CODING THEORY AND HYPER BCK-ALGEBRAS

ATAMEWOUE TSAFACK SURDIVE, NDJEYA SLESTIN AND LELE CLESTIN

ABSTRACT. In this paper we define the notion of a hyper BCK valued function on a set and investigate some of it's related properties as Y.B. Jun, S.Z. Song and C. Flaut have done for a BCK-algebras. We construct the codes generated by a hyper BCK valued function and provide an algorithm which allow to find a hyper BCK-algebra starting from a given binary block code. Moreover we establish the link between the hyper BCK-algebra constructed from a binary block code and hyper BCK-ideal on a hyper BCK-algebra.

Key Words: Hyper BCK-algebra, Coding theory, Block code, Hyper BCK-ideal. 2010 Mathematics Subject Classification: Primary: 06F99; Secondary: 06F35, 94B05.

1. Introduction

The hyperstructure theory (called also multialgebra) is introduced in 1934 by F. Marty [7]. Since then a great deal of literature has been produced on the applications of the hyperstructures. Later K. Iseki [4] initiated in 1966 the study of BCK-algebras as a generalization of the concept of set-theoretic difference and propositional calculi. Y.B. Jun et al. [6] applied for the first time the hyperstructures to BCK-algebra and introduced in 2000 the notion of a hyper BCK-algebra with is a generalization of BCK-algebra.

Y.B. Jun and S.Z. Song, C. Flaut and T.S. Atamewoue et al. [1, 3, 5] study the connection between BCK-algebras, residuated lattices and coding theory.

Received: 9 October 2017, Accepted: 20 January 2018. Communicated by Ahmad Yousefian Darani;

 $[*] Address\ correspondence\ to\ Atamewoue\ Tsafack\ Surdive;\ E-mail:\ surdivey ahoo.fr.$

 $^{\ \, \}bigcirc$ 2018 University of Mohaghegh Ardabili.

The main purpose of this paper is to study coding theory in the context of hyper BCK-algebras. This work is organized as follows: In section 2, we present some basic notions about hyper BCK-algebraic that we will use in the sequel. In section 3, we introduce the notion of hyper BCK-valued functions and investigated several of their properties. In section 4, we give the construction of the block codes by using the notion of hyper BCK-valued functions, and after haves show that in some circumstances every finite hyper BCK-algebras determines a binary block code, we end by a link between the constructed block codes and some hyper BCK-ideal.

2. Preliminaries

We will recall some known concepts related to hyper BCK-algebra which will be helpful in further section. For more about hyper BCK-algebra we refer the reader to [2, 6, 8]. Let H be a non-empty set endowed with a hyperoperation "*", i.e. a mapping of $H \times H$ into the family of nonempty subsets of H. For two subsets A and B of H, denote by A*B the set $\bigcup_{a \in A; b \in B} a*b$. We shall use x*y instead of $x*\{y\}, \{x\}*y,$ or $\{x\}*\{y\}$.

Definition 2.1. By a hyper BCK-algebra we mean a non-empty set H endowed with a hyperoperation * and a constant θ satisfying the following axioms for all $x, y, z \in H$:

```
(i) (x*z)*(y*z) \ll x*y,
```

- (ii) (x * y) * z = (x * z) * y,
- (ii) $x * y \ll \{x\},$
- (vi) $x \ll y$ and $y \ll x$ imply x = y,

Where $x \ll y$ is defined by $\theta \in x * y$ and $A \ll B$ by for all $a \in A$, there exists $b \in B$ such that $a \ll b$, for every $A, B \subseteq H$. Note that " \ll " is called hyper order in H.

In any hyper BCK-algebra $(H, *, \theta)$ the following hold for all $x, y, z \in H$:

$$(a_1)$$
 $x * \theta = \{x\}, \ \theta * x = \{\theta\} \text{ and } \theta * \theta = \{\theta\},$

- $(a_2) \theta \ll x$
- (a₃) $x * \theta \ll \{y\}$ implies $x \ll y$ and $y * x \ll z * x$
- (a_4) $y \ll z$ implies $x * z \ll x * y$,
- $(a_5) \ x * y = \{\theta\} \text{ implies } (x * z) * (y * z) = \{\theta\}.$

Definition 2.2. Let I be a non-empty subset of a hyper BCK-algebra H. Then I is called a hyper BCK-ideal of H if the following hold: (i) $\theta \in I$,

(ii) $x * y \ll I$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Definition 2.3. Let I be a non-empty subset of a hyper BCK-algebra H. Then I is called a weak hyper BCK-ideal of H if the following hold: (i) $\theta \in I$,

(ii) $(x * y) \cap I \neq \emptyset$ and $y \in I$ imply $x \in I$ for all $x, y \in H$.

