we review the basic definitions and operations
of RDTM which was introduced in [12].
Consider a function of two variables u(x, t) and suppose that it can
be represented as product of two single-variable functions, i.e., u(x, t) =
f(x)g(t). Based on the properties of differential transform [10], function
u(x, t) can be represented as

(3.1) u(x, t) =
∞∑
k=0

Fix
i
∞∑
j=0

Gjt
j =

∞∑
k=0

Uk(x)tk,
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where Uk(x) is called t-dimensional spectrom function of u(x, t).

Definition 3.1. If function u(x, t) is analytic and differentiated contin-
uosly with respect to time t and space x in the domain of interest, then
let

(3.2) Uk(x) =
1

k!

[
∂k

∂tk
u(x, t)

]
t=0

,

where the t-dimensional spectrum function Uk(x) is the transformed
function which is called T-function in brief. The differential inverse
transform of Uk(x) is defined as follows:

(3.3) u(x, t) =

∞∑
k=0

Uk(x)tk.

Combining (3.2) and (3.3) gives the solution as

(3.4) u(x, t) =

∞∑
k=0

1

k!

[
∂k

∂tk
u(x, t)

]
t=0

tk.

In real applications, by taking to account n-terms of the series (3.4),
the function u(x, t) can be written by

(3.5) u(x, t) = lim
n→+∞

un(x, t) = lim
n→+∞

n∑
k=0

Uk(x)tk.

The fundamental operations of reduced differential transform that can
be deduced from Eqs. (3.2) and (3.3) are listed in Table 1.
Now, considering Theorem 2.3 and the fractional power series expansion,
we can construct CRDTM, which is based on the conformable fractional
derivative.

Definition 3.2. Suppose that u(x, t) be an analytic function that sat-
isfies the conditions of Theorem 2.3 with respect to variable t at t0 = 0.
Define

(3.6) Uk(x) =
1

αkk!

[ ∂kα
∂tkα

u(x, t)
]
t=0

,

where α is order of conformable derivative and Uk(x) is the transformed
function.
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Table 1. Some basic reduced differential transformations.

Function Form Transformed Form

u(x, t) Uk(x) = 1
k!

[
∂k

∂tk
u(x, t)

]
t=0

u(x, t) = v(x, t) + w(x, t) Uk(x) = Vk(x) +Wk(x)
u(x, t) = cv(x, t) Uk(x) = cVk(x) (c is a constant)

u(x, t) = v(x, t)w(x, t) Uk(x) =
k∑

k1=0

Vk1(x)Wk−k1(x)

u(x, t) = tnv(x, t) Uk(x) = Vk−n(x)

u(x, t) = xmtn Uk(x) = xmδ(k − n) =
{
xm k=n
0 k 6=n

u(x, t) = ∂
∂tv(x, t) Uk(x) = (k + 1)Vk+1(x)

u(x, t) = ∂2

∂t2
v(x, t) Uk(x) = (k + 1)(k + 2)Vk+2(x)

u(x, t) = ∂m

∂xm v(x, t) Uk(x) = ∂m

∂xmVk(x)

Definition 3.3. Let Uk(x) be the transform of u(x, t) with respect to
t, the differential inverse transform of Uk(x) is defined as

(3.7) u(x, t) =
∞∑
k=0

Uk(x)tkα =
∞∑
k=0

[ ∂kα
∂tkα

u(x, t)
]
t=0

tkα.

All properties of the CRDTM are similar to those in Table 1. For
instance, the following theorem is proved.

Theorem 3.4. If u(x, t) =
∂αv(x, t)

∂tα
, then Uk(x) = α(k + 1)Vk+1(x)

Proof. From Definition 3.2 we have

Uk(x) =
1

αkk!
[
∂kα

∂tkα
u(x, t)]t=0 =

1

αkk!
[
∂kα

∂tkα

(
∂α

∂tα
v(x, t)

)
]t=0

=
1

αkk!
[
∂(k+1)α

∂t(k+1)α
v(x, t)]t=0 = α(k + 1)

1

αk+1(k + 1)!
[
∂(k+1)α

∂t(k+1)α
v(x, t)]t=0

= α(k + 1)Vk+1(x)

�

Now, a weighted method according to the CRDTM will be presented
to solve the problem (1.1)-(1.4). It is done in two step. At the first step,
considering Theorem 3.4 and Table 2, the transformation of Eq.(1.1)



140 A. Mohammadpour

Table 2. Some basic properties of CRDTM.

