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CODING THEORY AND HYPER BCK-ALGEBRAS

ATAMEWOUE TSAFACK SURDIVE, NDJEYA SLESTIN AND LELE CLESTIN

Abstract. In this paper we define the notion of a hyper BCK val-
ued function on a set and investigate some of it’s related properties
as Y.B. Jun, S.Z. Song and C. Flaut have done for a BCK-algebras.
We construct the codes generated by a hyper BCK valued function
and provide an algorithm which allow to find a hyper BCK-algebra
starting from a given binary block code. Moreover we establish
the link between the hyper BCK-algebra constructed from a binary
block code and hyper BCK-ideal on a hyper BCK-algebra.
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1. Introduction

The hyperstructure theory (called also multialgebra) is introduced in
1934 by F. Marty [7]. Since then a great deal of literature has been
produced on the applications of the hyperstructures. Later K. Iseki [4]
initiated in 1966 the study of BCK-algebras as a generalization of the
concept of set-theoretic difference and propositional calculi. Y.B. Jun
et al. [6] applied for the first time the hyperstructures to BCK-algebra
and introduced in 2000 the notion of a hyper BCK-algebra with is a
generalization of BCK-algebra.

Y.B. Jun and S.Z. Song, C. Flaut and T.S. Atamewoue et al. [1, 3,
5] study the connection between BCK-algebras, residuated lattices and
coding theory.
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The main purpose of this paper is to study coding theory in the
context of hyper BCK-algebras. This work is organized as follows: In
section 2, we present some basic notions about hyper BCK-algebraic
that we will use in the sequel. In section 3, we introduce the notion of
hyper BCK-valued functions and investigated several of their properties.
In section 4, we give the construction of the block codes by using the
notion of hyper BCK-valued functions, and after haves show that in
some circumstances every finite hyper BCK-algebras determines a binary
block code, we end by a link between the constructed block codes and
some hyper BCK-ideal.

2. Preliminaries

We will recall some known concepts related to hyper BCK-algebra
which will be helpful in further section. For more about hyper BCK-
algebra we refer the reader to [2, 6, 8]. Let H be a non-empty set
endowed with a hyperoperation ”∗”, i.e. a mapping of H ×H into the
family of nonempty subsets of H. For two subsets A and B of H, denote

by A∗B the set
⋃

a∈A;b∈B
a ∗ b. We shall use x∗y instead of x∗{y}, {x}∗y,

or {x} ∗ {y}.

Definition 2.1. By a hyper BCK-algebra we mean a non-empty set
H endowed with a hyperoperation ∗ and a constant θ satisfying the
following axioms for all x, y, z ∈ H:
(i) (x ∗ z) ∗ (y ∗ z)� x ∗ y,
(ii) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(ii) x ∗ y � {x},
(vi) x� y and y � x imply x = y,
Where x� y is defined by θ ∈ x ∗ y and A� B by for all a ∈ A, there
exists b ∈ B such that a � b, for every A,B ⊆ H. Note that ” � ” is
called hyper order in H.

In any hyper BCK-algebra (H, ∗, θ) the following hold for all x, y, z ∈
H:
(a1) x ∗ θ = {x}, θ ∗ x = {θ} and θ ∗ θ = {θ},
(a2) θ � x,
(a3) x ∗ θ � {y} implies x� y and y ∗ x� z ∗ x
(a4) y � z implies x ∗ z � x ∗ y,
(a5) x ∗ y = {θ} implies (x ∗ z) ∗ (y ∗ z) = {θ}.
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Definition 2.2. Let I be a non-empty subset of a hyper BCK-algebra
H. Then I is called a hyper BCK-ideal of H if the following hold:
(i) θ ∈ I,
(ii) x ∗ y � I and y ∈ I imply x ∈ I for all x, y ∈ H.