Remark 2.4. Every hyper BCK-ideal of a hyper BCK-algebra H is a weak hyper BCK-ideal of H, but the converse may not be true [6].

3. Hyper BCK-valued functions

In what follows let A and H denote a nonempty set and a hyper BCK-algebra respectively, unless otherwise specified.

Definition 3.1. A mapping $\widetilde{A}: A \to H$ is called a hyper BCK-valued function (briefly, hyper BCK-function) on A.

Definition 3.2. A cut function of \widetilde{A} , for $q \in H$ is defined to be a mapping $\widetilde{A}_q : A \to \{0,1\}$ such that $(\forall x \in A) \ (\widetilde{A}_q(x) = 1 \Leftrightarrow \theta \in q * \widetilde{A}(x))$.

Obviously, \widetilde{A}_q is the characteristic function of $A_q = \{x \in A | \theta \in q * \widetilde{A}(x)\}$, called a cut subset or a q-cut of \widetilde{A} . Note that $A_{\theta} = A$.

Example 3.3. Let $A = \{x, y\}$ be a set and let $H = \{\theta, a, b\}$ be a hyper BCK-algebra with the following table:

*	$\mid \theta \mid$	a	b
θ	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$
a	$\{a\}$	$\{\theta,a\}$	$\{a\}$
b	<i>{b}</i>	{b}	$\{\theta,b\}$

The mapping $\widetilde{A}: A \to H$ given by $\widetilde{A} = \begin{pmatrix} x & y \\ a & b \end{pmatrix}$ is a hyper BCK-function. Its cut subsets are $A_{\theta} = A$, $A_{a} = \{x\}$, $A_{b} = \{y\}$.

Proposition 3.4. Every hyper BCK-function $\widetilde{A}: A \to H$ on A is represented by the supremum of the set $\{q \in X | \widetilde{A}_q(x) = 1\}$, that is $(\forall x \in A) \ (\widetilde{A}(x) = \sup\{q \in X | \theta \in q * \widetilde{A}(x)\}).$

Proof. . For any $x\in A,$ let $\widetilde{A}(x)=r\in H.$ Then $\theta\in r*\widetilde{A}(x)$ and so $\widetilde{A}_r(x)=1.$

Assume that $\widetilde{A}_p(x) = 1$ for $p \in H$, then $\theta \in p * \widetilde{A}(x) = p * r$. Thus

Since
$$r \in \{p \in H | \widetilde{A}_p(x) = 1\}$$
, it follows that $\widetilde{A}(x) = r = \sup\{p \in H | \widetilde{A}_p(x) = 1\}$.

For a hyper BCK-function $\widetilde{A}: A \to H$ on A, consider the following

$$A_H := \{ A_q | q \in H \}; \ \widetilde{A}_H := \{ \widetilde{A}_q | q \in H \}.$$

Proposition 3.5. If $\widetilde{A}: A \to H$ is a hyper BCK-function on A, we can easily obtain the following results:

$$i)(\forall x \in A) \ (\widetilde{A}(x) = \sup\{q * \widetilde{A}_q(x) | q \in H\}),$$

where
$$q * \widetilde{A}_q(x) = \begin{cases} q, & \text{if } \widetilde{A}_q(x) = 1; \\ \theta, & \text{otherwise.} \end{cases}$$

$$(ii) \ (\forall q, p \in H) \ (\theta \in p * q \Leftrightarrow A_q \subseteq A_p),$$

$$(iii) \ (\forall m, n \in A) \ (\widetilde{A}_q(x) + \widetilde{A}_q(x)) \ (A_q(x) + \widetilde{A}_q(x)) \ (A_q(x)$$

(ii)
$$(\forall q, p \in H)$$
 $(\theta \in p * q \Leftrightarrow A_q \subseteq A_p)$

