
Journal of Hyperstructures 7 (Spec. 2nd CSC2017) (2018), 60-66.

ISSN: 2322-1666 print/2251-8436 online

SOLVING ILL-CONDITIONED LINEAR EQUATIONS

USING SIMULATED ANNEALING METHOD

MOJTABA MORADI

Abstract. The purpose of this paper is to using the Simulated
Annealing method to solving a linear equations system which have
an ill-conditioned coefficients matrix. A linear equation system is
called ill-conditioned if its condition number be large. By using a
matrix scaling, the linear equation system transforms into a linear
equation system with less condition number. Matrix balancing is
performed by Simulated Annealing algorithm. The efficiency of this
method is investigated by numerical examples. Numerical results
show that Simulated Annealing can reduce the condition number
of equations.

Key Words: Condition Number, Matrix Scaling, Simulated Annealing, Linear Equations

System.

2010 Mathematics Subject Classification: 15A06 , 65F35, 65F22, 68W20.

1. Introduction

Simulated Annealing algorithm (SA) is a local search algorithm that
can escape from local optima. Simplicity of implementation and con-
vergence properties, accepting worse solutions to jump out of any local
optimums has made SA one of the most widely used methods in the last
two decades. The first idea, which later became the basis of the SA algo-
rithm, was first introduced by Metropolis in 1953 based on the process of
cooling and annealing of materials (mainly crystalline metals). But this
algorithm was first formally introduced by Kirkpatrick et al., inspired by

Received: 15 January 2018, Accepted: 21 January 2018. Communicated by A. Yousefian

Darani;

∗Address correspondence to M. Moradi; E-mail: mmoradi@guilan.ac.ir.

c© 2018 University of Mohaghegh Ardabili.
60

Solving ill-conditioned linear equations 61

the annealing phenomenon. Of course, after two years from KirkPatrick,
Cerny also stated in an independent article that he developed this al-
gorithm for the first time [1]. In statistical mechanics, the relationship
between atomic structure, disorder (or entropy) and temperature dur-
ing the process of cooling the material are studied. Annealing is a heat
treatment process to above the upper critical temperature and slow cool-
ing down. In physics, compressing, heating, and cooling of material are
a physical process in which a solid is heated in a container to become
fluid, then its heat gradually decreases. In this way, all particles can
arrange themselves at the lowest level of energy. This situation occurs
when the heating be sufficient and the cooling be also slow.

The result of Simulated Annealing algorithm is not dependent on the
initial state, and it can be obtained by finding a value close to the op-
timal solution. The upper limit of the execution time of the algorithm
can also be determined. In each step of the SA algorithm, a solution
is created and is compared with the best obtained solution. Better so-
lutions are always accepted, while part of non-improving solutions are
also accepted in order to avoid getting stuck in local optima. The proba-
bility of accepting non-improving solutions depends on the temperature
parameter. The key feature of SA is that using of hill climbing moves
to escape the trap of local optima. By decreasing the temperature pa-
rameter to zero (increasing repetitions), the melting movements will be
less and less and the distribution of the corresponding solutions will be
heterogeneous with a consistent Markov Chain, whose stable states will
be the same as the optimal global solutions, which requires that the
extreme probabilities of these states greater than zero. Therefore, in
optimization problems, temperature is used as a control parameter. [2,
3]

The steps taken by the SA algorithm to solving a minimizing problem
can be summarized as follows:

Step 0) Before starting the algorithm, specify the following: Cooling
schedule (including number of algorithm repeats per temperature, M)
frequency of temperature changes, temperature reduction mechanism,
initial temperature value t0 ≥ 0, final temperature value, method of
producing neighboring solutions.
Step 1) Create random initial solution, w ∈ Ω
Step 2) Set k = 0 as the initial value of the frequency change of the
temperature.

62 M. Moradi

Step 3) Set m = 0 as the number of repetitions at each temperature.
Step 4) Create a new solution in the neighborhood of the current solu-
tion, (w′ ∈ N (w)).
Step 5) Calculate the value of ∆w,w′ = f (w′)− f (w).
Step 6) If ∆w,w′ ≤ 0 then replace w by w′, otherwise replace w by w′

with probability exp(−∆w,w′/tk). In any case, save the best solution.
Step 7) (m← m + 1)
Step 8) If m = M , go to Step 9, otherwise go to Step 4.
Step 9) Set (k ← k + 1) and reduce the temperature according to the
cooling schedule.
Step 10) If the condition for termination of the algorithm is established,
stop the algorithm and find the best solution as the optimal algorithm’s
solution, otherwise go back to Step 3.

