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NUMERICAL SOLUTION OF A TIME-FRACTIONAL

INVERSE SOURCE PROBLEM

AFSHIN BABAEI∗, SEDDIGHEH BANIHASHEMI

Abstract. In this paper, an inverse problem of determining an un-
known source term in a time-fractional diffusion equation is inves-
tigated. This inverse problem is severely ill-posed. For this reason,
a mollification technique is used to obtain a regularized problem.
Afterwards, a finite difference marching scheme is introduced to
solve this regularized problem. The stability of numerical solution
is investigated. Finally, two numerical examples are presented to
illustrate the validity and effectiveness of the proposed method.

Key Words: Ill-posed problem, Caputo’s fractional derivative, Mollification, Marching

scheme.
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1. Introduction

Partial differential equations of fractional order have found many ap-
plication areas during the last few decades. The fractional order deriva-
tives are non-local and have memory effects, namely in a fractional sys-
tem the next state depends on its current and all previous states. Thus,
fractional differential and integral equations have been used widely to
model a range of phenomena in different fields of science. Bioengineer-
ing, image and signal processing, fluid and continuum mechanics, heat
transfer, control problems are examples of these applications [1–9].
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The special properties of fractional operators motivated researchers
to extend some fractional inverse problems for several natural applica-
tions in past ten years. These types of problems are suitable for dealing
with the models containing some unknown input information. Opti-
cal tomography, scattering of waves, heat conduction, machine learning,
water and air pollution intensity are examples of these applications [10–
15]. The main difficulty in most time fractional inverse problems is
their ill-posedness. In present of noisy data, the solution of these prob-
lems are not continuously dependent on the input data [13, 14]. Thus,
using appropriate regularization methods is necessary to find a stable
numerical solution. As a result, algorithms based on some regularization
techniques can be useful to find stable solutions for practical problems.

Consider the following inverse source problem of time fractional dif-
fusion equation

(1.1) D
(α)
t u(x, t) = uxx(x, t) + F (x, t), 0 < x < 1, 0 < t < 1,

where F (x, t) = f(x)g(t), g(t) is known function and f(x) is unknown
in their domains, with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.2)

and the boundary conditions

u(0, t) = p(t), 0 ≤ t ≤ 1,(1.3)

u(1, t) = s(t), 0 ≤ t ≤ 1.(1.4)

D
(α)
t u(x, t) is the Caputo fractional derivative of order 0 < α < 1,

defined as [1]:

D
(α)
t u(x, t) =

1

Γ(1− α)

∫ t

0
(t− s)−α∂u

∂s
(x, s)ds, 0 ≤ t ≤ 1,

where Γ(.) is the Gamma function. To determine the set of functions
(u, f) in the problem (1.1)-(1.4) we need a additional condition. Here,
the condition

(1.5) ux(0, t) = ϕ(t), 0 ≤ t ≤ 1.

is used. In practice, the input functions u0(x), p(t), s(t) and ϕ(t) are not
exact, but some perturbed versions of them are in hand. Thus, at first,
we use the mollification regularization method to stabilize the problem.
Afterwards, a numerical scheme based on the space marching method
will be introduced to approximate the solution of (1.1) and the unknown
source term f(x).
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2. Mollification method

Let δ > 0, p > 0, and

Ap =
(∫ p

−p
exp(−s2)ds

)−1
.

The -mollification of an integrable function is based on convolution with
the Gaussian kernel

ρδ,p(t) =

{
Apδ

−1exp(− t2

s2
), |t| ≤ pδ,

0, |t| > pδ.

The δ-mollifier ρδ,p is a non-negative C∞(−pδ, pδ) function satisfying∫ pδ
−pδ ρδ,p(t)dt = 1.

Let g(t) ∈ L1(I) and t ∈ Iδ = [pδ, 1− pδ]. The δ-mollification of g(t) is
defined by the convolution

Jδg(t) = (ρδ ∗ g)(t) =
∫
Iδ

ρδ(t− s)g(s)ds =

∫ t+pδ

t−pδ
ρδ(t− s)g(s)ds.

The radius of mollification δ is determined automatically by the Gener-
alized Cross Validation (GCV) criteria [16].
Now, let in the inverse problem (1.1)-(1.5), the functions u0(x), p(t), s(t)
and ϕ(t) are only known approximately as uε0, p

ε, sε and ϕε, such that
the infinity norm of the difference between every of these functions and
their corresponding approximations are less than a known value ε.
Suppose υ = Jδu is the mollified version of u. So, the regularized prob-
lem is formulated as follows

D
(α)
t υ(x, t) = υxx(x, t) + f(x)g(t), 0 < x < 1, 0 < t < 1,(2.1)

υ(x, 0) = Jδu
ε
0(x), 0 ≤ x ≤ 1,(2.2)

υ(0, t) = Jδ0p
ε(t), 0 ≤ t ≤ 1,(2.3)

υx(0, t) = J
δ
′
0
ϕε(t), 0 ≤ t ≤ 1,(2.4)

where δ, δ0 and δ
′
0 are the radii of mollification, and will be chosen using

the GCV criteria.
For computation of the source term f(x), from Eq. (2.1), we have

f(x) =
D

(α)
t υ(x, t)− υxx(x, t)

g(t)
.
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By substituting t = 0 at this relation, we obtain

(2.5) f(x) =
D

(α)
t υ(x, 0)− υxx(x, 0)

g(0)
,

where υxx(x, 0) and g(0) are in hand and D
(α)
t υ(x, 0) will be obtained

by using the marching scheme. Finally, the approximation of f(x) is
calculated according to (2.5).