(iii)
$$(\forall x, y \in A) \ (\widetilde{A}(x) \neq \widetilde{A}(y) \Leftrightarrow A_{\widetilde{A}(x)} \neq A_{\widetilde{A}(y)}),$$

$$(iv) \ (\forall q \in H) \ (\forall x \in A) \ (q * \widetilde{A}(x) = \{\theta\} \Leftrightarrow A_{\widetilde{A}(x)} \subseteq A_q),$$

$$(v) \ (\forall x,y \in A) \ (\widetilde{A}(x) * \widetilde{A}(y) = \{\theta\} \Leftrightarrow A_{\widetilde{A}(y)} \subseteq A_{\widetilde{A}(x)}),$$

 $(vi) \ (\forall Y \subseteq H) \ (\exists \sup YinH \Rightarrow A_{\sup\{q|q\in Y\}} = \bigcap \{A_q|q\in Y\}). \ (Note$ here that the sup is define via the hyperorder " \ll "),

(vii) For a bounded hyper BCK-algebra H, we have

$$(\forall S \subseteq H) \ (A_{\sup\{q|q \in S\}} = \bigcap \{A_q | q \in S\}),$$

(viii) If for any subset Y of H there exists a supremum of Y, then

 $(\forall p, q \in Y) \ (A_p \cap A_q \in A_H),$

$$(iX) \bigcup \{A_q | q \in H\} = A.$$

The following example shows that the converse of (viii) may not be true in general.

Example 3.6. Let $A = \{x, y\}$ be a set and let $H = \{\theta, a, b, c\}$ be a hyper BCK-algebra with the following table:

*	θ	a	b	c
θ	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$
\overline{a}	<i>{a}</i>	$\{\theta,a\}$	$\{\theta\}$	$\{a\}$
b	{ <i>b</i> }	$\{a\}$	$\{\theta\}$	$\{b\}$
c	{ <i>c</i> }	$\{c\}$	{ <i>c</i> }	$\{\theta\}$

The function $\widetilde{A}: H \to A$ given by $\widetilde{A} = \begin{pmatrix} x & y \\ a & c \end{pmatrix}$ is a hyper BCK-

function on A and the cut sets of A are as follows: $A_{\theta} = A$, $A_a = \{x\}$,

$$A_b = \emptyset$$
, $A_c = \{y\}$.
 $\sup\{a, c\}$ does not exist but $A_a \cap A_c \in A_H$.

4. Codes generated by hyper BCK-functions

Let $\widetilde{A}: A \to H$ be a hyper BCK-function on A and let \sim be a binary relation on H defined by $(\forall p, q \in H)$ $(p \sim q \Leftrightarrow A_p = A_q)$. Then \sim is clearly an equivalence relation on H.

Let $A(A) := \{ q \in H | A(x) = q \text{ for some } x \in A \}.$

Let $x/\sim=\{y\in H|x\sim y\}$, for any $x\in H$. x/\sim is called equivalence class containing x. It is also easy to see that $\widetilde{A}(x)=\sup(x/\sim)$ is the greatest element of \sim -class to which it belongs and that every \sim -class contains exactly one element.

4.1. From a hyper BCK-algebra to a block code. Let $A = \{1, 2, ..., n\}$ and let H be a finite hyper BCK-algebra. Every hyper BCK-function $\widetilde{A}: A \to H$ on A determines a binary block code V of length n in the following way:

To every x/\sim , where $x\in H$, there corresponds a codeword $v_x=x_1x_2...x_n$ such that $x_i=j\Leftrightarrow \widetilde{A}_x(i)=j$ for $i\in A$ and $j\in\{0,1\}$.

Let $v_x = x_1x_2...x_n$ and $v_y = y_1y_2...y_n$ be two codewords belonging to a binary block code V. We can define an order relation \leq_c on the set codewords belonging to a binary block code V as follows:

 $v_x \leq_c v_y \Leftrightarrow y_i \leq x_i \text{ for } i = 1, 2, ..., n.$

Example 4.1. (1) Let $H = \{0, 1, 2\}$ be a hyper BCK-algebra defined by the following table:

*	0	1	2
0	{0}	{0}	{0}
1	{1}	{0}	{0}
2	{2}	{2}	$\{0, 2\}$

Let $\widetilde{A}: H \to H$, $x \mapsto \begin{cases} 0, & \text{if } x=0; \\ 1, & \text{if } x=1; \\ 2, & \text{if } x=2. \end{cases}$ be a hyper BCK-function on H

Thus $V = \{111, 010, 001\}$ and

FIGURE 1.