Function Form Transformed Form

u(x, t) Uk(x) = 1
αkk!

[
∂kα

∂tkα
u(x, t)

]
t=0

u(x, t) = v(x, t) + w(x, t) Uk(x) = Vk(x) +Wk(x)
u(x, t) = cv(x, t) Uk(x) = cVk(x) (c is a constant)

u(x, t) = v(x, t)w(x, t) Uk(x) =
k∑

k1=0

Vk1(x)Wk−k1(x) =
k∑

k1=0

Wk1(x)Vk−k1(x)

u(x, t) = xmtn Uk(x) = xmδ(kα− n) =
{
xm kα=n
0 kα6=n

u(x, t) = ∂α

∂tα v(x, t) Uk(x) = α(k + 1)Vk+1(x)

and initial condition(1.2) with respect to t we have
(3.8)

α(k+1)Uk+1(x)+a0(x)Uk(x)+a1(x)
∂

∂x
Uk(x)+a2(x)

∂2

∂x2
Uk(x)−Fk(x) = 0,

where Fk(x) is transformation of f(x, t). By substituting of the U0(x) =
φ(x) as transformation of (1.2) into (3.8), the approximate solution

(3.9) ûn(x, t) =

n∑
k=0

Uk(x)tkα.

will be obtained.
At the second step, we seek the series solution of the Eq.(1.1) according
to boundary conditions (1.3) and (1.4). Again considering Theorem 3.4
and Table 1, take differential transform of Eq.(1.1) with respect to x
and get
(3.10)

∂α

∂tαUk(t) +
k∑

k1=0

Uk1(t)A0(k−k1)(x) +
k∑

k1=0

k1(k1 + 1)Uk1+1(t)A1(k−k1)(x)+

k∑
k1=0

(k1 + 1)(k1 + 2)Uk1+2(t)A2(k−k1)(x)− Fk(t) = 0

Where Ui(t), Ai(x), and Fi(t) are transformation of u(x, t), ai(x), i =
0, 1, 2 and f(x, t) with respect to x. From the boundary conditions (1.3)
and (1.4), we have

(3.11) U0(t) = g(t),
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and

(3.12) U1(t) = h(t).

Substituting (3.11) and (3.12) into (3.10), we can get the successive
values of Ur(t). In result, the series solution

(3.13) ǔn(x, t) =

n∑
r=0

Ur(t)x
r.

will be obtained. An approximate solution to problem (1.1)-(1.4) is
considered as the following weighted combination.

(3.14) un(x, t) = λûn(x, t) + (1− λ)ǔn(x, t),

where λ is a constant on the interval [0, 1]. For determining the best
value of λ for each n, we use the idea presented in [15].

Theorem 3.5. Suppose that φ(x) ∈ L2[(0, L)], g(t), h(t) ∈ L2[(0, T )]
and ‖.‖ denotes the L2 − norm. Let

λ1 = ‖ûn(0, t)− g(t)‖,

λ2 = ‖∂ûn
∂x

(0, t)− h(t)‖,

λ3 = ‖ǔn(x, 0)− φ(x)‖.
Then the best value for λ in (3.14) is

λ =
λ2

3

λ2
1 + λ2

2 + λ2
3

, n ≥ 0.

Proof. refer to [15]. �

4. Illustrative examples

To show the applicability of the CRDTM, some examples will be pre-
sented. We use n terms in evaluating the approximate solution un(x, t).

Example 4.1. As the first example consider

(4.1)
∂αu(x, t)

∂tα
−∂u(x, t)

∂x
−x∂

2u(x, t)

∂x2
+4x−1 = 0, (x, t) ∈ [0, 1]×[0, 1],

with the conditions

u(x, 0) = x2, 0 ≤ x ≤ 1,(4.2)

u(0, t) = ux(0, t) =
1

α
tα, 0 ≤ t ≤ 1.(4.3)
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Using Theorem 3.4 and Table 2, transformation of the Eq.(4.1) with
respect to t becomes

(4.4) α(k + 1)Uk+1(x)− ∂

∂x
Uk(x)− x ∂

2

∂x2
Uk(x) + (4x− 1)δ(kα) = 0.

