FUNDAMENTAL PSEUDO $B C K$-ALGEBRAS

HABIB HARIZAVI, RAJAB ALI BORZOOEI AND TAIYBEH KOOCHAKPOOR

Abstract

In this paper, we define the relations β and β^{*} on hyper pseudo $B C K$-algebras and investigate some related properties. We give a necessary and sufficient condition for β^{*} to be regular. By using β^{*}, we make the quotient hyper pseudo $B C K$-algebra. Finally, by applying the concept of fundamental on pseudo $B C K$-algebra, we prove that any pseudo $B C K$-algebra is fundamental.

Key Words: Pseudo BCK-algebra, Regular congruence, Strongly congruence, Fundamental pseudo $B C K$-algebra.
2010 Mathematics Subject Classification: 06F35; 03G25.

1. Introduction

The study of BCK-Algebras was initiated by Y. Imai and K. Iséki [9] in (1966) as a generalization of the concept of set theoretic difference and propositional calculi. Pseudo $B C K$-algebras were introduced by G. Georgescu and A. Iorgulescu [5] as a generalization of $B C K$-algebras in order to give a structure corresponding to pseudo $M V$-algebras, since the bounded commutative $B C K$-algebras correspond to $M V$-algebras. Hyperstructures (also called multi algebras) were introduced in 1934 by F. Marty [11] at the 8th congress of Scandinavian Mathematicians. Since then many researchers have worked on algebraic hyperstructures and developed it. Hyperstructures have many applications to several sectors of both pure and applied sciences. For example, a recent book [2] contains a wealth of applications. In this book, Corsini and Leoreanu

[^0]presented some of the numerous applications of algebraic hyperstructure, especially those from last fifteen years, to the following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, automata, cryptography, codes, median algebras, relation algebras, artificial intelligence and probabilities. In [1, 10] R.A. Borzooei et al. applied the hyperstructures to (pseudo) $B C K$-algebra, and investigated some related properties. In this paper, we define the relations β and β^{*} on hyper pseudo $B C K$-algebras and investigate some related properties. Then we obtain a necessary and sufficient condition for the relation β^{*} to be regular. By applying β^{*} on hyper pseudo $B C K$-algebra, we make the quotient of hyper pseudo $B C K$-algebra. Finally, by considering the concept of fundamental on pseudo $B C K$-algebra, we define the fundamental pseudo $B C K$-algebra and show that any pseudo $B C K$-algebra is fundamental.

2. Preliminary

Definition 2.1. [5] A pseudo BCK-algebra is a structure ($X ; *, \diamond, 0$), where $*$ and \diamond are binary operations on X and 0 is a constant element of X that satisfies the following:
(a1) $(x * y) \diamond(x * z) \preceq z * y,(x \diamond y) *(x \diamond z) \preceq z \diamond y$,
(a2) $x *(x \diamond y) \preceq y, x \diamond(x * y) \preceq y$,
(a3) $x \preceq x$,
(a4) $0 \preceq x$,
(a5) $x \preceq y, y \preceq x$ implies $x=y$,
(a6) $x \preceq y \Leftrightarrow x * y=0 \Leftrightarrow x \diamond y=0$,
for all $x, y, z \in X$.
Definition 2.2. [1] A hyper pseudo BCK-algebra is a structure ($H ; \circ, *, 0$) where \circ and $*$ are hyper operations on H and 0 is a constant element that satisfies the following axioms:
(PHK1) $(x \circ z) \circ(y \circ z) \ll x \circ y, \quad(x * z) *(y * z) \ll x * y$,
(PHK2) $(x \circ y) * z=(x * z) \circ y$,
(PHK3) $x \circ y \ll x, \quad x * y \ll x$,
(PHK4) $x \ll y$ and $y \ll x$ imply $x=y$,
for all $x, y, z \in H$, where $x \ll y \Leftrightarrow 0 \in x \circ y \Leftrightarrow 0 \in x * y$ and for every $A, B \subseteq H, A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$.
Proposition 2.3. [1] In any hyper pseudo BCK-algebra H, the following hold:
(i) $0 \circ 0=0, \quad 0 * 0=0 \quad x \circ 0=x, \quad x * 0=x$,
(ii) $0 \ll x, \quad x \ll x, \quad A \ll A$,
(iii) $0 \circ x=0, \quad 0 * x=0, \quad 0 \circ A=0, \quad 0 * A=0$,
(iv) $A \subseteq B$ implies $A \ll B$,
(v) $A \ll 0$ implies $A=\{0\}$,
(vi) $(A \circ c) \circ(B \circ c) \ll A \circ B, \quad(A * c) *(B * c) \ll A * B$,
for all $x, y, z, c \in H$ and $A, B \subseteq H$.
Definition 2.4. [1, 7] Let H be a hyper pseudo BCK-algebra. For any subset I of H and any element $y \in H$, we denote,
(1) $*(y, I)^{\ll}=\{x \in H \mid x * y \ll I\}$, (2) $\circ(y, I)^{\ll}=\{x \in H \mid x * y \ll I\}$,
(3) $*(y, I)^{\cap}=\{x \in H \mid x * y \cap I \neq \emptyset\}$, (4) $\circ(y, I)^{\cap}=\{x \in H \mid x \circ y \cap I \neq \emptyset\}$,
(5) $*(y, I) \subseteq=\{x \in H \mid x * y \subseteq I\}$, (6) $\circ(y, I) \subseteq=\{x \in H \mid x * y \subseteq I\}$.

