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SOME BAYES ESTIMATION STRATEGIES IN
EXPONENTIAL DISTRIBUTION UNDER A WEIGHTED
LOSS FUNCTION

A. KIAPOUR AND M. NAGHIZADEH QOMI

ABSTRACT. In Bayesian approach, prior knowledge is often vague
and any elicited prior distribution is only an approximation to the
true one. E-Bayes and robust Bayes approaches consider a class of
prior distributions instead of a single prior. In this paper, we deal
with Bayes, E-Bayes and robust Bayes estimation of the exponen-
tial scale-parameter under a weighted loss function. We conduct a
simulation study for comparison of these estimators.
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1. INTRODUCTION

Bayesian estimation approach is used when practitioners suppose that
a correct prior exists, but they are unable to apply the pure Bayesian
assumption. Because they are not confident enough to specify it com-
pletely or when a problem must be solved by two or more decision-makers
and they do not agree on the prior distribution to be used. Various so-
lutions to this problem have been proposed. some proposed solutions
are E-Bayes and robust Bayes methodology, which have been applied
over the last three decades. E-Bayes and robust Bayes analysis is per-
formed by using a class of prior distributions and then to calculate the
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range of Bayes estimation. This method was first introduced by [6].
The E-Bayes estimator of unknown parameter is obtain on the basis of
different distributions of the hyperparameter(s). These distributions are
used to investigate the influence of the different prior distributions for
obtaining optimal estimator, see [3]. In robust Bayes approach, there
are several methods for obtaining optimal estimator such as the condi-
tional I'-minimax rule ([4], [2]), the posterior regret -minimax rule ([10],
[9]), the least sensitive rule ([1]) and the most stable rules ([5], [3]). In
this paper, we consider the problem of estimation under the following
weighted loss function

(1.1) L(0,6) = (g -1)%

where ¢ is an estimator of 6. This loss function is strictly convex function
of A = % and has a unique minimum at A = 1. It is useful for estimation
of the scale parameter. In this paper, Bayes, E-Bayes and robust Bayes
approaches have been used to obtain the estimators of the exponential
scale-parameter under the loss function (1.1). In section 2, we state
preliminary definitions and formulas of Bayes, E-Bayes and robust Bayes
estimation of known parameter. In section 3, we find the Bayes estimator
of the exponential scale-parameter under the loss function (1.1). E-
Bayes and robust Bayes estimators are developed in sections 4 and 5,
respectively. Finally, a comparison is made between the Bayes, E-Bayes
and robust Bayes estimators using a simulation in section 6.

2. PRELIMINARIES

Let X" = (Xy,...,X,) be independent and identically distributed
(i.i.d.) random variables from a distribution py indexed by a real un-
known parameter 6. Also, let (x, B,p) denoted the probability space
generated by X, where y C R", B is the o-field of x, p = {pg(x)|0 € O}
and © is the space parameter. In estimation of 6, let L(f,9) be the
loss function (1.1). Then, the posterior risk of § based on observations
x" = (z1,...,Tp) can be expressed as

p(m.8) = E[L(6,6)X" = x

1 1
(2.1) = 52E[9—2|x”] - 2E[§|x”} + 1.
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The Bayes estimate of 8 based on observation x" is any estimate P (x™)
that minimizes the posterior risk (2.1), which is given by

1
Elbla

T
El o]

Information on the appropriate prior is often inadequate to unambigu-
ously specify a prior distribution. The problem of expressing uncertainty
regarding prior information can be solved by using a class of prior dis-
tributions. E-Bayesian and Robust Bayesian inference deal with such
a problem by constructing methods which are stable to such a lack of
information.

E-Bayes estimator is the expectation of the Bayes estimator for the
all hyperparameters and is defined as

(2.2) §B(x™) =

(2.3) 0P (x") = [ 8P (x")m(B)dp,

BeD
where §8(x™) is the Bayes estimate, 7(f3) is a prior density for the hy-
perparameter(s) 8 and D be the set of all possible values of hyperpa-
rameter(s) (3.

In robust Bayes methods, our interest is to construct some optimal
estimators, when the prior run over the class I'. There are several meth-
ods for obtaining optimal estimator of unknown parameter which we
recall them as follow:

Let F(m,8) be a posterior functional. The optimal decision § satisfies
sup F(7,8) = inf sup F(7,§).
nel 6D rer
¢ is the conditional I-minimax estimator, where F(m, ) = p(,d), 0% is
the most stable estimator, where F(m,8) = sup,cp p(m, §)—infrer p(m, §),
6P is the posterior regret I'-minimax estimator, where (7, §) = p(,)—
p(m,0™) and 075 is the least sensitive estimator, where

Fr,8) = Do)

3. BAYESIAN ESTIMATION STRATEGY.

Let X" = (X1,Xs,...,X,) be a sequence of iid random variables
from exponential EX P(f) distribution with probability density func-
tion (p.d.f.)

