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A TWO-STAGE STOCHASTIC OPTIMIZATION

BASED-ON MONTE CARLO SIMULATION FOR

MAXIMIZING THE PROFITABILITY OF A SMART
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Abstract. In this paper, a two-stage stochastic model for opti-
mizing the profit of a smart microgrid is proposed in which the
uncertainty of loads, electricity market price and renewable genera-
tion are modeled using developing stochastic scenarios with Monte
Carlo simulation method. Also, in order to reduce solving time of
optimization problem the number of stochastic scenarios is reduced
by Kantorovich distance method.
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1. Introduction

Microgrids are a collection of loads, generation resources, and energy
storage systems that act as the controllable loads or generators and can
supply the electrical and the thermal power requirements for a local
area. From the main grid point of view, the most valuable advantage of
microgrids is its controllability and acting as an independent and con-
trolled element in the whole power system. From the customers point
of view, a microgrid is valuable for generating electrical and thermal
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energy just at the place of consumption. From the environmental point
of view microgrids by utilizing power generation technologies with the
fewer carbon emissions can help reducing air pollution and mitigating
global warming. Microgrid development is a part of smart grid con-
cept. By considering the advantages of microgrids, it is obvious that the
goals of microgrids and smart microgrids are common [1]. Also devel-
oping green technologies and using responsive load plans in microgrids
depends on smart microgrids technologies. According to the research
results of USA energy institution (DOE), it is estimated that micro-
grids will supply 1 to 13 GW up to 2020. This plan can be realized
by installing a number of 550 microgrids with 10 MW of power. Also,
the profitability of microgrids can reach 1 billion of dollars per year up
to 2020 [2]. Alavi et al. [3] presented the optimal operation of a mi-
crogrid by modeling the uncertainty of load and renewable generation,
in this reference the wind speed and solar irradiance are considered as
stochastic variables in which their uncertainty is estimated by point es-
timation method. Liu et al. [4] studied the planning of generation units
in a microgrid for reducing costs related to balancing load and genera-
tion. loads of microgrid are divided into three categories of responsive
loads, loads that may be responsive and non-responsive loads. for each
of them, a given interval is defined that is allowed to change only in
that interval. In case the loads violate from the predefined limits the
balancing cost of generators is added to the objective function. Xiang et
al. [5] modeled the uncertainty of microgrids loads and renewable gen-
erations (wind energy) by interval prediction method. In this method,
the point values of predicted parameters, as well as the probability dis-
tribution function of prediction, is utilized to generate random numbers.
Liu et al. [6] proposed an optimal model for the microgrid participa-
tion in the day-ahead electricity market. This model is formulated as a
two-stage stochastic optimization problem aiming operational costs min-
imization (the exchanged power costs, costs of generation and startup
of dispatchable units, batteries charging and discharging costs and the
revenue earned by selling power to consumers) and optimal participation
in the day-ahead electricity market. Nojavan et al. [7] developed the
optimal scheme for power generation units in the day-ahead electricity
market by particle swarm optimization (PSO) algorithm and Informa-
tion gap decision (IGDT) theory. The objective function of the problem
is profit maximization. This paper aims at maximizing the profit earned
by operation and optimal participation of smart grid in the day-ahead
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electricity market. The given smart microgrid includes dispatchable gen-
eration units (microturbines), renewable generation units (wind turbines
and photovoltaics (PV)), storage system (battery) and electrical loads.
All of the mentioned items except the electrical loads belong to smart
microgrids manager, in other words only selling electrical power to the
loads is considered as revenue. The optimization model proposed in
this paper is a two-stage stochastic optimization process in which the
uncertainty in the generated renewable power (solar and wind energy),
electrical loads (including price responsive loads, non-responsive loads
and interruptible loads) and electricity market price all have been mod-
eled as stochastic scenarios using Monte Carlo simulation. Also, in order
to reduce solving time of optimization problem the number of stochastic
scenarios is reduced by Kantorovich distance method. In the following
paper, firstly in the section 2 operation model of smart microgrid and
its components is described then the stochastic scenarios are generated
and reduced. The optimization model is presented in section 3 and in
section 4, the simulation results are analyzed. finally, the conclusions
are presented in section 5.