Definition 2.5. [1] Let H be a hyper pseudo BCK-algebra, $I \subseteq H$ and $0 \in I$, then I is called a pseudo BCK-ideal of type 1 of H if

$$
(\forall y \in I) *(y, I)^{\ll} \subseteq I \text { and } \circ(y, I)^{\ll} \subseteq I .
$$

Definition 2.6. [7] Let H be a hyper pseudo $B C K$-algebra, $I \subseteq H$ and $0 \in I$, then I is called a strong hyper pseudo BCK-ideal of H if

$$
(\forall y \in I) *(y, I)^{\cap} \subseteq I \text { and } \circ(y, I)^{\cap} \subseteq I
$$

Theorem 2.7. [7] Let H be a hyper pseudo BCK-algebra and $I \subseteq H$, then I is a strong hyper pseudo BCK-ideal of H if and only if the following hold:
(i) $0 \in I$,
(ii) for any $y \in I, *(y, I)^{\cap} \subseteq I$ or for any $y \in I, \circ(y, I)^{\cap} \subseteq I$.

Definition 2.8. [7] Let H be a hyper pseudo BCK-algebra and I be a subset of H, then I is called reflexive if $x * x \subseteq I$ and $x \circ x \subseteq I$ for all $x \in H$.

Definition 2.9. [7] Let H be a hyper pseudo BCK-algebra, ρ be a binary relation on H and $A, B \subseteq H$, then
(i) $A \rho B$ means that there exist $a \in A$ and $b \in B$ such that $a \rho b$;
(ii) $A \bar{\rho} B$ means that for any $a \in A$ there exists $b \in B$ such that $a \rho b$, and for any $b \in B$ there exists $a \in A$ such that $a \rho b$;
(iii) ρ is called a right $*$-congruence (right o-congruence) relation on H if apb implies $(a * u) \bar{\rho}(b * u)((a \circ u) \bar{\rho}(b \circ u))$ for all $u \in H$;
(iv) ρ is called a left *- congruence (left o-congruence) on H if $a \rho b$ implies $(u * a) \bar{\rho}(u * b)(u \circ a \bar{\rho} u \circ b)$ for all $u \in H$;
(v) ρ is called $a *$-congruence (o-congruence) on H if it is a right and left $*$-congruence (a right and left o-congruence);
(vi) ρ is called a left congruence on H if it is a left $*$-congruence and a left o-congruence on H;
(vii) ρ is called a right congruence on H if it is a right *-congruence and a right o-congruence on H;
(viii) ρ is called a congruence on H if it is $a *$-congruence and a-congruence on H.

