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SOME ORDERED HYPERSEMIGROUPS WHICH

ENTER THEIR PROPERTIES INTO THEIR σ-CLASSES

NIOVI KEHAYOPULU

Abstract. An important problem in the theory of ordered hyper-
semigroups is to describe the ordered hypersemigroups which enter
their properties into their σ-classes. In this respect, we prove the
following: If H is a regular, left (right) regular, completely regu-
lar, intra-regular, left (right) quasi-regular, semisimple, k-regular,
archimedean, weakly commutative, left (right) simple, simple, left
(right) strongly simple ordered semigroup and σ a complete semi-
lattice congruence on H then, for each a ∈ H, the σ-class (a)σ of
H is, respectively, so.
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1. Introduction

The concept of the hypergroup introduced by the French Mathemati-
cian F. Marty at the 8th Congress of Scandinavian Mathematicians in
1933 is as follows: An hypergroup is a nonempty set H endowed with
a multiplication xy such that (i) xy ⊆ H; (ii) x(yz) = (xy)z; (iii)
xH = Hx = H for every x, y, z in H (cf. [34]). Hundreds of papers
appeared on hyperstructures since Marty introduced this concept, and

Received: 17 October 2017. Communicated by Ali Taghavi;

∗Address correspondence to N. Kehayopulu; E-mail: nkehayop@math.uoa.gr.

c© 2017 University of Mohaghegh Ardabili.

27



28 N. Kehayopulu

in the recent years, many groups in the world investigate the hypersemi-
groups in research programs using the definition given by Marty. Being
impossible to give a complete information regarding the bibliography,
we will refer only some recent books and articles such as the [1–3, 5–
25, 27–36, 38–42]. This is the Theorem 3.3.2 in [33]: Let K be one of
the following classes of semigroups: quasi left regular, quasi right reg-
ular, quasi-regular, quasi left π-regular, quasi right π-regular, quasi π-
regular, left quasi-regular, right quasi-regular, completely quasi-regular,
left quasi-π-regular, right quasi-π-regular, completely quasi-π-regular.
Let a semigroup S be a semilattice Y of semigroups Sα, α ∈ Y . Then
S is a semigroup from class K if and only if Sα is in class K, for every
α ∈ Y .

In the present paper we study some ordered hypersemigroups H which
inter their properties into their σ-classes, where σ is a complete semilat-
tice congruence on H. We prove that an ordered hypersemigroup H is
regular, left (right) regular, intra-regular, left (resp. right) quasi-regular,
left (right) simple, simple, archimedean, weakly commutative, k-regular
if and only if, for each a ∈ H the σ-classes (a)σ of H are, respectively,
so. The corresponding results for hypersemigroups (without order) can
be also obtained as application of the results of this paper, and this is
because every hypersemigroup endowed with the equality relation is an
ordered hypersemigroup.

According to Clifford-Preston, a relation σ on a groupoid (S, ·,≤) is
called right (resp. left) compatible (or regular or homogenous) if aρb
(a, b ∈ S) implies acρbc (resp. caρcb) for every c ∈ S. Although they
could say “regular” the relation that is both right and left compatible,
they call it “congruence”. Petrich keeps the same definition of con-
gruences, he goes a step further adding two additional properties and
defines the “semilattice congruences”. So, according to Petrich a semi-
lattice congruence on a groupoid S is an equivalence relation σ on S
such that (a, b) ∈ σ implies (ac, bc) ∈ σ, (ca, cb) ∈ σ, (a2, a) ∈ σ and
(ab, ba) ∈ σ for all a, b, c ∈ S. A semilattice congruence on an ordered
groupoid (S, ·,≤) is called complete [26] if a ≤ b implies (a, ab) ∈ σ.
These concepts can be naturally transferred to ordered hypersemigroups
as follows: An equivalence relation σ on an hypersemigroup H is called
congruence if (a, b) ∈ σ implies (a ◦ c, b ◦ c) ∈ σ and (c ◦ a, c ◦ b) ∈ σ
for every c ∈ H. A congruence σ on H is called semilattice congruence
if (a ◦ a, a) ∈ σ and (a ◦ b, b ◦ a) ∈ σ for every a, b ∈ H. A semilattice
congruence σ on H is called complete if a ≤ b implies (a, a ◦ b) ∈ σ.
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The concepts of regular, left (right) regular or intra-regular ordered hy-
persemigroups are well known but, for the sake of completeness, we will
give these definitions below. When we write (A] we mean the set of the
elements x of H such that x ≤ t for some t ∈ H. If we have an ordered
hypersemigroup (H, ◦,≤) and write the “≤” between subsets of H, that
is if we write A ≤ B (where A,B ⊆ H), then this means that for every
a ∈ A there exists b ∈ B such that a ≤ b.