(3.1) f(x|0) =0e7% = >0, >0,
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where 6 is unknown scale parameter. Assume that 6 has a prior distri-
bution Gamma(a, 371), with p.d.f.

(o3
()

If X" = x", then the posterior distribution is Gamma(n +«, (T +5)71)
where T' = "' | x; and the posterior risk of an estimator § under the
loss function (1.1) is equal to

(T + B)? ~20(T+ B)
m+a—-1)n+a—-2) nt+a-1

(3.2) Tap(0) = 0% "% a>0, >0, 60>0.

p(m,0) = +1.

Therefore, the Bayes estimator of # under the loss function (1.1) is given
by
E[Fx"]  n+a-2

B _
(3:3) @) = ElLx]  T+p

4. E-BAYESIAN ESTIMATION STRATEGY

According to [6] the prior parameters should be selected to guarantee
that 7(3) is a decreasing function of 3. If we take the conjugate prior
(3.2), hyperparameters a and ( should be in the ranges 0 < o < 1 and
B > 0, respectively, due to W < 0. When o = 1, 7 is a decreasing
function of #. Accordingly, b should not too big while o = 1. It is better

to choose @ = 1 and 0 < 8 < ¢. Then, the prior density 7 is given by
(4.1) (0| 8) = B~

Following [7] we consider the following three prior distributions for the
hyperparameter [3:

m(8) = 2(6056) a=1,0<p<c,
772(5) = %aa:1a0<ﬁ<ca
(4.2) m3(B) = 20—5, a=10<p<ec

In the following theorem, we obtain the E-Bayes estimators of 6 under
the loss function (1.1) and prior distributions (4.2).

Theorem 3.1. Let X1, Xo,... be a sequence of random variables which
are conditionally independent given 6, and suppose that X; given 6 has
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EXP(60)-distribution. Suppose that X" = a*. Then, the E-Bayes es-
timators of 6 corresponding to the priors given in (4.2) under the loss
function (1.1) are equal to

(4.3) B T ]
5P (<) = ”;11n<C+TT>,
srony 2(n—1) c+T . p
5EB(X)—7C {—IH(T)}

Proof. For m1(f), the E-Bayes estimator under the function(1.1) is given
by

EBy (yny _ B(yn _ ‘n—12(c—p)
ey = [ sty = [ 2 s
2(n—1), c+ T)c+T

- c? {In( T

—c}.

Similarly, the E-Bayes estimator of § under priors m2(3) and 73(5) can
be obtained.

5. ROBUST BAYESIAN ESTIMATION STRATEGY

The Bayes estimation is used if precise information about the prior is
given. On the other hand, the robust Bayes estimation is applied if no
information about the prior is available. The robust Bayes approaches
deals with partial prior information, using a class of prior distributions.
Now suppose that the prior distribution is not exactly specified and
consider I' class of prior of 8 as:

I = {Gamma(a, 7|3 € [B1,82] € RT,a = ag > 0}.

where ag, 51 and [y are known. Note that the robust Bayes estimation
becomes the usual Bayes when the class of prior distribution contains a
single prior.

The following theorem gives the robust Bayes estimators of § under
the loss function (1.1).

Theorem 4.1. If the class of priors is equal to ', then the most stable
estimator, the conditional I'-minimazx estimator, the posterior regret I'-
minimaz estimator and the least sensitive under the loss function (1.1)
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are equivalent and are of the form
skp _ 2(n+ao—2)
2T + B1 + B2

The estimator is the Bayes estimator under the prior Gamma(a, 3*)
and under the loss function (1.1), where §* = %

(5.1)

5RB

Proof. First of all we consider the problem of constructing the conditional
I-minimax estimator. We consider posterior risk of ¢, i.e.,

62b? 26b
= - 1
MO = D=2 (a1
= p(m,6).
where a = n+ a and b = T + 3. The first and second derivatives of
p(mp, §) are equal to

982
dp(mp, 9) _ 20%b 20 a2,
0b (a—1)(a—2) a-—1
and
d?p(mp, 8) 262
= 0. 2.
a2 a—Da-2  ~*~
Thus p(mp, d) is a strictly convex function of b and has a minimum at
a—2
bm'm = -
o