(2) Let $H = \{\theta, a, b, c\}$ be a hyper BCK-algebra defined by the following table:

*	θ	a	b	c
θ	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$
\overline{a}	<i>{a}</i>	$\{\theta,a\}$	$\{\theta,a\}$	$\{\theta,a\}$
\overline{b}	{ <i>b</i> }	$\{b\}$	$\{\theta,a\}$	$\{\theta,a\}$
\overline{c}	{ <i>c</i> }	{ <i>c</i> }	{c}	$\{\theta,a\}$

Thus $V = \{1111, 0111, 0011, 0001\}$ and

FIGURE 2.

Theorem 4.2. Every finite hyper BCK-algebra H determines a block codes V such that (H, \ll) is isomorphic to (V, \leq_c) .

Proof. Let $H = \{a_1, a_2, ..., a_n\}$ be a finite hyper BCK-algebra in which $a_1 = \theta$ and let $A: H \to H$ be the identity hyper BCK-function on H. The decomposition of A provides a family $\{A_a|q\in H\}$ which is the desired code under the order (\leq_c) . Let $f: H \to \{\widetilde{A}_q | q \in H\}$ be a function defined by $f(q) = \widetilde{A}_q$ for all $q \in H$. Since every \sim -class contains exactly one element, hence f is one-to-one.

Let $x \in H$ and $p, q \in H$ be such that $p \ll q$.

If $A_q(x) = 0$, then $A_q(x) \le A_p(x)$.

If $A_q(x) = 1$, then $\theta \in q * A(x)$, i.e. $q \ll A(x)$. Thus $P \ll q$ and $q \ll \widetilde{A}(x)$ by using the transitivity of the relation " \ll ", we obtain $p \ll \widetilde{A}(x)$, i.e. $\theta \in p * \widetilde{A}(x)$. Therefore $\widetilde{A}_p(x) = 1$ and we conclude that $A_p \leq_c A_q$.

Therefore f is an isomorphism.

4.2. From a binary block code to a hyper BCK-functions.

Example 4.3. Let (H, <) be a finite partial ordered set with the minimum element denoted by θ . We define the following hyper operation * on H:

```
\theta * x = \{\theta\} \text{ and } x * x = \{\theta\},\
                                        x \in H;
x, y \in H:
                                         x, y \in H;
It is easy to see that (H, *, \theta) is a hyper BCK-algebra.
```

If the above example of hyper BCK-algebra has n elements, we will denote it with C_n . Let V be a binary block code with n codewords of length n. We consider the matrix $M_V = (m_{i,j})_{i,j \in \{1,2,\ldots,n\}} \in \mathcal{M}_n(\{0,1\})$ with the rows consisting of the codewords of V. This matrix is called the matrix associated to the code V.

Theorem 4.4. With the above notations, if the codeword $\underbrace{11...1}$ is in

V and the matrix M_V is upper triangular with $m_{ii} = 1$, for all $i \in$ $\{1,2,...,n\}$, there are a set A with n elements, a hyper BCK-algebra H and a hyper BCK-function $f: A \to H$ such that f determines V.

Proof. We consider on V the lexicographic order, denoted by \leq_{lex} . It is clear that (V, \leq_{lex}) is a totally ordered set.

Let $V = \{w_1, w_2, ..., w_n\}$, with $w_1 \ge_{lex} w_2 \ge_{lex} ... \ge_{lex} w_n$. This implies that $w_1 = \underbrace{11 \cdots 1}_{n\text{-time}}$ and $w_n = \underbrace{00 \cdots 0}_{(n-1)\text{-time}}$ 1. On V, we define a partial order

 \leq_c as in construction of the code by the hyper BCK-function. Now, (V, \leq_c) is a partially ordered set with $w_1 \leq_c w_i \leq_c w_n$, $i \in \{2, ..., n-1\}$. We remark that w_1 correspond to θ and w_n is the maximal element in (V, \leq_c) .