2. MAIN RESULTS

An ordered hypersemigroup (H, ◦,≤) is called regular if for every a ∈
H there exists x ∈ H such that a ≤ a ◦ x ◦ a. This is equivalent to
saying that a ∈ (a ◦H ◦ a] for every a ∈ H or A ⊆ (A ◦H ◦A] for every
nonempty subset A of H.

Theorem 1. Let H be a regular ordered hypersemigroup and σ a com-
plete semilattice congruence on H. Then the σ-class (a)σ is a regular
subsemigroup of H for every a ∈ H.

Proof. Let a ∈ H and b ∈ (a)σ. Then there exists y ∈ (a)σ such that
b ≤ b ◦ y ◦ b. In fact: Since b ∈ H and H is regular, we have b ≤ b ◦ x ◦ b
for some x ∈ H. Then b ≤ b ◦ x ◦ (b ◦ x ◦ b) = b ◦ (x ◦ b ◦ x) ◦ b. On
the other hand, x ◦ b ◦ x ⊆ (a)σ. Indeed: Since b ≤ b ◦ x ◦ b and σ
is a complete semilattice congruence on H, we have (b, b2 ◦ x ◦ b) ∈ σ.
Since σ is a semilattice congruence on H, we have (x ◦ b, b ◦ x) ∈ σ,
(b2 ◦x◦b, b3 ◦x) ∈ σ, (b3, b) ∈ σ, (b3 ◦x, b◦x) ∈ σ, so (b2 ◦x◦b, b◦x) ∈ σ.
Thus we have (b, b ◦ x) ∈ σ, (b, x ◦ b) ∈ σ and (b ◦ x, x ◦ b ◦ x) ∈ σ. Since
(b, b2 ◦ x ◦ b) ∈ σ, (b2 ◦ x ◦ b, x ◦ b) ∈ σ and (b ◦ x, x ◦ b ◦ x) ∈ σ, we have
(b, x ◦ b ◦ x) ∈ σ, and then x ◦ b ◦ x ⊆ (b)σ = (a)σ. �

An ordered hypersemigroup (H, ◦,≤) is called left regular if for every
a ∈ H there exists x ∈ H such that a ≤ x ◦ a2. Equivalently, if a ∈
(H ◦ a2] for every a ∈ H or A ⊆ (H ◦ A2] for every nonempty subset A
of H. It is called right regular if for every a ∈ H there exists x ∈ H such
that a ≤ a2 ◦ x. This is equivalent to saying that a ∈ (a2 ◦H] for every
a ∈ H or A ⊆ (A2 ◦H] for every nonempty subset A of H.

Theorem 2. Let H be a left (resp. right) regular ordered hypersemigroup
and σ a complete semilattice congruence on H. Then the σ-class (a)σ is
a left (resp. right) regular subsemigroup of H for every a ∈ H.