Substituting U0(x) = x2 as transformation of the initial condition (4.2)
into recurrence relation (4.1) gives the next Uk(x), k ≥ 1 as

U1(x) =
1

α
, Uk(x) = 0, k = 2, 3, · · ·

From (3.9), the inverse differential transform of Uk(x) gives:

ûn(x, t) =
n∑
k=0

Uk(x)tkα = x2 +
1

α
tα

Now, use the basic properties of the reduced differential transform of Ta-
ble 1 with respect to x. Transformation of the Eq.(4.1) and the boundary
conditions (4.3) to x becomes

(4.5)
∂α

∂tα
Uk(t)−(k+1)Uk+1(t)−k(k+1)Uk+1(t)+4δ(k−1)−δ(k) = 0

and

(4.6) U0(t) = U1(t) =
1

α
tα .

To take the next Uk(x), k ≥ 2, replace (4.6) into recurrence relation (4.5)
and give

U2(t) =
5

2
α, Uk(t) = 0, k = 3, 4, · · · .

From (3.13) the inverse differential transform of Uk(x) gives:

ǔn(x, t) =

n∑
k=0

Uk(x)xk =
1

α
tα +

1

α
tαx+

5

2
αx2.

As λ = 1 for n ≥ 8, the Eqs. (3.14) and (3.5) give

lim
n→+∞

(
un(x, t) = ûn(x, t)

)
= x2 +

1

α
tα,

which is the exact solution of the problem.

Example 4.2. Consider the following problem
(4.7)
∂αu(x, t)

∂tα
− ∂

2u(x, t)

∂x2
− ∂u(x, t)

∂x
−u(x, t)+e

1
α
tα = 0, (x, t) ∈ [0, 1]×[0, 1],
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with the conditions

u(x, 0) = x, 0 ≤ x ≤ 1,(4.8)

u(0, t) = 0, ux(0, t) = e
1
α
tα , 0 ≤ t ≤ 1.(4.9)

Being in a similar way with the first example, we apply the Theorem
3.4 and Table 2 to Eq.(4.7) and achieve the following relation.

(4.10) α(k + 1)Uk+1(x) =
∂2

∂x2
Uk(x) +

∂

∂x
Uk(x) + Uk(x)− 1

αkk!
.

Substituting the initial condition (4.8), i.e. U0(x) = x into relation (4.10)
we have

U1(x) =
1

α
x, U2(x) =

1

2α2
x, U3(x) =

1

6α3
x, · · · , Uk(x) =

1

k!αk
x.

Therefore, we obtain the approximate solution

ûn(x, t) =

n∑
k=0

Uk(x)tkα = x+
1

α
xtα+

1

2α2
xt2α+

1

6α3
xt3α+ · · ·+ 1

n!αn
xtnα.

On the other side, using the basic properties of the reduced differential
transform of Table 1 with respect to x, for the Eq.(4.7) and the boundary
conditions (4.9) we take the relation

∂α

∂tα
Uk(t)−(k+1)(k+2)Uk+2(t)−(k+1)Uk+1(t)−Uk(t)+e

1
α
tαδ(k) = 0,

or
(4.11)

(k + 1)(k + 2)Uk+2(t) = (k + 1)Uk+1(t) + Uk(t)−
∂α

∂tα
Uk(t)− e

1
α
tαδ(k)

and

(4.12) U0(t) = 0, U1(t) = e
1
α
tα .

Replace (4.12) into (4.11) and obtain Uk(t) = 0, k ≥ 2. So, we take the
solution of the problem (4.7) with boundary conditions (4.9) as

ǔn(x, t) =
n∑
k=0

Ukx
k = 0 + e

1
α
tαx+ 0 = xe

1
α
tα .