3. Marching scheme

In this section, a numerical algorithm is presented to find the solution
of (2.1)-(2.5). Let M and N are positive integers. Consider a uniform
grid in the unit interval I = [0, 1]× [0, 1] as

Ω = {(xi = ih, tn = nk) , i = 0, 1, ...,M ; n = 0, 1, ..., N},
in which Mh = 1 and Nk = 1. In addition, suppose the discrete convo-
lution of the Gaussian kernel ρδ(t) and the grid function υ at the grid
point (xi, tn) is denoted by Rn

i and let

Wn
i = υx(ih, nk), Qn

i = D
(α)
t υ(ih, nk), fi = f(ih), gn = g(nk).

Notice that for n ∈ {1, ..., N}

Rn
0 = Jδ0p

ε(nk), Wn
0 = J

δ
′
0
ϕε(nk), Qn

0 = D
(α)
t (Jδ0p

ε(nk)),

and for i ∈ {0, ...M}

R0
i = Jδu

ε
0(ih), Ti = D2(Jδu

ε
0(ih)),

where D2 := D+D− is second-order finite differences operator. Now
we approximate the partial differential equation of fractional order in
system (2.1)-(2.5) by the finite difference schemes

Rn
i+1 = Rn

i + hWn
i ,(3.1)

Wn
i+1 = Wn

i + hQn
i − hfig

n,(3.2)

Qn
i+1 = D

(α)
t (Jδi+1

Rn
i+1),(3.3)

fi+1 =
1

g0
(Q0

i+1 − Ti+1),(3.4)

where i = 0, 1, ...,M − 1 and n = 0, 1, ..., N .

The computation of Caputo’s fractional derivative D
(α)
t (JδiR

n
i ) in the

presence of noisy data is an ill-posed problem [17]. Suppose qε(t) is a

perturbed version of the exact function q(t). To approximate Jδ(D
(α)
t qε)
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on a uniform partition K of the unit interval, we follow the mollification
technique proposed in [17]. Let D0 be centered finite difference operator,
D+ be forward finite difference operator and Q be the discrete version

of q. Then the discrete solution (D
(α)
t Qε)δ in the grid points, will be as(

D(α)Qε
)
δ
(t1) = D+(JδQ

ε)(t1)W1,(
D(α)Qε

)
δ
(t2) = D+(JδQ

ε)(t1)W2 +D+(JδQ
ε)(t2)W1,

and (
D(α)Qε

)
δ
(tj) = D+(JδQ

ε)(t1)Wj

+

j−1∑
i=2

D0(JδQ
ε)(ti)Wj−i+1 +D+(JδQ

ε)(tj)W1,

where j = 3, 4, ..., n and the quadrature weights Wj = Wj(α, tj) are
integrated exactly with values

W1 =
1

Γ(1− α)

1

1− α

(∆t

2

)1−α
,

Wi =
1

Γ(1− α)

1

1− α

[(
(2i+ 1)

∆t

2

)1−α
−

(
(2i− 1)

∆t

2

)1−α]
,

for i = 2, 3, ..., j − 1 and

Wj =
1

Γ(1− α)

1

1− α

[
j∆t−

[(
j − 1

2

)
∆t

]1−α]
.

4. Stability analysis of the algorithm

Theorem 4.1. (Stability of the algorithm) Suppose |Ri|, |Wi|, |Qi| are
maximum values of |Rn

i |, |Wn
i |, |Qn

i |, where n = 0, 1, ..., N . For the
marching scheme, there exist two constants θ1 and θ2, such that

max{|RM |, |WM |, |QM |, |fM |} ≤ θ1max{|R0|, |W0|, |Q0|, |f0|}+ θ2.

Proof. Let Mg = max
n

{|gn|}. By using (3.1) and (3.2), we have

(4.1) |Rn
i+1| ≤ (1 + h)max{|Rn

i |, |Wn
i |},

(4.2) |Wn
i+1| ≤ (1 + hMg)max{|Wn

i |, |Qn
i |, |fi|}.
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From (3.3) and by applying theorem (4.6) in [16], we have

|Qn
i+1| = |D(α)

t (Jδi+1
Rn

i+1)| =
∣∣∣ 1

Γ(1− α)

∫ t

0

D0(Jδi+1
Rn

i+1)

(t− s)α
ds
∣∣∣

(4.3) ≤ 1

Γ(1− α)

∫ t

0

4Ap∥Rn
i+1∥∞

δi+1|(t− s)α|
ds =

4Ap(nk)
1−α∥Rn

i+1∥∞
δi+1Γ(2− α)

.