The function I(§) = p(mp,,0) — p(mp,,0) is a decreasing and continuous
)

function of 0 and [(0) = 0 if and only if
b1 + by

Hence, we have

| p(lmp,,6)  6>6"

su mp,0) = "

be[bll,:;az] P, ) { p(mpy,6) 0 < 5%
Note that p(m,d) is a strictly convex function of § and has a mini-
mum at 6" = a—gQ. Since 6% = % < 6%, Thus for § > 0* we have
infs>sc p(mp,8) = p(mp,,0%). Moreover §%2 = ang > ¢* and then for

0 < 6%, we obtain infs<s« p(mp, d) = p(mp,,0*). Finally, we get

inf sup p(m,d) = p(mp,,0%) = p(mp,, )
dER be[b1,ba)
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which implies that 619 =6 = %.
Calculation of the most stable estimator reduces to the problem of
constructing J&. Since infyep, o) P(T8,6) = p(Tp,5,6) = 1 — 42 js not

1

a function of 4, then we obtin
a—2
inf[ sup p(mp,d0) — inf p(mp,0)] = inf sup p(mp,d0) — {1 — .
5€R[be[b1,bg] ( ) be[b1,ba] ( )] 6€Rb€[b1,b2} ( ) { a — 1}

which implies that 515 = (519 .

To find the posterior regret I'-minimax and least sensitive estimators,
we consider the posterior risk of Bayes estimator 67 as
a—2

B — J—
p(ﬂ'b,(s )—1 CL—l'

Since the posterior risk of the Bayes estimator does not depend on pa-
rameter b, therefore, the estimator 6{3 R 5%5 is equal to 519 .

6. SIMULATION STUDY

In this section, We perform a numerical comparison between the
Bayes, E-Bayes and robust Bayes estimators. For this purpose, we gen-
erate sequences n of independent random samples from exponential dis-
tribution with true value of parameter 8 = 4. Let 65, k=1,2,3,4,5
stands for 67 (x") with @ = 1 and 8 = 3 given by (3.3), E-Bayes estima-
tors 6FPi(x"), i =1,2,3 for ¢ = 3 given by (4.3), and robust estimator
5B (x™) over the classes I' with a = 1 and 8 € [1,3] given by (5.1) in
ith replication, respectively. Repeat these tasks 10* times and calculate
the value of Estimated Risk (ER) using the following formula

1 A
ER(6%) = — ) (- —1)%,

The results are summarized in Table 1. It is seen from Table 1 that
the performance of the Bayes and robust Bayes estimators are quite
satisfactory in terms of estimated risks. As we observe from Table 1,
the estimated risk of the Bayes estimators of 8 are

ER(6FBY) < ER(67P?) < ER(6%P2) < ER(61'P) < ER(5P).

Moreover, the estimated risk decreases as the sample size increases and
even for small sample size, performance of the E-Bayes estimators are
quite satisfactory than the robust Bayes estimator. Also, the robust
Bayes estimator work better than the Bayes estimator.
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TABLE 1. Risks of the Bayes, E-Bayes and robust Bayes
estimators for 0 =4

n 5B 5EB1 5EB2 5EB3 5RB

5 0.57926 0.21352 0.32825 0.44009 0.47062
10 0.33897 0.08273 0.16146 0.22712 0.24224
20 0.15558 0.02773 0.07312 0.10061 0.10487
30 0.08803 0.01348 0.04481 0.05952 0.06120
40 0.05704 0.00826 0.03246 0.04161 0.04242
50 0.04006 0.00566 0.02483 0.03116 0.03162

7. CONCLUSIONS

In this paper, we have studied the Bayes, E-Bayes and robust Bayes
estimators of parameter exponential distribution (3.1) under the loss
function (1.1). The Bayes estimator is obtained by choosing an explicit
prior distribution over the interesting parameter. Usually in practical
situations, there is a debate in choosing a unique prior or in case there
are no unique prior information. In such cases, E-Bayes or robust Bayes
can be employed to handle the uncertainty in specifying the prior dis-
tribution by considering a class of priors instead of a single prior. We
first to obtain and to compare the Bayes, E-Bayes and robust Bayes
estimators. Reviwing the simulation study, we find that E-Bayes esti-
mator 6ZB1 better than the robust Bayes and Bayes estimators. Also,
observed that by increasing n ,the almost performances of all estimators
improves in terms of ER values, as illustrated in Table 1.
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