2. Modeling the system

Energy management system of smart microgrid concerning as oper-
ating smart microgrid and participating in the electricity market, firstly
before startup day of the day-ahead, should send the proposed selling
and buying hours for power (i.e. bids) to the upstream grid operator
before a given time (first stage: here and now). Considering the real cir-
cumstances of smart microgrid on the operating day and the real prices,
load and renewable generation in that time, the smart microgrid can
participate in real time electricity market for compensating deviations
from submitted day-ahead bids (second stage: wait and see). Thus for
dealing with various uncertainties, stochastic scenarios for load, price
and renewable generation are generated and then applied to the opti-
mization problem in order to gain the optimal solution corresponding
to each stochastic scenario. In other words, to calculate generation for
each dispatchable unit, interruptible loads and exchange to real time
electricity market. These decisions belong to the next 24 hours and cor-
respond to each possible scenario. And also the expected profit from
smart microgrid from all of the power exchange in the markets and op-
timal operation are from answers of two-stage stochastic optimization.
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2.1. Microturbines.
Microturbines are small-scale units with a simple structure that can

generate electrical energy with many kinds of fuels. Model for operation
cost of dispatchable units is the sum of generation and operation costs.
Generation cost of units is generally a quadratic equation. In this paper
for preventing nonlinearity of model, quadratic generation function is
approximated as a three-piecewise linear function.

2.2. Energy storage system.
Since renewable energy resources are utilized in this system if any kind

of fault occurs in transmission lines or loads abruptly change then volt-
age deficiency and reliability problems will occur. The storage system
is a useful tool to compensate for variable nature of renewable energies
without having to interrupt the load or starting up another generating
unit. In this smart microgrid, battery is utilized as the energy storage
system.

2.3. Load.
Loads of microgrids divide into three categories of responsive loads,

non-responsive loads and interruptible loads, which respectively compose
40%, 50% and 10% of total load of microgrid. Incentive-based demand
response programs motivate consumers with rewards to decrease their
consumption. These programs do not deal with price signals but it is a
suitable tool to control loads such that the smart microgrid manager can
manage reliability and prices of the system. Smart microgrid manage-
ment system announces its decisions for interrupting or decreasing load
to interruptible loads. These (interruptible) consumers deliver the pro-
posed load and price decrement plans to smart microgrid management
before closing day-ahead electricity market (outside of microgrid). Then
smart microgrid management system considers propositions (solves op-
timization problem) of the consumers that their proposition is accepted
are called to decrease their loads and get their proposed price in return.

2.4. Uncertainty.
The smart microgrid management system before operation of day-

ahead electricity market for solving the optimization model collects fore-
cast data on wind speed, day-ahead electricity market prices, real time
electricity market prices and electrical load of smart microgrid and also
historical data of solar irradiance. In order to include uncertainty in
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mentioned parameters, it is assumed that electrical load and price fol-
low normal distribution function. Also, the wind speed and solar irradi-
ance follow Weibull and Beta distribution function respectively. Then by
Monte Carlo method stochastic scenarios are generated using mentioned
distribution functions, such that stochastic scenarios for day-ahead elec-
tricity market price and load with average value of zero and standard
deviation of respectively 10% and 20% of their hourly forecast values
and for stochastic scenarios of wind speed and solar irradiance standard
deviation of 5% of their hourly forecast values are generated. Also, price
scenarios for real time electricity market contain expected values of for
day-ahead electricity market but will be generated by the standard de-
viation of 25%. This difference is due to higher fluctuations in real time
electricity market relative to day-ahead electricity market.

2.4.1. Monte Carlo simulation.
One of the most common and precise methods for considering system

uncertainty in, is Monte Carlo simulation method (MCS). MCS is not
dependent on system size and is mostly used for nonlinear systems. MCS
is a repetitive process that include the following steps:
Step 1. Average equals to avg = {} and a counter is considered as
e = 1 .
Step 2. For each of input variables ri, using probability distribution
function (PDF) a value of rei is assigned.
Step 3. The considered model is computed (for example ze is calculated
as ze = L(re1, r

e
2, ..., r

e
n)).