From now on, H stands for a hyper pseudo $B C K$-algebra unless otherwise state.
Definition 2.10. [8] Let ρ be a congruence on H and $\frac{H}{\rho}=\left\{[x]_{\rho} \mid x \in\right.$ $H\}$. We define the hyperoperations $*$ and \circ and the relation \ll on $\frac{H}{\rho}$ as follows:

$$
\begin{gathered}
{[x]_{\rho} *[y]_{\rho}=\left\{[z]_{\rho} \mid z \in x * y\right\}, \quad[x]_{\rho} \circ[y]_{\rho}=\left\{[z]_{\rho} \mid z \in x \circ y\right\},} \\
{[x]_{\rho} \ll[y]_{\rho} \Leftrightarrow[0]_{\rho} \in[x]_{\rho} \circ[y]_{\rho} \Leftrightarrow[0]_{\rho} \in[x]_{\rho} *[y]_{\rho}}
\end{gathered}
$$

Theorem 2.11. [8] Let ρ be a congruence on H, then the following are equivalent:
(i) $(x * y) \rho 0$ and $(y * x) \rho 0 \Rightarrow x \rho y$,
(ii) $(x \circ y) \rho 0$ and $(y \circ x) \rho 0 \Rightarrow x \rho y$,
(iii) $\left(\frac{H}{\rho} ; *, \circ,[0]_{\rho}\right)$ is a hyper pseudo $B C K$-algebra.

Definition 2.12. [8] Let ρ be an equivalence relation on H, then ρ is called regular on H if it satisfies one of the conditions of Theorem 2.11.
Theorem 2.13. [8] If ρ is a regular congruence on H, then $[0]_{\rho}$ is a hyper pseudo BCK-ideal of type 1.
Theorem 2.14. [8] Let ρ be a regular congruence on H, then
$[0]_{\rho}$ is a reflexive hyper pseudo BCK-ideal of type 1

$$
\Leftrightarrow \frac{H}{\rho} \text { is a pseudo BCK-algebra. }
$$

Theorem 2.15. [8] Let $\left(H_{1} ; *_{1}, \circ_{1}, 0_{1}\right)$ and $\left(H_{2} ; *_{2}, \circ_{2}, 0_{2}\right)$ be two hyper pseudo $B C K$-algebras and $H=H_{1} \times H_{2}$. We define the hyperoperations * and \circ and the relation \ll on H as follows:

$$
\begin{aligned}
& \left(a_{1}, a_{2}\right) \circ\left(b_{1}, b_{2}\right)=\left(a_{1} \circ b_{1}, a_{2} \circ_{2} b_{2}\right)=\left\{(x, y) \mid x \in a_{1} \circ b_{1} \text { and } y \in a_{2} \circ b_{2}\right\}, \\
& \left(a_{1}, a_{2}\right) *\left(b_{1}, b_{2}\right)=\left(a_{1} *_{1} b_{1}, a_{2} *_{2} b_{2}\right)=\left\{(x, y) \mid x \in a_{1} * b_{1} \text { and } y \in a_{2} * b_{2}\right\}, \\
& \qquad\left(a_{1}, a_{2}\right) \ll\left(b_{1}, b_{2}\right) \text { if and only if } a_{1} \ll b_{1} \text { and } a_{2} \ll b_{2} \\
& \text { for all }\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in H, \text { then }(H ; \circ, *,(0,0)) \text { is a hyper pseudo } B C K- \\
& \text { algebra, which is called hyper product of } H_{1} \text { and } H_{2}
\end{aligned}
$$

3. Relations β and β^{*}

The relations β and β^{*} have been defined on hyperstructure $[3,15]$. In this section, we apply these kind of relations to hyper pseudo BCKalgebra and investigate some related properties.