Here, λ = 0 for n ≥ 5. Hence, by Eqs. (3.14) and (3.5),

lim
n→+∞

(
un(x, t) = ǔn(x, t)

)
= xe

1
α
tα .

which is the exact solution of the problem.
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Example 4.3. The function u(x, t) = sin(x + 1
α t
α) is the exact solution

of the problem

(4.13)
∂αu(x, t)

∂tα
+ x (

∂2u(x, t)

∂x2
+
∂u(x, t)

∂x
)− cos(x+

1

α
tα ) = 0,

with the initial and boundary conditions

u(x, 0) = sinx, 0 ≤ x ≤ 1

2
,(4.14)

u(0, t) = sin (
1

α
tα ) , ux(0, t) = cos (

1

α
tα ) 0 ≤ t ≤ 1

2
.(4.15)

For this problem, we compute an approximate solution and compare
it with the exact solution.
The transformed form of the Eqs. (4.13) and (4.14) with respect to t
becomes

(4.16) (k+1)Uk+1(x)+x
∂2

∂x2
Uk(x)+xUk(x)− 1

αkk!
cos(

kπ

2
+

1

α
tα) = 0.

Substituting U0(x) = sinx, the transformed form of the initial condition
(4.14), into the relation (4.16) gives
(4.17)
U1(x) = 1

α cos(x) , U3(x) = − 1
6α3 cos(x) , U5(x) = 1

120α5 cos(x) , · · · ,
U2k+1(x) = (−1)k

(2k+1)!α2k+1 cos(x)

U2(x) = − 1
2α2 sin(x) , U4(x) = 1

24α4 sin(x) , U6(x) = − 1
720α6 sin(x) , · · · ,

U2k(x) = (−1)k

(2k)!α2k sin(x)

Now, we take the differential transformation of the Eq.(4.13) with re-
spect to x. Again we apply the properties of differential transformation
in Table 1 and obtain

∂α

∂tα
Uk(t) + k(k + 1)Uk+1(t) + Uk−1(t)− 1

k!
cos(

kπ

2
+

1

α
tα ) = 0,

or
(4.18)

Uk+1(t) =
1

k(k + 1)

(
− ∂α

∂tα
Uk(t)− Uk−1(t) + Uk(t) +

1

k!
cos(

kπ

2
+

1

α
tα )

)
.

Substituting U0(t) = sin ( 1
α t
α ) and U1(t) = cos ( 1

α t
α ), the transformed

form of the boundary conditions (4.15), into relation (4.18) gives the



solution of the conformable time fractional reaction-diffusion-convection problem 145

next term of Uk(t), k ≥ 2 as
(4.19)
U2(x) = −1

2 sin( 1
α t
α) , U4(x) = 5

144 sin( 1
α t
α) , U6(x) = − 41

43200 sin( 1
α t
α) , · · ·

U3(x) = − 1
12 cos( 1

α t
α) , U5(x) = 1

720 cos( 1
α t
α) , U7(x) = 1

56700 cos( 1
α t
α) , · · · .

Therefore, the Eqs. (4.17) and (4.19), give the approximate solution by
(3.9), (3.13) and (3.14).
According to the Theorem 3.5, we get λ = 0.449, 0.594, 0.663 For n =
5, 10, 15 respectively. The relative errors of the approximation, have
been given in Table 3, Table 4 and Table 5. Also, Figure 1 indicates the

function error for {(x, t)| 0 ≤ x ≤ 1

2
, 0 ≤ t ≤ 1

2
}.

Table 3. The relative error of the computed approxi-
mate solution of the Example 3 by n = 5.

x t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

0.1 6.6286E − 5 1.1920E − 4 3.1249E − 4 7.2514E − 4 1.4639E − 3
0.2 4.1012E − 4 3.6751E − 4 5.5493E − 4 1.0451E − 3 1.9685E − 3
0.3 1.2332E − 3 9.4466E − 4 1.0219E − 3 1.5056E − 3 2.5452E − 3
0.4 2.6828E − 3 1.9772E − 3 1.8118E − 3 2.1743E − 3 3.2292E − 3
0.5 4.8871E − 3 3.5857E − 3 3.0238E − 3 3.1206E − 3 4.0549E − 3

Table 4. The relative error of the computed approxi-
mate solution of the Example 3 by n = 10.

