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CODING THEORY AND HYPER BCK-ALGEBRAS

ATAMEWOUE TSAFACK SURDIVE, NDJEYA SLESTIN AND LELE CLESTIN

ABSTRACT. In this paper we define the notion of a hyper BCK val-
ued function on a set and investigate some of it’s related properties
as Y.B. Jun, S.Z. Song and C. Flaut have done for a BCK-algebras.
We construct the codes generated by a hyper BCK valued function
and provide an algorithm which allow to find a hyper BCK-algebra
starting from a given binary block code. Moreover we establish
the link between the hyper BCK-algebra constructed from a binary
block code and hyper BCK-ideal on a hyper BCK-algebra.
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1. INTRODUCTION

The hyperstructure theory (called also multialgebra) is introduced in
1934 by F. Marty [7]. Since then a great deal of literature has been
produced on the applications of the hyperstructures. Later K. Iseki [1]
initiated in 1966 the study of BCK-algebras as a generalization of the
concept of set-theoretic difference and propositional calculi. Y.B. Jun
et al. [0] applied for the first time the hyperstructures to BCK-algebra
and introduced in 2000 the notion of a hyper BCK-algebra with is a
generalization of BCK-algebra.

Y.B. Jun and S.Z. Song, C. Flaut and T.S. Atamewoue et al. [1, 3,

| study the connection between BCK-algebras, residuated lattices and
coding theory.
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The main purpose of this paper is to study coding theory in the
context of hyper BCK-algebras. This work is organized as follows: In
section 2, we present some basic notions about hyper BCK-algebraic
that we will use in the sequel. In section 3, we introduce the notion of
hyper BCK-valued functions and investigated several of their properties.
In section 4, we give the construction of the block codes by using the
notion of hyper BCK-valued functions, and after haves show that in
some circumstances every finite hyper BCK-algebras determines a binary
block code, we end by a link between the constructed block codes and
some hyper BCK-ideal.

2. PRELIMINARIES

We will recall some known concepts related to hyper BCK-algebra
which will be helpful in further section. For more about hyper BCK-
algebra we refer the reader to [2, 6, 8]. Let H be a non-empty set
endowed with a hyperoperation ”«”, i.e. a mapping of H x H into the
family of nonempty subsets of H. For two subsets A and B of H, denote

by AxB the set U a * b. We shall use xxy instead of xx{y}, {z}*v,
a€A;beB
or {z} *{y}.

Definition 2.1. By a hyper BCK-algebra we mean a non-empty set
H endowed with a hyperoperation * and a constant 6 satisfying the
following axioms for all z,y,z € H:

(i) (@ 2) % (y 2) < 2 5,

(i) (xxy)xz = (z*2) *y,

(il) =+ y < {},

(vi) x < y and y < x imply = =y,

Where x <« y is defined by 6 € z *y and A < B by for all a € A, there
exists b € B such that a < b, for every A, B C H. Note that 7 < 7 is
called hyper order in H.

In any hyper BCK-algebra (H, %, 0) the following hold for all z,y, z €
H:
(a1) zx0 ={x}, 0 xx = {0} and 0 %0 = {0},
(a2) 0 < x,
(a3) z %0 < {y} implies z < y and y*xz < z * x
(a4) y < z implies x x z K x * y,
(as5) zxy = {0} implies (z * 2) * (y* z) = {6}.
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Definition 2.2. Let I be a non-empty subset of a hyper BCK-algebra
H. Then [ is called a hyper BCK-ideal of H if the following hold:

(i) 0 € I,

(i) zxy < I and y € [ imply x € [ for all z,y € H.

Definition 2.3. Let I be a non-empty subset of a hyper BCK-algebra
H. Then [ is called a weak hyper BCK-ideal of H if the following hold:
(i) 0 € I,

(ii) (x*xy)NI#Dand y € I imply z € I for all z,y € H.

Remark 2.4. Every hyper BCK-ideal of a hyper BCK-algebra H is a
weak hyper BCK-ideal of H, but the converse may not be true [0].

3. HyPER BCK-VALUED FUNCTIONS

In what follows let A and H denote a nonempty set and a hyper
BCK-algebra respectively, unless otherwise specified.

Definition 3.1. A mapping A:A— His called a hyper BCK-valued
function (briefly, hyper BCK-function) on A.