Proof. Let H be left regular, a ∈ H and b ∈ (a)σ. Then there exists
z ∈ (a)σ such that b ≤ z ◦ b2. In fact: Since b ∈ H and H is left regular,
we have b ≤ x ◦ b2 for some x ∈ H. Then we have b ≤ x ◦ b ◦ (x ◦ b2) =
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(x ◦ b ◦ x) ◦ b2. On the other hand, x ◦ b ◦ x ⊆ (a)σ. Indeed: Since σ is
complete, we have (b, b ◦x ◦ b2) ∈ σ. Since σ is a semilattice congruence,
we have (b ◦ x ◦ b2, x ◦ b ◦ x) ∈ σ. Thus we have (b, x ◦ b ◦ x) ∈ σ and so
x ◦ b ◦ x ⊆ (b)σ = (a)σ. If H is right regular, the proof is similar. �

An ordered hypersemigroup H is called completely regular if it is at
the same time regular, left regular and right regular. This is equivalent
to saying that for every a ∈ H there exists x ∈ H such that a ≤ a2◦x◦a2.
That is, if a ∈ (a2 ◦ S ◦ a2] for every a ∈ H or if A ⊆ (A2 ◦H ◦ A2] for
every nonempty subset A of H.

The following theorem is a consequence of Theorems 1 and 2. An
independent proof is the following.

Theorem 3. Let H be a completely regular ordered hypersemigroup and
σ a complete semilattice congruence on H. Then the σ-class (a)σ is a
completely regular subsemigroup of H for every a ∈ H.

Proof. Let a ∈ H and b ∈ (a)σ. Then there exists y ∈ (a)σ such that
b ≤ b2 ◦ z ◦ b2. In fact: Since b ∈ H and H is completely regular, we
have b ≤ b2 ◦ x ◦ b2 for some x ∈ H. Then we have

b ≤ b ◦ (b2 ◦ x ◦ b2) ◦ x ◦ (b2 ◦ x ◦ b2) ◦ b
= b2 ◦ (b ◦ x ◦ b2 ◦ x ◦ b2 ◦ x ◦ b) ◦ b2.

On the other hand, b◦x◦b2◦x◦b2◦x◦b ⊆ (a)σ. In fact: Since b ≤ b2◦x◦b2
and σ is complete, we have (b, b3 ◦ x ◦ b2) ∈ σ. Since σ is a semilattice
congruence, we have (b3 ◦x◦b2, b◦x◦b2 ◦x◦b2 ◦x◦b) ∈ σ. Thus we have
(b, b◦x◦ b2 ◦x◦ b2 ◦x◦ b) ∈ σ and so b◦x◦ b2 ◦x◦ b2 ◦x◦ b ⊆ (b)σ = (a)σ.
�

An ordered hypersemigroup (H, ◦,≤) is called intra-regular if for every
a ∈ H there exist x, y ∈ H such that a ≤ x ◦ a2 ◦ y. This is equivalent
to saying that a ∈ (H ◦ a2 ◦H] for every a ∈ H or A ⊆ (H ◦A2 ◦H] for
every nonempty subset A of H.

Theorem 4. Let H be an intra-regular ordered hypersemigroup and σ
a complete semilattice congruence on H. Then the σ-class (a)σ is an
intra-regular subsemigroup of H for every a ∈ H.

Proof. Let a ∈ H and b ∈ (a)σ. Then there exist z, w ∈ (a)σ such that
b ≤ z ◦ b2 ◦ w. In fact: Since b ∈ H and H is intra-regular, we have
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b ≤ x ◦ b2 ◦ y for some x, y ∈ H. Then we have

b ≤ x ◦ (x ◦ b2 ◦ y) ◦ (x ◦ b2 ◦ y) ◦ y
≤ x2 ◦ b2 ◦ y ◦ x ◦ (x ◦ b2 ◦ y) ◦ (x ◦ b2 ◦ y) ◦ y2

= (x2 ◦ b2 ◦ y ◦ x2) ◦ b2 ◦ (y ◦ x ◦ b2 ◦ y3).