One of SA’s characteristics is no working with multiple solutions at
each iteration over demographic algorithms such as Genetic Algorithm.
It should be noted that it cannot be claimed that the SA algorithm is the
fastest and most efficient method for solving the optimization problems,
but it is simpler to apply over other algorithms such as an ant colony
algorithm or neural networks.

Worse solutions that may lead to a global optimum are selected with
special probability. With repeating the algorithm, this probability be-
come less and less, until we feel that there will be no further progress,
for example, in two consecutive repetitions of this algorithm, the differ-
ence between the two solutions will be less. In this case, we reach the
stability temperature.

In determining the parameters of this algorithm, we should note the
following points: If T be small at first generations, the algorithm stops
in local solutions. Because at the beginning of the algorithm, the chance
of accepting a solution with a higher energy level is reduce. If T be large
at first generations, many ”bad” trades are accepted, and a large part
of solution space is accessed and it will leading to a waste of time at
the beginning of the algorithm. Because the probability of accepting
solutions with higher energy levels will be constantly randomly walk
from one solution to another. [1]

2. Using Simulated Annealing algorithm for solving linear
equations

Consider linear equation system Ax = b, which A is a nonsingular
and an ill-conditioned matrix. A small change in b or A may change

Solving ill-conditioned linear equations 63

the vector of the solution completely. The measure of ill-condition of a
matrix, defined as:

cond(A) = ||A|| ||A−1||.

If the condition number is large, then the matrix is said to be ill-
conditioned. Instead of solving Ax = b, that A is an ill-conditioned
matrix, one can solve the linear equation system (D1AD2) y = D1 b and
then obtain the value of x = D2y. D1 and D2 are diagonal matrices that
must be chosen so that the matrix D1AD2 has a condition number less
than the matrix A. In this case, we say that the matrix scaling is taken.
matrix scaling was first proposed by Sinkhorn in 1964 by publishing an
article on balancing certain positive matrices [4].

Matrix scaling is often done by multiplying each row and column in a
scalar. That is, it is often assumed to D1 and D2 be diagonal matrices.

The purpose of this paper is to using Simulated Annealing algorithm
to determine D1 and D2 such that the condition number of the matrix
D1AD2 is minimized. The problem of optimizing matrix scaling has
been studied by Baur, Braatz and Murari, Buzinger, and other authors
[8, and 9].

The goal of this paper is solving min : ‖D1AD2‖, where it is a single-
objective problem. If the square matrix A be n × n, then the problem
variables are equal to 2n. That is, the unknowns d11, d12, ..., d1n (ele-
ments of the main diagonal of D1) and d21, d22, ..., d2n (elements of the
main diagonal of D2) must be determined. The algorithm for solving
this problem is as follows:

1) Get square matrix A and set t0 = 100; M = 3.
2) Generate D1 and D2 as the initial solution randomly from a uniform
distribution on(−100, 100).
3) Set m = 0.
4) Generate two vectors d1 and d2 randomly according to uniform dis-
tribution on (−0.1 , 0.1), and then calculate the new solutions ND1 =
D1 + d1 and ND2 = D2 + d2.
5) Calculate the value of ∆ = ‖ND1 A ND2‖ − ‖D1AD2‖.
6) If ∆ < 0, new solution is accepted, otherwise accept the new solution
with probability exp(−∆/tk). Save new solution in D1 and D2.
7) Set m← m + 1.
8) If m < M then go to 4.
9) Set k ← k + 1and tk = 0.95× tk−1.

64 M. Moradi

10) If k < 100 then go to 4.
11) Report the last accepted solution as optimal solution.

3. Numerical Results

It is well know that the condition number of each matrix is always
greater than or equal to 1. We want to show that, if possible, Simulated
Annealing method has the ability to reduce the condition number of a
matrix close to 1 using the concept of scaling.
Example 1: The condition number of

A =

(
105 0
0 10−5

)
is large and equal to 1010.

The diagonal matrices are obtained using Simulated Annealing as
follows.