We define on (V, \leq_c, θ) a hyper operation "*" as in Example 4.3. Then $H = (V, *, \theta)$ is a hyper BCK-algebra and V is isomorphic to H. We consider A = V and the identity map $f: A \to H$, $w \mapsto w$, as a hyper BCK-function on A. The decomposition of f provides a family $V_H = \{f_r: A \to \{0,1\} \mid f_r(x) = 1 \Leftrightarrow \theta \in r * f(x), \forall x \in A, r \in H\}$. This family is the binary block-code V relative to the order relation \leq_c . Indeed, let $w_k \in V$, 1 < k < n, then $w_k = \underbrace{00...0}_{(k-1)-time} x_{i_k}...x_{i_n}$; with

 $x_{i_k},...,x_{i_n} \in \{0,1\}.$ $\forall j \in \text{If } x_{i_j} = 0$, it result that $w_k \leq_c w_{i_j}$ and $\theta \in w_k * w_{i_j}$. If $x_{i_j} = 1$, we obtain that $w_{i_j} \leq_c w_k$ or w_{i_j} and w_k can't be compared, therefore $w_k * w_{i_j} = \{w_k\}$ or $w_k * w_{i_j} = \{w_{i_j}\}.$

The following example show that a binary block code as in Theorem 4.4 can be determined by two or more hyper BCK-algebras.

Example 4.5. Let $V = \{000010, 000110, 011101, 111111, 001011, 000001\}$ be a binary block code. Using the lexicographic order, the code V can be written $V = \{111111, 011101, 001011, 000110,$

000010,000001} = $\{w_1, w_2, w_3, w_4, w_5, w_6\}$. Define the partial order \leq_c on V, we remark that $w_1 \leq_c w_i$ for $i \in \{2, 3, 4, 5, 6\}$; $w_2 \leq_c w_6$; $w_3 \leq_c w_5, w_6$; $w_4 \leq_c w_5$; w_2 can't be compared with w_3, w_4, w_5 ; w_4 cant be compared with w_3, w_6 ; and w_5 cant be compared with w_6 . The operation "*" on V is given in the following table:

*	w_1	w_2	w_3	w_4	w_5	$ w_6 $
w_1	$\{w_1\}$	$\{w_1\}$	$\{w_1\}$	$\{w_1\}$	$\{w_1\}$	$\{w_1\}$
w_2	$\{w_2\}$	$\{w_1\}$	$\{w_3\}$	$\{w_4\}$	$\{w_5\}$	$\{w_1\}$
w_3	$\{w_3\}$	$\{w_2\}$	$\{w_1\}$	$\{w_4\}$	$\{w_1\}$	$\{w_1\}$
w_4	$\{w_4\}$	$\{w_2\}$	$\{w_3\}$	$\{w_1\}$	$\{w_1\}$	$\{w_6\}$
$\overline{w_5}$	$\{w_5\}$	$\{w_2\}$	$\{w_5\}$	$\{w_5\}$	$\{w_1\}$	$\{w_6\}$
w_6	$\{w_6\}$	$\{w_6\}$	$\{w_6\}$	$\{w_4\}$	$\{w_5\}$	$ \{w_1\} $

Obviously, V with the operation " * " is a hyper BCK-algebra. We remark that the same binary block code V can be obtained from the hyper BCK-algebra $(H,*,\theta)$

*	θ	a	b	c	d	e
θ	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$	$\{\theta\}$	$\overline{\{\theta\}}$
\overline{a}	$\{a\}$	$\{\theta\}$	{ <i>b</i> }	$\{c\}$	$\{d\}$	$\{\theta\}$
b	<i>{b}</i>	<i>{a}</i>	$\{\theta\}$	{ <i>c</i> }	$\{\theta\}$	$\{\theta\}$
\overline{c}	$\{c\}$	<i>{a}</i>	<i>{b}</i>	$\{\theta\}$	$\{\theta\}$	$\{e\}$
d	d	$\{a\}$	d	d	$\{\theta\}$	$\{e\}$
e	$\{e\}$	$\{e\}$	$\{e\}$	$\{c\}$	$\{d\}$	$\{\theta\}$

with hyper BCK-function $\widetilde{A}: V \to V$, $\widetilde{A}(x) = x$. From the associated Cayley multiplication tables, it is obvious that the hyper BCK-algebras $(H, *, \theta)$ and $(V, *, w_1)$ are not isomorphic. From here, we obtain that hyper BCK-algebra associated to a binary block-code as in Theorem 4.4 is not unique up to an isomorphism.