Definition 3.1. Let H be a hyper pseudo BCK-algebra and U be the set of all finite combinations of elements of H with operation \otimes where \otimes stands for \circ or $*$. We define the relations β and β^{*} as follows:
(i) $x \beta y \Leftrightarrow\{x, y\} \subseteq u$ for some $u \in U$;
(ii) $x \beta^{*} y$ if and only if there exist $z_{1}, z_{2}, \ldots, z_{n+1} \in H$, where $z_{1}=$ $x, z_{n+1}=y$ and $u_{i} \in U, 1 \leq i \leq n$, such that $\left\{z_{i}, z_{i+1}\right\} \subseteq u_{i}$ and $x=z_{1} \beta z_{2} \beta z_{3} \ldots \beta z_{n} \beta z_{n+1}=y$.

The following example shows that the relation β is not necessarily transitive, in general.

Example 3.1. Let $H=\{0, a, b, c, d\}$. Hyperoperations \circ and $*$ on H given by the following tables:

\circ	0	a	b	c	d	$*$	0	a	b	c	d
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0, a\}$	$\{a\}$	$\{a\}$	$\{0\}$	a	$\{a\}$	$\{0, a\}$	$\{a\}$	$\{a\}$	$\{0\}$
b	$\{b\}$	$\{b\}$	$\{0\}$	$\{b\}$	$\{0\}$	b	$\{b\}$	$\{b\}$	$\{0\}$	$\{b\}$	$\{0\}$
c	$\{c\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$	c	$\{c\}$	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
d	$\{d\}$	$\{d\}$	$\{a\}$	$\{d\}$	$\{0\}$	d	$\{d\}$	$\{b\}$	$\{d\}$	$\{d\}$	$\{0, d\}$

Then $(H ; *, \circ, 0)$ is a hyper pseudo $B C K$-algebra. Since $\{0, a\} \subseteq a * a$, it follows that $a \beta 0$. Similarly, we have $0 \beta d$. But $(a, d) \notin \beta$ because there is not a combination of elements of H containing a and d.
Theorem 3.2. β^{*} is the smallest equivalence relation on H containing β.

Proof. It is clear that β^{*} is reflexive and symmetric. In order to show that β^{*} is transitive, assume that $a \beta^{*} b$ and $b \beta^{*} c$. Thus there exist $x_{1}, x_{2}, \ldots, x_{n+1}$,
$y_{1}, \ldots y_{m+1} \in H$ and $u_{i}, v_{j} \in U, 1 \leq i \leq n+1,1 \leq j \leq m+1$ such that $\left\{x_{i}, x_{i+1}\right\} \subseteq u_{i},\left\{y_{j}, y_{j+1}\right\} \subseteq v_{j}$ and
$a=x_{1} \beta x_{2} \beta x_{3} \ldots \beta x_{n} \beta x_{n+1}=b=y_{1} \beta y_{2} \beta y_{3} \ldots \beta y_{m} \beta y_{m+1}=c$.
Hence $a \beta^{*} c$. Therefore β^{*} is transitive and so β^{*} is an equivalence relation on H. Clearly, by Definition 3.1, $\beta \subseteq \beta^{*}$. Now let ρ be any other
equivalence relation on H such that $\beta \subseteq \rho$. Assume that $a \beta^{*} b$ for some $a, b \in H$. Thus using Definition 3.1 and the transitivity of ρ, we get $a \rho b$. Therefore $\beta^{*} \subseteq \rho$, which completes the proof.

Definition 3.3. Let ρ be an equivalence relation on H. If A and B are non-empty subsets of H, then
(i) $A \overline{\bar{\rho}} B$ means that for all $a \in A, b \in B$, we have $a \rho b$;
(ii) ρ is called a strongly right $*$-congruence (strongly left $*$-congruence)
if for all $x \in H$, apb implies that $(a * x) \overline{\bar{\rho}}(b * x)((x * a) \overline{\bar{\rho}}(x * b))$;
(iii) ρ is called a strongly right \circ-congruence (strongly left \circ-congruence)
if for all $x \in H$, apb implies that $(a \circ x) \overline{\bar{\rho}}(b \circ x)((x \circ a) \overline{\bar{\rho}}(x \circ b))$;
(iv) ρ is called a strongly *-congruence (strongly \circ-congruence) if it is left and right strongly $*$-congruence (strongly \circ-congruence);
(v) ρ is called a strongly congruence if it is strongly *-congruence and strongly o-congruence.