Definition 3.2. A cut function of g, for ¢ € H is defined to be a
mapping A, : A — {0,1} such that (Vz € A) (A4(z) =1 < 6 € gxA(z)).

Obviously, ﬁq is the characteristic function of A, = {x € Al|f €
q* A(z)}, called a cut subset or a g-cut of A. Note that Ag = A.

Ezample 3.3. Let A = {z,y} be a set and let H = {0, a,b} be a hyper
BCK-algebra with the following table:

x| 0 a b
0110y | {0} | {0}
o[ {at [ 10,aF | {a}
b {b} | {or [{0,b}
The mapping A:A— H given by A= 2 Zé is a hyper BCK-
function. Its cut subsets are Ag = A, A, = {z}, 4y, = {y}.

Proposition 3.4. Fvery hyper BCK—functiong : A — H on A is
represented by the supremum of the set {q € X|Aq(x) = 1}, that is
(Vz e A) (A(z) = sup{q € X|0 € gx A(x)}).

Proof. . For any x € A, let A(z) =7 € H. Then 0 € r % A(z) and so
Ap(z) = 1.
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Assume that Ep(x) — 1for p € H, then 6 € p* A(z) = p*r. Thus
pLr.

Since r € {p € H\gp(a:) = 1}, it follows that A(z) = r = sup{p €
H|A,(z) =1}. O

For a hyper BCK-function A:A— Hon A, consider the following
sets:

Ap = {AJq € HY; Ay = {A,|q € H}.

Proposition 3.5. Ifg : A — H is a hyper BCK-function on A, we can
easily obtain the following results:
i)(Vo € A) (A(z) = sup{q x Aq(z)|q € H}),
Y — Q7 Zqu(CL‘) = ]-;
where ¢ Ag(v) = { 0, otherwise.
(i1) Vg, pe H) (B epxqe Ay CAp),
(iii) (Yo,y € A) (A(x) # Aly) & Az, # Az,
(iv) Vge H) (Vx € A) (¢xAx) = {0} & Az € Ay),
(v) (va,y € A) (A(x) « Aly) = {0} & Az, € Ag,),
(vi) (VY € H) @supYinH = Agpigeeyy = ({Agla € Y}). (Note
here that the sup is define via the hyperorder” <),
vii) For a bounded hyper BCK-algebra H, we have

(
(\V/S - H) (Asup{q\qGS} = ﬂ{Aq|q € S}):

(viti) If for any subset Y of H there exists a supremum of Y, then
(

(

Vp.q €Y) (Ap(Aq € An),
iX) U{Aqlge H} = A

The following example shows that the converse of (viii) may not be
true in general.

Ezample 3.6. Let A = {z,y} be a set and let H = {6, a, b, c} be a hyper
BCK-algebra with the following table:

0 a b c
{0y | {6y [ {0} {0}
{a} | {0,a} | {0} | {a}
{or | {a} [{6} {0}
{ci | {ce} | {cr {0}

The function A : H — A given by A= ( z ‘Z ) is a hyper BCK-

OIS *

function on A and the cut sets of A are as follows: Ag = A, A, = {x},
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Ab = wa A= {y}
sup{a, c} does not exist but 4, N A, € Ay.

4. CODES GENERATED BY HYPER BCK-FUNCTIONS

Let A: A— Hbea hyper BCK-function on A and let ~ be a binary
relation on H defined by (Vp,q € H) (p ~ ¢ & A, = A;). Then ~ is
clearly an equivalence relation on H.

Let A(A) := {q € H|A(x) = q for some x € A}.

Let #/ ~= {y € H|z ~ y}, for any z € H. z/ ~ is called equivalence
class containing z. It is also easy to see that A(z) = sup(z/ ~) is the
greatest element of ~-class to which it belongs and that every ~-class
contains exactly one element.

4.1. From a hyper BCK-algebra to a block code. Let A ={1,2,....n}
and let H be a finite hyper BCK-algebra. Every hyper BCK-function
A: A — H on A determines a binary block code V of length n in the
following way:

To every x/ ~, where © € H, there corresponds a codeword v, =
T1Z9...7y such that z; = j < Ay (i) = j for i € A and j € {0,1}.