Definition 2.3. Let I be a non-empty subset of a hyper BCK-algebra
H. Then I is called a weak hyper BCK-ideal of H if the following hold:
(i) θ ∈ I,
(ii) (x ∗ y) ∩ I 6= ∅ and y ∈ I imply x ∈ I for all x, y ∈ H.

Remark 2.4. Every hyper BCK-ideal of a hyper BCK-algebra H is a
weak hyper BCK-ideal of H, but the converse may not be true [6].

3. Hyper BCK-valued functions

In what follows let A and H denote a nonempty set and a hyper
BCK-algebra respectively, unless otherwise specified.

Definition 3.1. A mapping Ã : A → H is called a hyper BCK-valued
function (briefly, hyper BCK-function) on A.

Definition 3.2. A cut function of Ã, for q ∈ H is defined to be a

mapping Ãq : A→ {0, 1} such that (∀x ∈ A) (Ãq(x) = 1⇔ θ ∈ q∗Ã(x)).

Obviously, Ãq is the characteristic function of Aq = {x ∈ A|θ ∈
q ∗ Ã(x)}, called a cut subset or a q-cut of Ã. Note that Aθ = A.

Example 3.3. Let A = {x, y} be a set and let H = {θ, a, b} be a hyper
BCK-algebra with the following table:
∗ θ a b
θ {θ} {θ} {θ}
a {a} {θ, a} {a}
b {b} {b} {θ, b}

The mapping Ã : A → H given by Ã =

(
x y
a b

)
is a hyper BCK-

function. Its cut subsets are Aθ = A, Aa = {x}, Ab = {y}.

Proposition 3.4. Every hyper BCK-function Ã : A → H on A is

represented by the supremum of the set {q ∈ X|Ãq(x) = 1}, that is

(∀x ∈ A) (Ã(x) = sup{q ∈ X|θ ∈ q ∗ Ã(x)}).

Proof. . For any x ∈ A, let Ã(x) = r ∈ H. Then θ ∈ r ∗ Ã(x) and so

Ãr(x) = 1.
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Assume that Ãp(x) = 1 for p ∈ H, then θ ∈ p ∗ Ã(x) = p ∗ r. Thus
p� r.

Since r ∈ {p ∈ H|Ãp(x) = 1}, it follows that Ã(x) = r = sup{p ∈
H|Ãp(x) = 1}. �

For a hyper BCK-function Ã : A → H on A, consider the following
sets:
AH := {Aq|q ∈ H}; ÃH := {Ãq|q ∈ H}.

Proposition 3.5. If Ã : A→ H is a hyper BCK-function on A, we can
easily obtain the following results:

i)(∀x ∈ A) (Ã(x) = sup{q ∗ Ãq(x)|q ∈ H}),

where q ∗ Ãq(x) =

{
q, if Ãq(x) = 1;
θ, otherwise.

(ii) (∀q, p ∈ H) (θ ∈ p ∗ q ⇔ Aq ⊆ Ap),
(iii) (∀x, y ∈ A) (Ã(x) 6= Ã(y)⇔ A

Ã(x)
6= A

Ã(y)
),

(iv) (∀q ∈ H) (∀x ∈ A) (q ∗ Ã(x) = {θ} ⇔ A
Ã(x)
⊆ Aq),

(v) (∀x, y ∈ A) (Ã(x) ∗ Ã(y) = {θ} ⇔ A
Ã(y)
⊆ A

Ã(x)
),

(vi) (∀Y ⊆ H) (∃ supY inH ⇒ Asup{q|q∈Y } =
⋂
{Aq|q ∈ Y }). (Note

here that the sup is define via the hyperorder ”� ”),
(vii) For a bounded hyper BCK-algebra H, we have
(∀S ⊆ H) (Asup{q|q∈S} =

⋂
{Aq|q ∈ S}),

(viii) If for any subset Y of H there exists a supremum of Y , then
(∀p, q ∈ Y ) (Ap

⋂
Aq ∈ AH),

(iX)
⋃
{Aq|q ∈ H} = A.

The following example shows that the converse of (viii) may not be
true in general.