Theorem 3.4. β^{*} is a strongly congruence on H.
Proof. We first show that β is a strongly congruence on H. For this, let $x \beta y$ and $a \in H$, then there exists $u \in U$ such that $\{x, y\} \subseteq u$. Hence $(a * x) \subseteq(a * u)=v$ and $(a * y) \subseteq(a * u)=v$ for some $v \in U$ and so $(a * x) \cup(a * y) \subseteq(a * u)=v$. Therefore $t \beta t^{\prime}$ for all $t \in(a * x)$ and $t^{\prime} \in$ $(a * y)$, that is, $(a * x) \overline{\bar{\beta}}(a * y)$. Therefore β is a right strongly $*$-congruence on H. Similarly, we can show that β is a strongly left $*$-congruence on H. Also, by the same argument we can show that β is a left and right strongly o-congruence on H. Hence β is a strongly congruence on H. Now let $a \beta^{*} b$. Therefore there exist $z_{1}, z_{2}, \ldots, z_{n+1} \in H$ such that $\left\{z_{i}, z_{i+1}\right\} \subseteq u_{i} \in U, 1 \leq i \leq n+1$ and $a=z_{1} \beta z_{2} \beta z_{3} \ldots \beta z_{n} \beta z_{n+1}=b$. Since β is a strongly congruence on H, we obtain $a * x=\left(z_{1} * x\right) \overline{\bar{\beta}}\left(z_{2} *\right.$ $x) \overline{\bar{\beta}}\left(z_{3} * x\right) \ldots \overline{\bar{\beta}}\left(z_{n} * x\right) \overline{\bar{\beta}}\left(z_{n+1} * x\right)=b * x$ and so $(a * x) \overline{\bar{\beta}}(b * x)$. Hence β^{*} is a right strongly $*$-congruence on H. Similarly, we can show that β^{*} is a strongly left $*$-congruence and strongly left and right o-congruence on H. Therefore β^{*} is a strongly congruence on H.

In the sequel, for any element $a \in H$, we denote the congruence class of a under β^{*} by $\beta^{*}(a)$.

In the following, we give an example of a hyper pseudo $B C K$-algebra in which β^{*} is regular.

Example 3.2. Let $H=\{0, a, b, c\}$. Hyperoperations \circ and $*$ on H given by the following tables:

\circ	0	a	b	c
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0, a\}$	$\{0, a\}$	$\{0, a\}$
b	$\{b\}$	$\{b\}$	$\{0, a\}$	$\{0\}$
c	$\{c\}$	$\{c\}$	$\{c\}$	$\{0\}$

$*$	0	a	b	c
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0, a\}$	$\{0\}$	$\{0\}$
b	$\{b\}$	$\{b\}$	$\{0\}$	$\{0\}$
c	$\{c\}$	$\{c\}$	$\{c\}$	$\{0\}$

Then $(H ; *, \circ, 0)$ is a hyper pseudo $B C K$-algebra. We can check that $\beta^{*}(0)=\{0, a\}$. Since there is not $x, y \in H$ such that both $(x \circ y) \beta^{*} 0$ and $(y \circ x) \beta^{*} 0$, it follows that β^{*} is regular.

We now give an example to show that β^{*} is not necessarily regular, in general.

Example 3.3. Let $H=\{0, a, b, c, d\}$ be a hyper pseudo $B C K$-algebra as in Example 3.1. We can check that $\beta^{*}(0)=\{0, a, d\}$. It follows $(c \circ d) \beta^{*}\{0\}$ and $(d \circ c) \beta^{*}\{0\}$. But $\beta^{*}(d)=\{0, a, d\} \neq\{c\}=\beta^{*}(c)$. This implies that β^{*} is not regular.