Step 4. The average value of the model for stochastic allocated values
is calculated (i.e. ze = 1

e

∑e
m=1 zm) .

Step 5. The value of ze is stored in avg.
Step 6. If ze is converged go to step 7, else e = e+ 1 and go to step 2.
Step 7. The end.

In above steps z function is considered for which ze = L(re1, r
e
2, ..., r

e
n).

Also, variables r1 to rn are stochastic input variables that are chosen
according to their PDF. In fact, the problem can be formulated as finding
output PDF of model or z by having PDF of input variables. The
underlying concept for Monte Carlo model is finding PDF function ze
using PDF for input variables ri. At the end of simulation, PDF for
output function z is approximated by a PDF normal to an average (Eq.
(2.1)) and a standard deviation (Eq. (2.2))[8].

µz = µz̄e (2.1)
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σz =

√
1
e

∑e
m=1(zm − µz)2

e
(2.2)

2.4.2. Scenario reduction.
In order to show the uncertainty of parameters in stochastic program-

ming, a great number of scenarios is needed and this leads to increasing
computational time. By Using mathematical method this huge number
of scenarios are reduced. These methods are based on calculating possi-
ble distance between the main sample and scenario sample. In stochastic
optimization problems, one of the most common possibility distances is
Kantorovich method, which is defined between two possible distributions
Q and Q′ and is obtained by adding scenarios that are not selected ω
(ω ∈ Ω/Ωs) to closest scenario ω′ in set of selected scenarios Ωs according
to Eq. (2.3).

D(Q,Q′) =
∑

ω∈Ω/Ωs

π(ω)min(‖ y(ω)− y(ω′) ‖) (2.3)

In which ω and ω′ are scenarios, Q and Q′ are respectively possi-
bility distributions in the set of initial scenarios Ω and set of selected
scenarios Ωs. π(ω) is probability of each scenario. There are various
scenarios based on Kantorovich distance, in this paper we have utilized
fast forward selection algorithm [9]. This algorithm is a repetitive one,
in which an empty scenario tree is formed, then scenarios that minimize
Kantorovich distance between initial and selected sets are chosen. When
the needed number of scenarios is selected, this algorithm is terminated.
Then the probability for each scenario that is not selected is transferred
to closest selected scenario. Finally, a reduced scenario tree with de-
termined possibility is obtained. Figure 1 shows the flowchart of this
selection algorithm.

3. Objective function

As it is mentioned in previous sections, the objective of energy man-
agement system of smart microgrid is submitting optimal bids in day-
ahead electricity market via maximizing expected profit for smart mi-
crogrid operation. Thus in this section, the objective function is defined
as maximizing expected profit.
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Figure 1. Fast forward selection algorithm

max
NS∑
s=1

ρsProfits (3.1)

subject to:

Profits = −
NT∑
t=1

λdat,sP
da
t + (

NT∑
t=1

λdat,sdt,s (3.2)

−
NT∑
t=1

NC∑
c=1

NK∑
k=1

πc,kILt,c,k,s −
NT∑
t=1

NDG∑
i=1

COPE
i,t,s

−
NT∑
t=1

λrealt,s (P real
t,s )−

NT∑
t=1

λpent

∣∣P pen
t,s

∣∣)



74 M. J. Salehpour and S. M. Moghaddas Tafreshi

The objective function consists of the revenues from selling electric-
ity to the loads and in the electricity markets, minus the cost of loads
interruption, the power purchasing cost from electricity markets, the
microturbines operating cost, and the bids deviation cost. In Eq. (3.2),
Profits is the earned profit from each scenario s. Each scenario ex-
presses a state from uncertainty set of the given smart microgrid with
probability of ρs. The smart microgrid after submitting its bids for
power exchange in day-ahead electricity market P da

t , it will exchange
the amount of P real

t,s = P del
t,s − P da

t with real time electricity market in
order to compensate for deviation from bid values in previous stage.
P del
t,s expresses real value of exchanged power with upstream grid in the

operating day. If submitted bid values deviate from real values of ex-
changed power, the objective function will include penalty of λpent that
is illustrated in the last term of Eq. (3.2) and equals to Eq. (3.3). Also,
λdat,s and λrealt,s refer to the day-ahead electricity market price and the real
time electricity market price at time t in scenario s, respectively.