Let v, = z122...7, and vy = y192...yn be two codewords belonging to

a binary block code V. We can define an order relation <. on the set
codewords belonging to a binary block code V as follows:

Uy Zcvy Sy S fori=1,2,..n.

Ezample 4.1. (1) Let H = {0,1,2} be a hyper BCK-algebra defined by
the following table:

x| 0 1 2
0[{o} {0} | {0}
L {1} {0} | {0}
2 | {2} | {2} [{0,2}

0, if x=0;
Let A:H— H,z— < 1, if x=1; be a hyper BCK-function on H
2, if x=2.
01112
Ag |11 ]1
Th
A ol1]o
Ay 0[]0 |1

Thus V' = {111,010,001} and
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(2) Let H = {6, a,b,c} be a hyper BCK-algebra defined by the following

(H,<)

FiGure 1.

table:
x| 0 a c
0116y | {67 | {6} | {6}
a|{a} | {0,a} | {0,a} | {0,a}
b|{b}| {b} [{0,a}]|{0,a}
cl{ct] At | {c} [{0,a}
Let A: H— Hbea hyper BCK-function on H given by A= (
Ola|b]c
Ag|1]1]1]1
Then A, |01 |11
Ay |00 11
A.1010(0]|1

Thus V = {1111,0111,0011, 0001} and
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Theorem 4.2. Every finite hyper BCK-algebra H determines a block
codes V' such that (H, <) is isomorphic to (V,<.).

Proof. Let H = {al, az, ..., an} be a finite hyper BCK-algebra in which
a1 = 0 and let A : H — H be the identity hyper BCK-function on
H. The decomposition of A provides a family {A g € H} which is
the desired code under the order (<.). Let f: H — {Aq|q € H} be
a function defined by f(q) = Eq for all ¢ € H. Since every ~-class
contains exactly one element, hence f is one-to-one.

Let z € H and p,q € H be such that p < gq.

If Ay(z) =0, then Ay (zx) < Ay(x).

IfA (x) = 1then6€q*g( ), ie. ¢ < A(z). Thus P < ¢ and
q < A( ) by using the transitivity of the relation ” < 7, we obtain
p < A(z) ,ie. 0 € px A(x). Therefore A,(x) =1 and we conclude that
A, <. A,

Therefore f is an isomorphism. O

4.2. From a binary block code to a hyper BCK-functions.

Ezample 4.3. Let (H, <) be a finite partial ordered set with the minimum
element denoted by 6. We define the following hyper operation * on H:

Oxx={0} and zxx = {0}, x € H,;
zxy=A{0}, if z<y z,y € H;
rxy={z}, ify<w T,y € H;

xxy={y}, if x,y can’t be compared xz,y € H.
It is easy to see that (H, x,6) is a hyper BCK-algebra.

If the above example of hyper BCK-algebra has n elements, we will
denote it with C),. Let V be a binary block code with n codewords of
length n. We consider the matrix My = (m;5); jeq1,2,...n} € Mn({0,1})
with the rows consisting of the codewords of V. This matrix is called
the matrix associated to the code V.

Theorem 4.4. With the above notations, if the codeword 11...1 is in
n—time

V' and the matric My is upper triangular with m;; = 1, for all i €

{1,2,...,n}, there are a set A with n elements, a hyper BCK-algebra H

and a hyper BCK-function f: A — H such that f determines V.
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Proof. We consider on V' the lexicographic order, denoted by <j;. It is
clear that (V, <j..) is a totally ordered set.
Let V = {wi,wa, ..., wn }, with w1 >jer Wo >jer . Ziex Wy This implies
that wy =11---1land w, = 00---Q 1. On V, we define a partial order

— ——

n-time (n — 1)-time

<. as in construction of the code by the hyper BCK-function. Now,
(V,<.) is a partially ordered set with wy <. w; <. wp, i € {2,...,n—1}.
We remark that wy correspond to 6 and w,, is the maximal element in
V,<0).
We define on (V, <., ) a hyper operation ” *” as in Example 4.3.
Then H = (V, %,0) is a hyper BCK-algebra and V' is isomorphic to H.
We consider A = V and the identity map f : A — H, w — w, as a
hyper BCK-function on A. The decomposition of f provides a family
Vi ={fr : A= {01} [ fr(x) =1 & O€rxf(z),VoecAreH}
This family is the binary block-code V relative to the order relation <..
Indeed, let wy € V, 1 < k < n, then wy, = 00..0 x;,...z;,; with

(k—1)—time

7

Tips s Tiyy, € {0, 1}

Vj € If z;; = 0, it result that wy, <. w;; and 0 € wy, * w;; .