On the other hand, x2 ◦ b2 ◦ y ◦ x2 ⊆ (a)σ and y ◦ x ◦ b2 ◦ y3 ⊆ (a)σ. In
fact: Since σ is complete, we have (b, b ◦ x ◦ b2 ◦ y) ∈ σ. Since σ is a
semilattice congruence, we have (b ◦ x ◦ b2 ◦ y, x2 ◦ b2 ◦ y ◦ x2) ∈ σ. Then
(b, x2 ◦ b2 ◦ y ◦ x2) ∈ σ and so x2 ◦ b2 ◦ y ◦ x2 ⊆ (b)σ = (a)σ. In a similar
way we prove that y ◦ x ◦ b2 ◦ y3 ⊆ (a)σ. �

An ordered hypersemigroup H is called left quasi-regular if for every
a ∈ H there exists x, y ∈ H such that a ≤ x◦a◦y ◦a. This is equivalent
to saying a ∈ (H ◦ a ◦ H ◦ a] for every a ∈ H or A ⊆ (H ◦ A ◦ H ◦ A]
for every nonempty subset A of H. It is called right quasi-regular if for
every a ∈ H there exists x, y ∈ H such that a ≤ a ◦ x ◦ a ◦ y. That is,
if a ∈ (a ◦H ◦ a ◦H] for every a ∈ H or A ⊆ (A ◦H ◦ A ◦H] for every
nonempty subset A of H.

Theorem 5. Let H be a left (resp. right) quasi-regular ordered hy-
persemigroup and σ a complete semilattice congruence on H. Then the
σ-class (a)σ is a left (resp. right) regular subsemigroup of H for every
a ∈ H.

Proof. Let H be a left quasi-regular and b ∈ (a)σ. Then there exist
u, v ∈ (a)σ such that b ≤ u ◦ b ◦ v ◦ b. In fact: Since b ∈ H and H is left
quasi-regular, we have b ≤ s ◦ b ◦ t ◦ b for some s, t ∈ H. Then we have

b ≤ s ◦ b ◦ t ◦ (s ◦ b ◦ t ◦ b) ≤ s ◦ b ◦ t ◦ s ◦ b ◦ t ◦ (s ◦ b ◦ t ◦ b)
= (s ◦ b ◦ t ◦ s) ◦ b ◦ (t ◦ s ◦ b ◦ t) ◦ b.

Moreover we have s ◦ b ◦ t ◦ s ⊆ (a)σ and t ◦ s ◦ b ◦ t ⊆ (a)σ. In fact, since
b ≤ s◦ b◦ t◦ b and σ is a complete semilattice congruence on H, we have
(b, b ◦ s ◦ b ◦ t ◦ b) ∈ σ, then (b, s ◦ b ◦ t ◦ b) ∈ σ. Since (a, b) ∈ σ, we have
(a, s◦b◦t◦b) ∈ σ. Since (t◦b, b◦t) ∈ σ, we have (s◦b◦t◦b, s◦b2 ◦t) ∈ σ,
then (a, s◦b◦ t) ∈ σ, (a, s◦b◦ t◦s) ∈ σ, and s◦b◦ t◦s ⊆ (a)σ. Moreover,
since (a, s ◦ b ◦ t) ∈ σ, we have (a, s ◦ b ◦ t2) ∈ σ, (a, t ◦ s ◦ b ◦ t) ∈ σ, and
t ◦ s ◦ b ◦ t ⊆ (a)σ. �

An ordered hypersemigroup H is called semisimple if for every a ∈ H
there exist x, y, z ∈ H such that a ≤ x ◦ a ◦ y ◦ a ◦ z. Equivalently, if
a ∈ (H ◦ a ◦H ◦ a ◦H] for every a ∈ H or A ⊆ (H ◦ A ◦H ◦ A ◦H] for
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every nonempty subset A of H. In a similar way as in Theorem 5, we
can prove the following theorem.

Theorem 6. If H is a semisimple ordered hypersemigroup and σ a com-
plete semilattice congruence on H, then the σ-class (a)σ is a semisimple
subsemigroup of H for every a ∈ H.