Example 3.6. Let A = {x, y} be a set and let H = {θ, a, b, c} be a hyper
BCK-algebra with the following table:
∗ θ a b c
θ {θ} {θ} {θ} {θ}
a {a} {θ, a} {θ} {a}
b {b} {a} {θ} {b}
c {c} {c} {c} {θ}

The function Ã : H → A given by Ã =

(
x y
a c

)
is a hyper BCK-

function on A and the cut sets of Ã are as follows: Aθ = A, Aa = {x},
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Ab = ∅, Ac = {y}.
sup{a, c} does not exist but Aa ∩Ac ∈ AH .

4. Codes generated by hyper BCK-functions

.
Let Ã : A → H be a hyper BCK-function on A and let ∼ be a binary
relation on H defined by (∀p, q ∈ H) (p ∼ q ⇔ Ap = Aq). Then ∼ is
clearly an equivalence relation on H.

Let Ã(A) := {q ∈ H|Ã(x) = q for some x ∈ A}.
Let x/ ∼= {y ∈ H|x ∼ y}, for any x ∈ H. x/ ∼ is called equivalence

class containing x. It is also easy to see that Ã(x) = sup(x/ ∼) is the
greatest element of ∼-class to which it belongs and that every ∼-class
contains exactly one element.

4.1. From a hyper BCK-algebra to a block code. LetA = {1, 2, ..., n}
and let H be a finite hyper BCK-algebra. Every hyper BCK-function

Ã : A → H on A determines a binary block code V of length n in the
following way:
To every x/ ∼, where x ∈ H, there corresponds a codeword vx =

x1x2...xn such that xi = j ⇔ Ãx(i) = j for i ∈ A and j ∈ {0, 1}.
Let vx = x1x2...xn and vy = y1y2...yn be two codewords belonging to
a binary block code V . We can define an order relation ≤c on the set
codewords belonging to a binary block code V as follows:
vx ≤c vy ⇔ yi ≤ xi for i = 1, 2, ..., n.

Example 4.1. (1) Let H = {0, 1, 2} be a hyper BCK-algebra defined by
the following table:
∗ 0 1 2
0 {0} {0} {0}
1 {1} {0} {0}
2 {2} {2} {0, 2}

Let Ã : H → H, x 7→

 0, if x=0;
1, if x=1;
2, if x=2.

be a hyper BCK-function on H

Then

0 1 2

Ã0 1 1 1

Ã1 0 1 0

Ã2 0 0 1
Thus V = {111, 010, 001} and
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Figure 1.

(2) Let H = {θ, a, b, c} be a hyper BCK-algebra defined by the following
table:
∗ θ a b c
θ {θ} {θ} {θ} {θ}
a {a} {θ, a} {θ, a} {θ, a}
b {b} {b} {θ, a} {θ, a}
c {c} {c} {c} {θ, a}

Let Ã : H → H be a hyper BCK-function onH given by Ã =

(
θ a b c
θ a b c

)

Then

θ a b c

Ãθ 1 1 1 1

Ãa 0 1 1 1

Ãb 0 0 1 1

Ãc 0 0 0 1
Thus V = {1111, 0111, 0011, 0001} and

Figure 2.
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Theorem 4.2. Every finite hyper BCK-algebra H determines a block
codes V such that (H,�) is isomorphic to (V,≤c).

Proof. Let H = {a1, a2, ..., an} be a finite hyper BCK-algebra in which

a1 = θ and let Ã : H → H be the identity hyper BCK-function on

H. The decomposition of Ã provides a family {Ãq|q ∈ H} which is

the desired code under the order (≤c). Let f : H → {Ãq|q ∈ H} be

a function defined by f(q) = Ãq for all q ∈ H. Since every ∼-class
contains exactly one element, hence f is one-to-one.
Let x ∈ H and p, q ∈ H be such that p� q.

If Ãq(x) = 0, then Ãq(x) ≤ Ãp(x).