P pen
t,s =

∣∣∣P del
t,s − P da

t

∣∣∣ (3.3)

3.1. Constraints on objective function (∀t, s).

NDG∑
i=1

Pi,t,s + P del
t,s +

NB∑
b=1

(
PD
b,t,s − PC

b,t,s

)
(3.4)

= dt,s −
NW∑
w=1

Pw,t,s −
NP∑
p=1

Pp,t,s −
NC∑
c=1

P IL
c,t,s

Equation (3.4) expresses Kirchhoff law on current (KLC) within smart
microgrid. In this equation sum of generated power of dispatchable units
(Pi,t,s), amount of real power exchanged with upstream grid (P del

t,s ) and

discharged energy (PD
b,t,s) at any moment under any scenario and in

a couple of steps is equal to sum of total consumed load (dt,s) ,total
interrupted loads (P IL

c,t,s) and total charged energy (PC
b,t,s). Also, wind

generated power Pw,t,s and solar power Pp,t,s are modeled like negative
load. NDG, NB, NW , NP and NC refer respectively to the number of
dispatchable units, number of batteries, number of wind units, number
of photovoltaic units available in the system and number of interruptible
loads.
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Cgen
i,t,s = aiVi,t,s + ∆T

Ni∑
m=1

λi,mPi,m,t,s, ∀i (3.5)

Pi,t,s = Pmin
i,m,t,sVi,t,s + ∆T

Ni∑
m=1

Pi,m,t,s, ∀i (3.6)

Pmin
i Vi,t,s ≤ Pi,t,s ≤ Pmax

i Vi,t,s,∀i (3.7)

Equation (3.5) expresses the linearized generation cost for unit i at
time t in scenario s. Pi,m,t,s expresses amount of generated power in
part m of linearized generation cost function for unit i at time t and
in scenario s. The amount of incremental cost at any part of linearized
generation cost function for unit i is shown with λi,m. Also the binary
value Vi,t,s expresses the commitment status of unit i during the time
interval t to t+ 1 and in scenario s, 1 expresses the commitment of unit
during this time and 0 relates to not commitment during this time. Also,
∆T , ai respectively show length of operation time and generation cost
for unit i at its minimum power (Pmin

i ). T is length of operation time.
Equations (3.6) and (3.7) express limitations on generation capacity of
units [10].

Cstart
i,t,s = kstartoni,t,s, ∀i (3.8)

Equation (3.8) corresponds to startup cost of microturbines. The
startup factor for microturbines (kstart) is considered as fix. Also, oni,t,s
is a binary variable that expresses startup status for unit i at time t in
scenario s, such that 1 refers to startup and 0 refers to not startup of
unit.

∆min,c ≤ ILt,c,k,s ≤ ∆c,k, ∀k = 1, c (3.9)

0 ≤ ILt,c,k,s ≤ ∆c,k −∆c,k−1,∀1 ≤ k ≤ NK , c (3.10)

P IL
t,c,s =

NK∑
k=1

ILt,c,k,s,∀c (3.11)

∆min,c ≤ P IL
t,c,s ≤ ∆max,c,∀c (3.12)

Constraint (3.9) expresses that the amount of offered load decrement
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by interruptible load c at time t in step k and scenario s or ILt,c,k,s

which is constrained within its upper limit ∆c,k and its lower limit ∆c,k.
Constraint (3.10) shows the feasibility of ILt,c,k,s. In this relation NK

is the number of steps for load decrement. Equation (3.11) expresses
decreased price interruptible load c that is the sum of accepted offered
packages. The constraint (3.12) expresses that the amount of decreased
price interruptible load cat any time have to be between minimum and
maximum of offered load c.