In the following we denote byN the set of natural numbers {1, 2, ..., n}.
An ordered hypersemigroup H is called k-regular (k ∈ N) if, for every

a ∈ H, the k-power of a is regular. That is, for every a ∈ H there exists
x ∈ H such that ak ≤ ak ◦ x ◦ ak. In other words, ak ∈ (ak ◦H ◦ ak] for
every a ∈ H or Ak ⊆ (Ak ◦H ◦Ak] for every nonempty subset A of H.

Theorem 7. Let H be a k-regular ordered hypersemigroup and σ a com-
plete semilattice congruence on H. Then (a)σ is a k-regular subsemigroup
of H for every a ∈ H.

Proof. Let a ∈ H and b ∈ (a)σ. Then there exists z ∈ (a)σ such that
b ≤ bk ◦ z ◦ bk. In fact: Since H is k-regular, there exists x ∈ H such
that bk ≤ bk ◦ x ◦ bk. Then we have

bk ≤ bk ◦ x ◦ (bk ◦ x ◦ bk) = bk ◦ (x ◦ bk ◦ x) ◦ bk.

Since σ is complete, we have (bk, bk ◦ bk ◦ x ◦ bk) ∈ σ. Since σ is a
semilattice congruence, (bk, bk ◦ bk ◦x ◦ bk) ∈ σ implies (b, x ◦ bk ◦x) ∈ σ.
Thus we have x ◦ bk ◦ x ⊆ (b)σ = (a)σ. �

An ordered hypersemigroup H is called archimedean if for every a, b ∈
H there exists n ∈ N such that an ∈ (H ◦ b ◦H].

Theorem 8. Let H be an archimedean ordered hypersemigroup and σ
a complete semilattice congruence on H. Then the σ-class (a)σ is an
archimedean subsemigroup of H for every a ∈ H.

Proof. Let a ∈ H and b, c ∈ (a)σ. Then there exist m ∈ N and
x, y ∈ (a)σ such that bm ≤ x ◦ c ◦ y. In fact: Since b, c ∈ H and H is
archimedean, there exist n ∈ N and s, t ∈ H such that bn ≤ s ◦ c ◦ t.
Since σ is complete, we have (bn, bn ◦ s ◦ c ◦ t) ∈ σ. Then, since σ is a
semilattice congruence, we have (b, b ◦ s ◦ c ◦ t) ∈ σ. Moreover we have

b3n+2 = b ◦ bn ◦ bn ◦ bn ◦ b ≤ b ◦ (s ◦ c ◦ t) ◦ (s ◦ c ◦ t) ◦ (s ◦ c ◦ t) ◦ b
= (b ◦ s ◦ c ◦ t ◦ s) ◦ c ◦ (t ◦ s ◦ c ◦ t ◦ b).

Since (b, b ◦ s ◦ c ◦ t) ∈ σ and σ is a semilattice congruence, we have
(b, b◦s◦c◦t◦s) ∈ σ and (b, t◦s◦c◦t◦b) ∈ σ, thus we have b◦s◦c◦t◦s ⊆
(b)σ = (a)σ and so t ◦ s ◦ c ◦ t ◦ s ⊆ (b)σ = (a)σ. �
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An ordered hypersemigroup H is called weakly commutative if for
every a, b ∈ H there exists n ∈ N such that (a ◦ b)n ∈ (b ◦ S ◦ a].

Theorem 9. Let H be a weakly commutative ordered hypersemigroup
and σ a complete semilattice congruence on H. Then the σ-class (a)σ is
a weakly commutative subsemigroup of H for every a ∈ H.

Proof. Let a ∈ H and x, y ∈ (a)σ. Then there exist m ∈ N and s ∈ (a)σ
such that (x ◦ y)m ≤ y ◦ s ◦ x. In fact: Since x, y ∈ H and H is weakly
commutative, there exist n ∈ N and t ∈ H such that (x ◦ y)n ≤ y ◦ t ◦x.