If Ãq(x) = 1, then θ ∈ q ∗ Ã(x), i.e. q � Ã(x). Thus P � q and

q � Ã(x) by using the transitivity of the relation ” � ”, we obtain

p� Ã(x) , i.e. θ ∈ p ∗ Ã(x). Therefore Ãp(x) = 1 and we conclude that

Ãp ≤c Ãq.
Therefore f is an isomorphism. �

4.2. From a binary block code to a hyper BCK-functions.

Example 4.3. Let (H,≤) be a finite partial ordered set with the minimum
element denoted by θ. We define the following hyper operation ∗ on H:

θ ∗ x = {θ} and x ∗ x = {θ}, x ∈ H;
x ∗ y = {θ}, if x ≤ y x, y ∈ H;
x ∗ y = {x}, if y < x x, y ∈ H;
x ∗ y = {y}, if x, y can′t be compared x, y ∈ H.

It is easy to see that (H, ∗, θ) is a hyper BCK-algebra.

If the above example of hyper BCK-algebra has n elements, we will
denote it with Cn. Let V be a binary block code with n codewords of
length n. We consider the matrix MV = (mi,j)i,j∈{1,2,...,n} ∈Mn({0, 1})
with the rows consisting of the codewords of V . This matrix is called
the matrix associated to the code V .

Theorem 4.4. With the above notations, if the codeword 11...1︸ ︷︷ ︸
n−time

is in

V and the matrix MV is upper triangular with mii = 1, for all i ∈
{1, 2, ..., n}, there are a set A with n elements, a hyper BCK-algebra H
and a hyper BCK-function f : A→ H such that f determines V .
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Proof. We consider on V the lexicographic order, denoted by ≤lex. It is
clear that (V,≤lex) is a totally ordered set.
Let V = {w1, w2, ..., wn}, with w1 ≥lex w2 ≥lex ... ≥lex wn. This implies
that w1 = 11 · · · 1︸ ︷︷ ︸

n-time

and wn = 00 · · · 0︸ ︷︷ ︸
(n− 1)-time

1. On V , we define a partial order

≤c as in construction of the code by the hyper BCK-function. Now,
(V,≤c) is a partially ordered set with w1 ≤c wi ≤c wn, i ∈ {2, ..., n− 1}.
We remark that w1 correspond to θ and wn is the maximal element in
(V,≤c).
We define on (V,≤c, θ) a hyper operation ” ∗ ” as in Example 4.3.
Then H = (V, ∗, θ) is a hyper BCK-algebra and V is isomorphic to H.
We consider A = V and the identity map f : A → H, w 7→ w, as a
hyper BCK-function on A. The decomposition of f provides a family
VH = {fr : A→ {0, 1} | fr(x) = 1 ⇔ θ ∈ r ∗ f(x), ∀x ∈ A, r ∈ H}.
This family is the binary block-code V relative to the order relation ≤c.
Indeed, let wk ∈ V , 1 < k < n, then wk = 00...0︸ ︷︷ ︸

(k−1)−time

xik ...xin ; with

xik , ..., xin ∈ {0, 1}.
∀j ∈ If xij = 0, it result that wk ≤c wij and θ ∈ wk ∗ wij .
If xij = 1, we obtain that wij ≤c wk or wij and wk can’t be compared,
therefore wk ∗ wij = {wk} or wk ∗ wij = {wij}. �

The following example show that a binary block code as in Theorem
4.4 can be determined by two or more hyper BCK-algebras.