Proposition 4.6. With the above notations, we consider V as a binary block code with n codewords of length m (with $n \neq m$), or a block-code with n codewords of length n such that the codeword $\underbrace{11...1}_{i}$ is not in V,

or a block-code with n codewords of length n such that the matrix M_V is not upper triangular. There are a natural number $q = max\{m,n\}$, a set A with m elements and a hyper BCK-function $\widetilde{A}: A \to C_q$, where C_q denote the hyper BCK-algebra with q elements, such that the obtained block-code V_{C_q} contains the block-code V as a subset.

Proof. Let C be a binary block-code, $C = \{w_1, w_2, ..., w_n\}$, with codewords of length m. We consider the codewords $w_1, w_2, ..., w_n$ lexicographic ordered, $w_1 \leq_{lex} w_2 \leq_{lex} ... \leq_{lex} w_n$. Let $M \in \mathcal{M}_{n,m}(\{0,1\})$ be the associated matrix with the rows $w_1, w_2, ..., w_n$ in this order. Using Proposition 2.8 in [3], we can extend the matrix M to a square matrix $M' \in \mathcal{M}_p(\{0,1\})$, p = m + n; such that $M' = (m'_{ij})_{i,j \in \{1,2,...,p\}}$ is an upper triangular matrix with $m'_{ii} = 1$, for all $i \in \{1,2,...,p\}$. If the first line of the matrix M' is not 11...1, then we insert the row 11...1

as a first row and the $1 \underbrace{0...0}_{p-time}$ as a first column. Let q = p+1, ap-

plying Theorem 4.4 for the matrix M', we obtain a residuated lattice $C_q = \{x_1, x_2, ..., x_q\}$, with x_1 correspond to 0 and x_q correspond to 1, and a binary block-code V_{C_q} . Assuming that the initial column of the matrix

M have in the new matrix M' positions $i_{j_1}, i_{j_2}, ..., i_{j_n} \in \{1, 2, ..., q\}$, let $A = \{x_{j_1}, x_{j_2}, ..., x_{j_n}\} \in Cq$. The hyper BCK-function $f: X \to Cq$ is such that $f(x_{j_i}) = x_{j_i}, i \in \{1, 2, ..., m\}$, determines the binary-block code C_q such that $C \subseteq V_{C_q}$ as restriction of the hyper BCK-function $f: C_q \to C_q$ on A such that $f(x_i) = x_i$.

Let C be a binary block code with m codewords of length q, with the above notations, let H be the associated BCK-algebra and $W = \{\theta, w_1, ..., w_{m+q}\}$ the associated binary block code which include the code C. We consider the codewords $\theta, w_1, ..., w_{m+q}$ lexicographic ordered, $\theta \ge_{lex} w_1 \ge_{lex} w_2 \ge_{lex} ... \ge_{lex} w_{m+q}$. Let $M \in \mathcal{M}_{m+q+1}(\{0,1\})$ be the associated matrix with the rows $\theta, w_1, ..., w_{m+q}$ in this order. We denote with L_{w_i} and C_{w_j} the lines and columns in the matrix M. The submatrix M' of the matrix M with the rows $L_{w_1}, ..., L_{w_m}$ and the columns $C_{w_{m+1}}, ..., C_{w_{m+q}}$ is the matrix associated to the code C.

Remark 4.7. 1) If there exists $x \in \{w_1, w_2, ..., w_m\}$ and $y \in \{\theta, w_{m+1}, ..., w_{m+q}\}$ such that $x \ll y$, then the set $I = \{\theta, w_{m+1}, ..., w_{m+q}\}$ can't be hyper BCK-ideal.

2) On W, due to the order \leq_c given in the construction of code from a hyper BCK-function and to the hyper operation * define in Example 4.3, for the product of two elements of W, we can have only two possibilities $w_i * w_j = \{\theta\}$ or $w_i * w_j = \{w_i\}$, $(w_i, w_j \in W \text{ and } i, j \in \{1, m+q\})$.

Example 4.8. Let $V = \{101, 110\}$ be a binary block code. Using the lexicographic order, the code V can be written $V = \{110, 101\} = \{w_1, w_2\}$. Let $M_V = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ be the associated matrix. By Proposition 2.8 in [3],

we construct the matrix
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \\ w_6 \end{pmatrix}.$$
The bin and black and W. (a) we want to be a set of the second of th

The binary block code $W = \{w_1, w_2, w_3, w_4, w_5, w_6\}$, determines a hyper BCK-algebra $(H, *, w_1)$. Let $X = \{w_4, w_5, w_6\}$ and $\widetilde{A} : X \to W$, $w_i \mapsto w_i$, $(i \in \{4, 5, 6\})$ be a hyper BCK-function which determines the binary block code $U = \{111, 110, 101, 100, 010, 001\}$. Remark that the code V is a subset of the code U.