Since σ is complete, we have
(

(x ◦ y)n, (x ◦ y)n ◦ y ◦ t ◦ x
)
∈ σ. Since σ

is a semilattice congruence, we get (x ◦ y, t ◦ x ◦ y ◦ t) ∈ σ. Moreover we
have

(x ◦ y)2n = (x ◦ y)n ◦ (x ◦ y)n ≤ (y ◦ t ◦ x) ◦ (y ◦ t ◦ x)

= y ◦ (t ◦ x ◦ y ◦ t) ◦ x.

On the other hand, t◦x◦y◦ t ⊆ (a)σ. Indeed: Since x, y ∈ (a)σ and (a)σ
is a subsemigroup of H, we have x ◦ y ⊆ (a)σ, so (a, x ◦ y) ∈ σ. Since
(a, x ◦ y) ∈ σ and (x ◦ y, t ◦x ◦ y ◦ t) ∈ σ, we have (a, t ◦x ◦ y ◦ t) ∈ σ and
so t ◦ x ◦ y ◦ t ⊆ (a)σ. �

An ordered hypersemigroup H is called left (resp. right) simple if H
is the only left (resp. right) ideal of H, that is, if for every left (resp.
right) ideal T of H, we have T = H. One can easily prove that H is left
(resp. right) simple if and only if H = (H ◦ a] (resp. H = (a ◦H]) for
every a ∈ H.

Theorem 10. Let H be a left (resp. right) simple ordered hypersemi-
group and σ a complete semilattice congruence on H. Then the σ-class
(a)σ is a left (resp. right) simple subsemigroup of H for every a ∈ H.

Proof. Let H be left simple, a ∈ H and b, c ∈ (a)σ. Then there exists
y ∈ (a)σ such that c ≤ y ◦ b. In fact: Since b, c ∈ H and H is left simple,
there exists x ∈ H such that c ≤ x ◦ b. Since c ◦ b, {b} ⊆ H and H is left
simple, there exists z ∈ H such that b ≤ z ◦ (c ◦ b). Then we have

c ≤ x ◦ (z ◦ c ◦ b) = (x ◦ z ◦ c) ◦ b.

Moreover, x◦z◦c ⊆ (a)σ. Indeed: Since σ is complete, we have (c, c◦x◦z◦
c◦b) ∈ σ. Since σ is a semilattice congruence (c, c◦x◦z◦c◦b) ∈ σ implies
(c, x◦z ◦c◦b) ∈ σ. Since b, c ∈ (a)σ and (a)σ is a subsemigroup of H, we
have c ◦ b ⊆ (a)σ and so (c ◦ b, a) ∈ σ. Since (c ◦ b, a) ∈ σ and (a, c) ∈ σ,
we have (c ◦ b, c) ∈ σ then, since σ is a semilattice congruence, we have
(x◦z◦c◦b, x◦z◦c) ∈ σ. Since (c, x◦z◦c◦b) ∈ σ and (x◦z◦c◦b, x◦z◦c) ∈ σ,
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we have (c, x ◦ z ◦ c) ∈ σ. Then x ◦ z ◦ c ⊆ (c)σ = (a)σ. The proof of the
right analogue is similar. �

An ordered hypersemigroup H is called simple if H is the only ideal of
H. An ordered hypersemigroup H is simple if and only if H = (H◦a◦H]
for every a ∈ H. That is, for every a, b ∈ H there exist x, y ∈ H such
that b ≤ x ◦ a ◦ y.

Theorem 11. Let H be a simple ordered hypersemigroup and σ a com-
plete semilattice congruence on H. Then the σ-class (a)σ is a simple
subsemigroup of H for every a ∈ H.