Example 4.5. Let V = {000010, 000110, 011101, 111111, 001011, 000001}
be a binary block code. Using the lexicographic order, the code V can
be written V = {111111, 011101, 001011, 000110,
000010, 000001} = {w1, w2, w3, w4, w5, w6}. Define the partial order ≤c
on V , we remark that w1 ≤c wi for i ∈ {2, 3, 4, 5, 6}; w2 ≤c w6; w3 ≤c
w5, w6; w4 ≤c w5; w2 can’t be compared with w3, w4, w5; w4 cant be
compared with w3, w6; and w5 cant be compared with w6. The operation
” ∗ ” on V is given in the following table:
∗ w1 w2 w3 w4 w5 w6

w1 {w1} {w1} {w1} {w1} {w1} {w1}
w2 {w2} {w1} {w3} {w4} {w5} {w1}
w3 {w3} {w2} {w1} {w4} {w1} {w1}
w4 {w4} {w2} {w3} {w1} {w1} {w6}
w5 {w5} {w2} {w5} {w5} {w1} {w6}
w6 {w6} {w6} {w6} {w4} {w5} {w1}
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Obviously, V with the operation ” ∗ ” is a hyper BCK-algebra. We
remark that the same binary block code V can be obtained from the
hyper BCK-algebra (H, ∗, θ)
∗ θ a b c d e
θ {θ} {θ} {θ} {θ} {θ} {θ}
a {a} {θ} {b} {c} {d} {θ}
b {b} {a} {θ} {c} {θ} {θ}
c {c} {a} {b} {θ} {θ} {e}
d {d} {a} {d} {d} {θ} {e}
e {e} {e} {e} {c} {d} {θ}

with hyper BCK-function Ã : V → V , Ã(x) = x. From the associated
Cayley multiplication tables, it is obvious that the hyper BCK-algebras
(H, ∗, θ) and (V, ∗, w1) are not isomorphic. From here, we obtain that
hyper BCK-algebra associated to a binary block-code as in Theorem 4.4
is not unique up to an isomorphism.

Proposition 4.6. With the above notations, we consider V as a binary
block code with n codewords of length m (with n 6= m), or a block-code
with n codewords of length n such that the codeword 11...1︸ ︷︷ ︸

n−time

is not in V ,

or a block-code with n codewords of length n such that the matrix MV is
not upper triangular. There are a natural number q = max{m,n}, a set

A with m elements and a hyper BCK-function Ã : A → Cq, where Cq
denote the hyper BCK-algebra with q elements, such that the obtained
block-code VCq contains the block-code V as a subset.

Proof. Let C be a binary block-code, C = {w1, w2, ..., wn}, with code-
words of length m. We consider the codewords w1, w2, ..., wn lexico-
graphic ordered, w1 ≤lex w2 ≤lex ... ≤lex wn. Let M ∈ Mn,m({0, 1}) be
the associated matrix with the rows w1, w2, ..., wn in this order. Using
Proposition 2.8 in [3], we can extend the matrix M to a square matrix
M ′ ∈ Mp({0, 1}), p = m + n; such that M ′ = (m′ij)i,j∈{1,2,...,p} is an

upper triangular matrix with m′ii = 1, for all i ∈ {1, 2, ..., p}. If the
first line of the matrix M ′ is not 11...1︸ ︷︷ ︸

p−time

, then we insert the row 11...1︸ ︷︷ ︸
p+1−time

as a first row and the 1 0...0︸︷︷︸
p−time

as a first column. Let q = p + 1, ap-

plying Theorem 4.4 for the matrix M ′, we obtain a residuated lattice
Cq = {x1, x2, ..., xq}, with x1 correspond to 0 and xq correspond to 1, and
a binary block-code VCq . Assuming that the initial column of the matrix
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M have in the new matrix M ′ positions ij1 , ij2 , ..., ijn ∈ {1, 2, ..., q}, let
A = {xj1 , xj2 , ..., xjn} ∈ Cq. The hyper BCK-function f : X → Cq
is such that f(xji) = xji , i ∈ {1, 2, ...,m}, determines the binary-block
code Cq such that C ⊆ VCq as restriction of the hyper BCK-function
f : Cq → Cq on A such that f(xi) = xi. �

Let C be a binary block code with m codewords of length q, with
the above notations, let H be the associated BCK-algebra and W =
{θ, w1, ..., wm+q} the associated binary block code which include the
code C. We consider the codewords θ, w1,...wm+q lexicographic ordered,
θ ≥lex w1 ≥lex w2 ≥lex ... ≥lex wm+q. Let M ∈ Mm+q+1({0, 1}) be the
associated matrix with the rows θ, w1,...,wm+q in this order. We denote
with Lwi and Cwj the lines and columns in the matrix M . The sub-
matrix M ′ of the matrix M with the rows Lw1 ,...,Lwm and the columns
Cwm+1 ,...,Cwm+q is the matrix associated to the code C.