x t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

0.1 2.4524E − 5 1.5120E − 5 9.9538E − 6 6.3766E − 6 3.8580E − 6
0.2 1.7586E − 4 1.1260E − 4 7.5169E − 5 4.7064E − 5 2.3597E − 5
0.3 5.4093E − 4 3.5778E − 4 2.4264E − 4 1.5235E − 4 7.3519E − 5
0.4 1.1849E − 3 8.0621E − 4 5.5490E − 4 3.4989E − 4 1.6451E − 4
0.5 2.1641E − 3 1.5105E − 3 1.0541E − 3 0.6740E − 4 3.0572E − 4
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Figure 1. The error function of the approximate solution of
the example 3 for n = 5, 10, 15.
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Table 5. The relative error of the computed approxi-
mate solution of the Example 3 by n = 15.

x t = 0.1 t = 0.2 t = 0.3 t = 0.4 t = 0.5

0.1 5.2963E − 8 4.8109E − 8 6.1769E − 9 2.0888E − 10 3.3379E − 10
0.2 4.7110E − 8 4.2793E − 8 5.4943E − 8 1.8580E − 10 2.9323E − 10
0.3 4.1394E − 7 3.7599E − 8 4.8276E − 8 1.6325E − 9 2.5846E − 9
0.4 3.5883E − 7 3.2594E − 7 4.1849E − 7 1.4151E − 8 2.2515E − 9
0.5 3.0648E − 7 2.7839E − 7 3.5744E − 7 1.2087E − 8 1.9105E − 8

5. Conclusion

In this study, the time fractional reaction-diffusion-convection prob-
lem with varriable coefficients has been solved. The time derivative has
been considered the conformable fractional derivative. Reduced differ-
ential transform method has been adapted to conformable fractional
derivative, then has been applied to obtain two approximate solution.
One of them with respect to time variable t by initial condition and
another, with respect to space variable x by boundary conditions. A
convex combination of two solution has been introduced as the approxi-
mate solution of the problem. The given examples, have shown that the
proposed method yield good results.

References

[1] Y.Z. Povstenko, Fractional heat conduction equation and associated thermal
stress, J. Therm. Stresses, 28 (2005) 83-102.

[2] D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek,
Modelling heat transfer in heterogeneous media using fractional calculus, Philos.
Trans. R. Soc. A, 371 (2013) 1-10.

[3] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientic, 2014.
[4] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time

fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2) (2001) 153-192.
[5] P. Zhuang, F. Liu, Implicit difference approximation for the time fractional dif-

fusion equation, J. Appl. Math. Comput., 22 (3) (2006) 87-99.
[6] S. Momani, Z. Odibat, Numerical solutions of the space-time fractional advec-

tiondispersion equation, Numer. Methods Partial Differ. Equ., 24 (6) (2008)
1416-1429.

[7] A. Taghavi, A. Babaei, A. Mohammadpour, A coupled method for solving a class
of time fractional convection-diffusion equations with variable coefficients, Comp.
Math. Modeling, 28 (1) (2017).



148 A. Mohammadpour

[8] A. babaei, A new accurate approach to solve the Cauchy problem of the
Kolmogorov-PetrovskiiPiskunov equations, Int. J. App. Comp. Math., (2017) 1-
14.

[9] A. babaei, A. Mohammadpour, Solving an inverse heat conduction problem by
reduced differential transform method, New Trends in Mathematical Sciences, 3
(3) (2015) 65-70.

[10] J. K. Zhou, Differential transform and its applications for electrical circuits,
Huazhong University Press, Wuhan, China, 1986.

[11] C.K. Chen, S.H. Ho, Solving partial dierential equations by two-dimesional dier-
ential transform method, Appl. Math. and Comput., 106 (1999) 171-179.

[12] Y. Keskin, G. Oturanc, Reduced Differential Transform Method for partial dif-
ferential equations, Inter. Jour. Nonl. Scie. Num. Simu., 6 (10) (2009) 741-749.

[13] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math.,
279 (2015) 57-66.

[14] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional
derivative, J. Comput. Appl. Math. 264 (2014) 65-70.

[15] Shidfar, A., Garshasbi, M., A weighted algorithm based on Adomian decomposi-
tion method for solving an special class of evolution equations, Commun. Non-
linear Sci. Numer. Simulat., 14 (2009) 1146-1151.

A. Mohammadpour
Department of Mathematics, Babol branch, Islamic Azad University, Babol, Iran.
Email:mohammadpour@ baboliau.ac.ir


	1. Introduction
	2. The conformable fractional derivative
	3. Conformable differential transform method
	4. Illustrative examples
	5. Conclusion
	References