0 ≤ PC
b,t,s ≤ bCb,t,sPC

b ; 0 ≤ PD
b,t,s ≤ bDb,t,sPD

b , ∀b (3.13)

SoCb,t+1,s = SoCb,t,s + ∆T

(
ηCb P

C
b,t,s

Eb
−
PD
b,t,s

ηDb Eb

)
,∀b (3.14)

SoCb,NT,s = SoCb,1; Socmin
b ≤ SoCb,t,s ≤ SoCmax

b , ∀b (3.15)

bCb,t,s + bDb,t,s = 1; bCb,t,s, b
D
b,t,s ∈ {0, 1}, ∀b (3.16)

In constraint (3.13), PC
b,t,s and PD

b,t,s show charging and discharging
power for battery b at time t in scenario s that are limited by maximum
and minimum charging and discharging power for battery (PC

b and PD
b ).

In this constraint bCb,t,s and bDb,t,s are binary variables for which 1 and
0 respectively show charging and discharging status for battery b at
time t in scenario s. Dynamic model for energy exchange in battery is
illustrated in constraint (3.14), where, SoCb,t,s shows charging status of

battery b at time t in scenario s. ηCb and ηDb respectively show charging
and discharging efficiency of battery b. Also, Eb is energy capacity for
battery k. In constraint (3.15) SoCb,t,s is limited by maximum battery
status SoCmax

b and minimum battery status SoCmin
b . Constraint (3.16)

prevents simultaneous charging and discharging battery b at time t in
scenario s[6].

4. Numerical results

In the given microgrid a couple of microturbines with startup cost
of 2 dollars and emission cost of 0.001 dollar per kilogram and gener-
ation cost according to Eq. (4.1) is considered. Also, the maximum
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Figure 2. Forecast loads of smart microgrid

generation capacity of microturbines is assumed to be 60 KW. The ca-
pacity of battery available in the microgrid is assumed to be 50KWh,
also maximum charging and discharging capacity is considered 25KW
and the efficiency is assumed 90%. The forecast loads of smart micro-
grid is illustrated in Figure 2 and the forecast price of electricity market
is illustrated in Figure 3. The proposed model is solved using CPLEX
solver in GAMS.

Microturbines generation cost = 0.005P 2 + 0.03P + 0.4 (4.1)

The offered values for interruptible loads for load values of 100,200,400
KW are considered respectively 8,17 and 50 cents per kilowatt. A num-
ber of 500 stochastic scenarios for smart microgrid loads, electricity mar-
ket price, wind speed and solar irradiance are generated using Monte
Carlo method, then these scenarios are reduced to 50 possible scenarios
using Kantorovich method as illustrated in Figure 4. Figure 5 shows
optimal values for power exchange in day-ahead electricity market (op-
timal bids). As it is apparent in the figure smart microgrid purchases
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Figure 3. Forecast price of day-ahead electricity market

Figure 4. Reduced stochastic scenarios

power all over the market hours. Also, Figure 6 shows charging and dis-
charging status all over the operation day. As it is shown in the figure
during 1 AM to 8 PM when the electricity price is low, the battery is
charged and in the high price hours it is discharged.
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Figure 5. Optimal hourly day-ahead bid amounts

Figure 6. Expected state of the battery charge over the
operating day

Power balance of smart microgrid including generation of microtur-
bines, wind and PV units, charging and discharging battery, exchanging
with upstream grid and smart microgrid net load is illustrated in Figure
7. It should be mentioned that optimal value of interruptible load at any
hour is 20 KW and this is decreased from total load of smart microgrid
and its result is considered in power balance. The expected profitability
of smart microgrid is approximated as 403 dollars. Deviation values for
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Figure 7. Power balance of smart microgrid components

power balance in times of 4,9,14,20 in real time electricity market will
be settled during operating day.

5. Conclusions

In this paper profit maximization problem for a smart microgrid via
optimal participating in day-ahead electricity market and optimal oper-
ation of smart microgrid by two-stage stochastic optimization framework
is presented. Uncertainties in generation resources (wind and solar), in
electrical loads and prices are modeled by generating various scenarios
of probabilistic distribution functions corresponding to parameters be-
haviors using Monte Carlo method, then in order to reduce calculations
time the number of scenarios is reduced using Kantorovich method. The
presented model that deals with optimal participation in the electricity
market and optimal management of batteries, microturbines and inter-
ruptible loads and selling power to various loads leads to maximizing
profit.
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