Since $w_2 \leq_c w_4$ and $w_3 \leq_c w_4$, then the set $I = \{w_1, w_4, w_5, w_6\}$ is not a hyper BCK-ideal.

Proposition 4.9. Out of the above notations, if we assume that there is not $x \in \{w_1, w_2, ..., w_m\}$ such that for any $y \in I$; $x \ll y$. Then, I determines a hyper BCK-ideal in the hyper BCK-algebra H.

Proof. since $\theta \in I$, it will be sufficient to prove the property (HI_2) for these hyper BCK-ideal.

Let $x, y \in H$ such that $x * y \ll I$ and $y \in I$.

If x, y are not compared or $x \gg y$ and if $x \notin I$, then $x * y = \{x\} \ll I$. Since $x \notin I$, then $\theta \in x * z = \{x\}$. Thus $x = \theta \in I$ contradiction. Therefore $x \in I$.

If
$$x \ll y$$
, with $y \in I$, then $x \in I$.

Example 4.10. Let $V = \{000\} = \{w_1\}$ be a binary block code. Let $M_V = (0 \ 0 \ 0)$ be the associated matrix. By Proposition 2.8 in [3],

we construct the matrix
$$\begin{pmatrix} 1 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \\ w_5 \end{pmatrix}.$$

The binary block code $W = \{w_1, w_2, w_3, w_4, w_5\}$, determines a hyper BCK-algebra $(H, *, w_1)$. Let $X = \{w_3, w_4, w_5, \}$ and $\widetilde{A} : X \to W$, $w_i \mapsto w_i$, $(i \in \{3, 4, 5\})$ be a hyper BCK-function which determines the binary block code $U = \{111,000,1000,010,001\}$. It is clear that the code V is a subset of the code U.

Since there are not $w_2 \leq_c w_3$, w_4 and w_5 , then set $I = \{w_1, w_4, w_5, w_6\}$ is a hyper BCK-ideal.

5. CONCLUSION

In this work, we have studied the connection between hyper BCK-algebras and coding theory. We have also proved that to each hyper BCK-algebras (hyper BCK-function) we can associated a binary block codes. Moreover we establish the link between the hyper BCK-algebra constructed from a binary block code and hyper BCK-ideal on a hyper BCK-algebra.

Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable suggestions

References

- [1] T.S. Atamewoue, Y.B. Jun, C. Lele, S. Ndjeya, and S.Z. Song, *Codes based on residuated lattices*, Commun. Korean Math. Soc., **31** (2016), 27–40.
- [2] R.A. Borzooei and M. Bakhshi, *Some Results in Hyper BCK-algebras*, Quasigroups and Related Systems **11** (2004), 9–24.
- [3] C. Flaut, BCK-algebras Arising from Block Codes, J. Intell. Fuzzy Syst., 28 (2015), 1829–1833.
- [4] K. Iseki, S. Tanaka, An Introduction to the Theory of BCK-algebras, Math. Japonica, 23 (1978), 1–26.
- [5] Y. B. Jun and S. Z. Song, Codes based on BCK-algebras, Inform. Sci., 181 (2011), 5102–5109.
- [6] Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzoei, On Hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, 8 (2000), 127–136.
- [7] F. Marty, Sur une generalization de la notion de groupe, 8^{iem} congres Math. Scandinaves, Stockholm, (1934), 45–49.
- [8] E.H. Roh, Q. Zhang and Y.B. Jun, *Some Results in Hyper BCK-algebras*, Scientiae Mathematicae Japonica, **5** (2001), 265–272.

Atamewoue Tsafack Surdive

Department of Mathematics, University of Yaoundé 1, P.O.Box 47, Yaoundé, Cameroon Email: surdiveyahoo.fr

Njeya Selestin

Department of Mathematics, Higher Teacher Training College, University of Yaoundé 1, P.O.Box 47, Yaoundé, Cameroon

Email: ndjeyasyahoo.fr

Lele Célestin

Department of Mathematics, University of Dschang, P.O.Box 67, Dschang, Cameroon Email: celestinleleyahoo.com