D1 =

(
10.310808169156953 0

0 145.5323354581699

)
And

D2 =

(
−1.253708204201532e− 07 0

0 −88.823866894639240

)
that cond(D1AD2) = 1.000000000001375 is close to 1.
Example 2: The condition number of following matrix is
61.983866769659270.

A =

 1 1 1
1 2 3
1 3 6


From [5], we know that the lowest possible value (optimal value) of
the condition number obtained from the matrix scaling is equal to (3 +√

10)2 = 37.973665961010280. We now want to examine the efficiency
of the Simulated Annealing algorithm for this matrix. The results of
this method are as follows:

D1 =

 407.6211814788877 0 0
0 373.1143253579575 0
0 0 −192.4281752057432


and

D2 =

 −234.7621137716025 0 0
0 −214.2286722377142 0
0 0 111.0194306184976



Solving ill-conditioned linear equations 65

and

cond(D1AD2) = 37.973967559242126

The absolute error is equal to3.0160e− 04 and the relative error is equal
to 7.9423e− 06.
Example 3: The condition number of following matrix is equal to
460.2704442412975.

A =


0.0926612 17.0784926 0.3127063 12.7526810
1.7811361 54.0213314 1.4953060 14.7655003
0.3460217 0.0680433 0.2626770 0.0227214
1.3745248 45.1500312 0.0505958 1.4314422


Chin-Chieh and Ch., John in 2008, using a duplicate algorithm called
SCALGM, managed to reduce the condition number to14.4856257. Us-
ing Simulated Annealing method, we were able to find a better solution
(though close to their solution). The scaled matrix has a condition num-
ber equal to 14.48547757. The diagonal matrices D1 and D2 respectively
are as follows:
−0.5834716587683 0 0 0

0 0.2831906690374 0 0
0 0 1.5658855853424 0
0 0 0 0.3113680681914


and

0.5906753296597 0 0 0
0 −0.0189122833584 0 0
0 0 0.7391127768269 0
0 0 0 0.0529508083825



4. Conclusion

The ill-conditioned linear equation system is sensitive and small changes
may produce a new solution that is very different from the previous one.
On the other hand, the round-off error may leads to an error in the
solution as a very minor change. For this reason, providing an approach
that impedes the growth of errors is especially important.

The condition number of coefficient matrix in a linear equation system
was introduced as a measure of ill-conditionality. By multiplying the
left and right of the coefficient matrix by D1and D2, we arrived the
D1AD2 that the condition number of this matrix is the lowest possible
(optimal value) The elements of D1and D2 was determined by Simulated

66 M. Moradi

Annealing algorithm. This algorithm is able to reduce the condition
number based on the concept of matrix scaling.

References

[1] M. C. Trosset , What is Simulated Annealing, Optimization and Engineering, 2
(2001), 201–203.

[2] C. Blum and A. Roli, Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison, ACM Computing Surveys, 35 (2003), 268–308.

[3] F. Glover and G. Kochenberger, Handbook of Metaheuristics, Kluwer Academic
Publishers, Norwell (2002).

[4] R. Sinkhorn, A relationship between arbitrary positive matrices and stochastic
matrices, Annals of Mathematical Statistics, 35 (1964), 876–879.

[5] F. L. Bauer, Optimally scaled matrices. Numerische Mathematik, 5 (1963), 73–
87.

[6] D. R Braatz and M. Morari, Minimizing the Euclidean Condition Number. SIAM
Journal on Control and Optimization, 32 (1994), 1763–1768.

[7] P. A. Businger, Matrices Which Can Be Optimally Scaled. Numerische Mathe-
matik , 12 (1968), 346–348.

[8] Ch. Chin-Chieh and P. Ch. John An Approximate Equation for the Condition
Numbers of Well-scaled Matrices. Proceedings of The 2008 IAJC-IJME Interna-
tional Conference.

[9] G. A. Watson, An Algorithm for Optimal. Scaling of Matrices. IMA J. Numer.
Anal , 11 (1991), 481–492.

Mojtaba Moradi
Department of industrial engineering, University of Guilan, Rudsar, Iran
Email: mmoradi@guilan.ac.ir

	1. Introduction
	2. Using Simulated Annealing algorithm for solving linear equations
	3. Numerical Results
	4. Conclusion
	References