If z;; = 1, we obtain that w;;, <. wy or w;; and wy can’t be compared,
therefore wy, * w;; = {wy} or wy * w;; = {w, }. O

The following example show that a binary block code as in Theorem
4.4 can be determined by two or more hyper BCK-algebras.

Ezample 4.5. Let V = {000010,000110,011101,111111,001011, 000001}
be a binary block code. Using the lexicographic order, the code V can
be written V = {111111,011101,001011, 000110,

000010, 000001} = {w1, we, w3, wq, ws, we}. Define the partial order <.
on V, we remark that w; <. w; for i € {2,3,4,5,6}; wa <. we; w3y <,
ws, We; Wy <. ws; we can’t be compared with ws, w4, ws; wg cant be
compared with ws, wg; and ws cant be compared with wg. The operation
7 %7 on V is given in the following table:

* w1 w9 ws w4y Wg We
wy | {wi} | {wi} | {wi} | {wi} | {wi} | {wi}
wy | {wa} | {wi} | {ws} | {wa} | {ws} | {wi}
ws | {ws} | {wa} | {wi} | {wa} | {wi} | {wi}
wy | {wa} | {wa} | {ws} | {wi} | {wi} | {we}
ws | {ws} | {wa} | {ws} | {ws} | {wi} | {ws}
we | {we} | {we} | {we} | {wa} | {ws} | {wi}
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Obviously, V with the operation ” x” is a hyper BCK-algebra. We
remark that the same binary block code V' can be obtained from the
hyper BCK-algebra (H, *,0)
x| 0 a b c d e
{0} | {6} | {0} | {0} | {6} | {0}
{a} [ {0} | {0} | {c} | {d} | {0}

{0} | {a} | {0} | {c} | {0} | {0}

{c} [ {a} | {b} | {0} | {06} | {e}

{d} | {a} | {d} | {d} | {0} | {e}

c{e Ty [ [{a [ (@ 1)

with hyper BCK-function A : V. — V, A(z) = z. From the associated
Cayley multiplication tables, it is obvious that the hyper BCK-algebras
(H,*,0) and (V,*,w;) are not isomorphic. From here, we obtain that
hyper BCK-algebra associated to a binary block-code as in Theorem 4.4
is not unique up to an isomorphism.

QIO || D

Proposition 4.6. With the above notations, we consider V as a binary
block code with n codewords of length m (with n # m), or a block-code
with n codewords of length n such that the codeword 11...1 is not in V,
n—time

or a block-code with n codewords of length n such that the matriz My is
not upper triangular. There are a natural number ¢ = max{m,n}, a set
A with m elements and a hyper BCK-function A: A Cyq, where Cy
denote the hyper BCK-algebra with q elements, such that the obtained
block-code Vi, contains the block-code V' as a subset.

Proof. Let C be a binary block-code, C' = {w1, wa, ..., w,}, with code-
words of length m. We consider the codewords wi, wo, ..., w, lexico-
graphic ordered, w1 <jep w2 <jeg ... <iey Wn. Let M € M, ,,({0,1}) be
the associated matrix with the rows w1, wo, ..., w, in this order. Using
Proposition 2.8 in [3], we can extend the matrix M to a square matrix
M" € M,({0,1}), p = m + n; such that M’ = (mj;); je(1,2,...p} IS an
upper triangular matrix with m/, = 1, for all i € {1,2,...,p}. If the
first line of the matrix M’ is not 11...1, then we insert the row 11...1
—— —~
p—time p+1—time
as a first row and the 1 O\,Q as a first column. Let ¢ = p + 1, ap-
p—time
plying Theorem 4.4 for the matrix M’, we obtain a residuated lattice
Cqy = {z1,22, ..., x4}, with z; correspond to 0 and z, correspond to 1, and
a binary block-code V¢, . Assuming that the initial column of the matrix
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M have in the new matrix M’ positions i;,,ij,, ..., 15, € {1,2,...,q}, let
A = {zj,xj,,...,z5,} € Cq. The hyper BCK-function f : X — Cgq
is such that f(zj;,) = zj,, ¢ € {1,2,...,m}, determines the binary-block
code Cy such that ' C V¢, as restriction of the hyper BCK-function
f:Cy— Cq on A such that f(z;) = ;. O