Remark 4.7. 1) If there exists x ∈ {w1, w2, ..., wm} and
y ∈ {θ, wm+1, ..., wm+q} such that x � y, then the set
I = {θ, wm+1, ..., wm+q} can’t be hyper BCK-ideal.

2) On W , due to the order ≤c given in the construction of code from a
hyper BCK-function and to the hyper operation ∗ define in Example 4.3,
for the product of two elements of W , we can have only two possibilities
wi ∗ wj = {θ} or wi ∗ wj = {wi}, (wi, wj ∈W and i, j ∈ {1,m+ q}).

Example 4.8. Let V = {101, 110} be a binary block code. Using the lex-
icographic order, the code V can be written V = {110, 101} = {w1, w2}.

Let MV =

(
1 1 0
1 0 1

)
be the associated matrix. By Proposition 2.8

in [3],

we construct the matrix


1 1 1 1 1 1
0 1 0 1 1 0
0 0 1 1 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 =


w1

w2

w3

w4

w5

w6

.

The binary block code W = {w1, w2, w3, w4, w5, w6}, determines a hy-

per BCK-algebra (H, ∗, w1). Let X = {w4, w5, w6} and Ã : X → W ,
wi 7→ wi, (i ∈ {4, 5, 6}) be a hyper BCK-function which determines the
binary block code U = {111, 110, 101, 100, 010, 001}. Remark that the
code V is a subset of the code U .
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Since w2 ≤c w4 and w3 ≤c w4, then the set I = {w1, w4, w5, w6} is
not a hyper BCK-ideal.

Proposition 4.9. Out of the above notations, if we assume that there
is not x ∈ {w1, w2, ..., wm} such that for any y ∈ I; x � y. Then, I
determines a hyper BCK-ideal in the hyper BCK-algebra H.

Proof. since θ ∈ I, it will be sufficient to prove the property (HI2) for
these hyper BCK-ideal.
Let x, y ∈ H such that x ∗ y � I and y ∈ I.
If x, y are not compared or x � y and if x /∈ I, then x ∗ y = {x} � I.
Since x /∈ I, then θ ∈ x ∗ z = {x}. Thus x = θ ∈ I contradiction.
Therefore x ∈ I.
If x� y, with y ∈ I, then x ∈ I. �

Example 4.10. Let V = {000} = {w1} be a binary block code. Let
MV =

(
0 0 0

)
be the associated matrix. By Proposition 2.8 in [3],

we construct the matrix


1 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 =


w1

w2

w3

w4

w5

.

The binary block code W = {w1, w2, w3, w4, w5}, determines a hyper

BCK-algebra (H, ∗, w1). Let X = {w3, w4, w5, } and Ã : X → W ,
wi 7→ wi, (i ∈ {3, 4, 5}) be a hyper BCK-function which determines the
binary block code U = {111, 000, 1000, 010, 001}. It is clear that the
code V is a subset of the code U .

Since there are not w2 ≤c w3, w4 and w5, then set I = {w1, w4, w5, w6}
is a hyper BCK-ideal.

5. conclusion

In this work, we have studied the connection between hyper BCK-
algebras and coding theory. We have also proved that to each hyper
BCK-algebras (hyper BCK-function) we can associated a binary block
codes. Moreover we establish the link between the hyper BCK-algebra
constructed from a binary block code and hyper BCK-ideal on a hyper
BCK-algebra.
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