Proof. Let a ∈ H and b, c ∈ (a)σ. Then there exist z, w ∈ (a)σ such
that c ≤ z ◦ b ◦ w. In fact: Since b, c ∈ H and H is simple, there exist
x, y ∈ H such that c ≤ x ◦ b ◦ y. Since c ◦ b ◦ c, {b} ⊆ H and H is simple,
there exist s, t ∈ H such that b ≤ s ◦ (c ◦ b ◦ c) ◦ t. Then we have

c ≤ x ◦ (s ◦ c ◦ b ◦ c ◦ t) ◦ y = (x ◦ s ◦ c) ◦ b ◦ (c ◦ t ◦ y).

Moreover x ◦ s ◦ c, c ◦ t ◦ y ⊆ (a)σ. Indeed: Since c ≤ x ◦ b ◦ y, we have
x ◦ s ◦ c ≤ x ◦ s ◦ x ◦ b ◦ y. Since σ is complete, we have

(x ◦ s ◦ c, x ◦ s ◦ c ◦ x ◦ s ◦ x ◦ b ◦ y) ∈ σ.
Since σ is a semilattice congruence, (x◦s◦ c, x◦s◦ c◦x◦s◦x◦ b◦y) ∈ σ
implies (x◦s◦c, c◦x◦s◦b◦y) ∈ σ. In a similar way, from b ≤ s◦c◦b◦c◦t,
we have s ◦ b ≤ s2 ◦ c ◦ b ◦ c ◦ t, (s ◦ b, s ◦ b ◦ s2 ◦ c ◦ b ◦ c ◦ t) ∈ σ,
(s◦b◦s2 ◦c◦b◦c◦t, b◦s◦c◦b◦c◦t) ∈ σ and (s◦b, b◦s◦c◦b◦t◦c◦t) ∈ σ.
Form b ≤ s◦c◦ b◦c◦ t, we get (b, b◦s◦c◦ b◦c◦ t) ∈ σ, then (b, s◦ b) ∈ σ,
and (c ◦ x ◦ b ◦ y, c ◦ x ◦ s ◦ b ◦ y) ∈ σ. From c ≤ x ◦ b ◦ y, we have
(c, c◦x◦b◦y) ∈ σ, then (c, c◦x◦s◦b◦y) ∈ σ. Since (c, c◦x◦s◦b◦y) ∈ σ
and (x ◦ s ◦ c, c ◦ x ◦ s ◦ b ◦ y) ∈ σ, we have (c, x ◦ s ◦ c) ∈ σ, then
x ◦ s ◦x ⊆ (c)σ = (a)σ. In a similar way we prove that c ◦ t ◦ y ⊆ (a)σ. �

An ordered hypersemigroup is called left (resp. right) strongly simple
if it is both simple and left (resp. right) quasi-regular.

By Theorems 5 and 11 we have the following theorem.

Theorem 12. If H is a left (resp. right) strongly simple ordered hy-
persemigroup and σ a complete semilattice congruence on H, then the
σ-class (a)σ is a left (resp. right) simple subsemigroup of H for every
a ∈ H.

An ordered hypersemigroup H is called intra-k-regular, left (right) k-
regular, left (right) quasi-k-regular or k-semisimple if for every element
a ∈ H, the k-power of a is intra-regular, left (right) regular, left (right)
quasi-regular or semisimple. The following should also be true: If H is
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an intra-k-regular, left or right k-regular, left or right quasi-k-regular
or k-semisimple ordered hypersemigroup and σ a complete semilattice
congruence of H then, for any a ∈ H, the σ-class of H containing a is
respectively so, we leave the proof to the reader.

Remark. The converse statements of the theorems above obviously
hold: If H is an ordered hypersemigroup, σ a semilattice congruence
on H and (a)σ is a regular subsemigroup of H for every a ∈ H, then
H is regular. The same holds if we replace the word regular by intra-
regular, left (right) regular, completely regular, left (right) quasi-regular,
k-regular, archimedean, weakly commutative, left (right) simple or sim-
ple, respectively.

Problem. Write a problem which, for a finite hypersemigroup H given
by a table of multiplication and an order finds the semilattice congru-
ences of H.
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