Let δ̄ = min
i
{δi}. From (4.1) and (4.3), we have

(4.4) |Qn
i+1| ≤

4Ap(nk)
1−α(1 + h)

δ̄Γ(2− α)
max{|Rn

i |.|Wn
i |}.

Also, let mg = min
n

{|gn|} and MT = max
i

{|Ti|}. From (3.4) and (4.4),

we have

(4.5) |fi+1| ≤
4Ap(nk)

1−α(1 + h)

δ̄mgΓ(2− α)
max{|Rn

i |, |Wn
i |}+

MT

mg
.

Also, let

C1 = max
{
1,

4Ap(nk)
1−α

δ̄Γ(2− α)
,
4Ap(nk)

1−α

δ̄mgΓ(2− α)

}
,

C2 = max
{
1,Mg,

4Ap(nk)
1−α

δ̄Γ(2− α)
,
4Ap(nk)

1−α

δ̄mgΓ(2− α)

}
.

From (4.1)-(4.5), we obtain

max{|Ri+1|, |Wi+1|, |Qi+1|, |fi+1|} ≤ (C1+hC2)max{|Ri|, |Wi|, |Qi|, |fi|}+
MT

mg
.

Iterating this inequality M times, we have

max{|RM |, |WM |, |QM |, |fM |} ≤ (C1+hC2)
M max{|R0|, |W0|, |Q0|, |f0|}+τ

MT

mg
.

where τ =
∑M−1

i=0 (C1 + hC2)
i. This inequality implies

max{|RM |, |WM |, |QM |, |fM |} ≤ CM
1 exp

(C2

C1

)
max{|R0|, |W0|, |Q0|, |f0|}+τ

MT

mg
.

Letting θ1 = CM
1 exp

(C2

C1

)
and θ2 = τ

MT

mg
complete the proof of sta-

bility. □
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5. Numerical examples

In this section, two examples are solved to test the ability of the pro-
posed algorithm. To simulate the data for the inverse problem, some
random noises are added to the data resulted from the additional func-
tions. Suppose that the maximum level of noise in the data functions is
ε . Then, for generating noisy data, we use the formula

rεn = r(tn) + εn,

where the εn are Gaussian random variables with variance σ2 = ε2.

Example 5.1. Consider problem (1.1)-(1.5) with g(t) = 1, u0(x) =
sin(x) + cos(2απx), p(t) = 0 and ϕ(t) = 0. The exact solution of this
problem is

u(x, t) = Eα(−tα) sin(x) + cos(2απx),

where Eα(.) is the Mittag-Leffer function and

f(x) = 4π2α2 cos(2απx).

Let M = 150 and N = 150. Figure 1, Figure 2 and Figure 3 display
the exact and numerical solutions of this problem for several values of
α when ε = 0.05. Figure 4 shows the comparison between the exact
and the computed solutions of f(x) with regularization and without
regularization when ε = 0.1 and α = 0.6. Furthermore, Figure 5 shows
the exact and the estimated solutions to f(x) for numerous values of α
when ε = 0.01.

Example 5.2. Consider problem (1.1)-(1.5) with g(t) =
Γ(3)

Γ(3− α)
t2−α+6,

u0(x) = −x3 + 1, p(t) = 1 and ϕ(t) = t2. The exact solution of this
problem is u(x, t) = xt2 − x3 + 1 and f(x) = x.

Figure 6 and Figure 7 display the absolute error function when α =
0.45,M = 150, N = 150 and ε = 0.05, 0.1. Figure 8 shows the com-
parison between the exact and the computed solutions to f(x) with
regularization and without regularization when ε = 0.1 and α = 0.25.
Also, Figure 9 shows the exact and numerical approximations to f(x)
for several values of ε. Finally, Figure 10 indicates the absolute errors
of numerical approximations for f(x).
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Figure 1. The exact and numerical solution of Example 5.1 when

α = 0.25 and ε = 0.05.
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Figure 2. The exact and numerical solution of Example 5.1 when

α = 0.5 and ε = 0.05.

6. Conclusion

In this article, an inverse problem of the time-fractional diffusion equa-
tion have been investigated with unknown source term. Since the prob-
lem was ill-posed, a mollification method was applied on the data to
get an equivalent regularized problem. The approximate solution of this
problem was derived by using a space marching finite difference scheme.
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Figure 3. The exact and numerical solutions of Example 5.1 when

α = 0.75 and ε = 0.05.
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Figure 4. The exact and numerical values of f(x) for Example 5.1

when α = 0.6 and ε = 0.1.

Also, stability of the method was proved. At the end, two numerical
implementations were presented to investigate the validity of the pro-
posed method. The numerical results verify stability and accuracy of
the algorithm in the presence of noise.
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Figure 5. The exact and numerical approximations to f(x) in Ex-

ample 5.1 for various values of α when ε = 0.01.
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Figure 6. The absolute error function for Example 5.2 when α = 0.45

and ε = 0.05.
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