Let C be a binary block code with m codewords of length ¢, with
the above notations, let H be the associated BCK-algebra and W =
{0, w1, ...,wm4q} the associated binary block code which include the
code C. We consider the codewords 0, w1,...wy,+4 lexicographic ordered,
0 Zlex W1 Ziex W2 Ziex -+ Zlex Wm+q- Let M € Mm+q+1({0’ 1}) be the
associated matrix with the rows 6, wq,...,wy,+4 in this order. We denote
with L,,, and C’wj the lines and columns in the matrix M. The sub-
matrix M’ of the matrix M with the rows Ly, ,...,Ly,, and the columns

CuwpiysesCuwmy, 18 the matrix associated to the code C.

Remark 4.7. 1) If there exists = € {wi,we,..,wy,} and
y € {0, wmi1,...;Wmiq}t such that =z <« vy, then the set
I ={6,wn+1,..., Wm4q} can’t be hyper BCK-ideal.

2) On W, due to the order <. given in the construction of code from a
hyper BCK-function and to the hyper operation * define in Example 4.3,
for the product of two elements of W, we can have only two possibilities
w; x w; = {0} or w; x w; = {w;}, (wj, w; € W and ¢,j € {1,m + ¢}).

Ezample 4.8. Let V = {101,110} be a binary block code. Using the lex-
icographic order, the code V' can be written V' = {110, 101} = {w;, w2 }.

Let My = ( 1 (1) (1) ) be the associated matrix. By Proposition 2.8
in [3],
111 111 w1
010110 ()
. 00110 1| | ws
we construct the matrix 000100 /|| w
0000 1O0 ws
000 0 O0 1 we

The binary block code W = {wy, wa, w3, wy, ws, we}, determines a hy-
per BCK-algebra (H,*,w;). Let X = {wy,ws, we} and A: X =W,
w; — w;, (i € {4,5,6}) be a hyper BCK-function which determines the
binary block code U = {111,110,101,100,010,001}. Remark that the
code V is a subset of the code U.
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Since we <. wy and wz <. wy, then the set I = {wq,wq, ws, we} is
not a hyper BCK-ideal.

Proposition 4.9. Out of the above notations, if we assume that there
is not x € {wy,wa,...,wy} such that for any y € I; v < y. Then, I
determines a hyper BCK-ideal in the hyper BCK-algebra H.

Proof. since 0 € I, it will be sufficient to prove the property (HI2) for
these hyper BCK-ideal.

Let x,y € H such that xxy < I and y € I.

If z,y are not compared or z > y and if ¢ I, then z xy = {2} < I.
Since x ¢ I, then § € x x z = {z}. Thus z = 6 € I contradiction.
Therefore z € I.

If x <y, with y € I, then x € . O

Ezample 4.10. Let V = {000} = {w;} be a binary block code. Let
My = ( 000 ) be the associated matrix. By Proposition 2.8 in [3],

11111 w1
01 0 0O wWo
we construct the matrix | 0 0 1 0 O = | ws
000 10 Wy
000 01 ws

The binary block code W = {wi, ws, ws, wq, ws}, determines a hyper
BCK-algebra (H,*,wq). Let X = {ws, w4, ws,} and A:X 5 W,
w; — w;, (i € {3,4,5}) be a hyper BCK-function which determines the
binary block code U = {111,000,1000,010,001}. It is clear that the
code V is a subset of the code U.

Since there are not we <. w3, wy and ws, then set I = {w1, w4, w5, we}
is a hyper BCK-ideal.

5. CONCLUSION

In this work, we have studied the connection between hyper BCK-
algebras and coding theory. We have also proved that to each hyper
BCK-algebras (hyper BCK-function) we can associated a binary block
codes. Moreover we establish the link between the hyper BCK-algebra
constructed from a binary block code and hyper BCK-ideal on a hyper
BCK-algebra.
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