Proposition 3.5. For any hyper pseudo BCK-algebra H, the following are equivalent:
(i) β^{*} is regular;
(ii) For any $x, y \in H$, if $(x \circ y) \beta^{*}\{0\}$ and $(y \circ x) \beta^{*}\{0\}$ then there exist $v \in x *(x \circ y)$ and $v^{\prime} \in y *(y \circ x)$ such that $v \beta^{*} v^{\prime}$.

Proof. $(i) \Rightarrow(i i)$ Let $(x \circ y) \beta^{*}\{0\}$ and $(y \circ x) \beta^{*}\{0\}$, then there exist $t \in(x \circ y)$ and $t^{\prime} \in(y \circ x)$ such that $t \beta^{*} 0$ and $t^{\prime} \beta^{*} 0$. Since β^{*} is a strongly congruence on H, we get $(x * t) \overline{\bar{\beta}}^{*}\{x\}$ and $\left(y * t^{\prime}\right) \overline{\bar{\beta}}^{*}\{y\}$. Therefore there exist $v \in x *(x \circ y)$ and $v^{\prime} \in y *(y \circ x)$ such that $v \beta^{*} x$ and $v^{\prime} \beta^{*} y$. Since β^{*} is regular, it follows from $(x \circ y) \beta^{*}\{0\}$ and $(y \circ x) \beta^{*}\{0\}$ that $x \beta^{*} y$ and so $v \beta^{*} v^{\prime}$.
(ii) $\Rightarrow(i)$ Let $(x \circ y) \beta^{*}\{0\}$ and $(\underline{y} \circ x) \beta^{*}\{0\}$. Since β^{*} is a strongly congruence on H, we get $x *(x \circ y) \overline{\bar{\beta}}^{*}\{x\}$ and $y *(y \circ x) \overline{\bar{\beta}}^{*}\{y\}$. Now by the hypothesis, there exist $v \in x *(x \circ y)$ and $v^{\prime} \in y *(y \circ x)$ such that $v \beta^{*} v^{\prime}$. Since β^{*} is a strongly congruence on H, we obtain $x \beta^{*} v \beta^{*} v^{\prime} \beta^{*} y$ and so by transitivity of β^{*} we have $x \beta^{*} y$. Therefore β^{*} is regular.

Proposition 3.6. $[0]_{\beta^{*}}$ is a reflexive hyper pseudo BCK-ideal of type 1 of H.

Proof. By Proposition 2.13, $[0]_{\beta^{*}}$ is a hyper pseudo $B C K$ ideal of type 1. Now let $x \in H$ and $t \in x * x$. Since $0 \in x * x$, we get $t \beta 0$. Hence $t \beta^{*} 0$
and so $t \in[0]_{\beta^{*}}$. Therefore $x * x \subseteq[0]_{\beta^{*}}$. By the same argument, we can show that $x \circ x \subseteq[0]_{\beta^{*}}$ for all $x \in H$. Therefore $[0]_{\beta^{*}}$ is a reflexive hyper pseudo $B C K$-ideal of type 1 .

Theorem 3.7. β^{*} is the smallest strongly congruence on H such that:

$$
\begin{equation*}
\beta^{*}(x) * \beta^{*}(y) \text { and } \beta^{*}(x) \circ \beta^{*}(y) \text { are singleton for all } x, y \in H \text {. } \tag{3.1}
\end{equation*}
$$

Proof. By Theorem 3.4, β^{*} is a strongly congruence on H. Now let $\beta^{*}(z), \beta^{*}\left(z^{\prime}\right) \in \beta^{*}(a) * \beta^{*}(b)$, then by Definition 2.10, there exist $w, w^{\prime} \in$ $a * b$ such that $\beta^{*}(w)=\beta^{*}(z)$ and $\beta^{*}\left(w^{\prime}\right)=\beta^{*}\left(z^{\prime}\right)$. Since $w, w^{\prime} \in a * b$, we get $w \beta^{*} w^{\prime}$ and so $\beta^{*}(z)=\beta^{*}(w)=\beta^{*}\left(w^{\prime}\right)=\beta^{*}\left(z^{\prime}\right)$. Therefore $\beta^{*}(a) * \beta^{*}(b)$ is singleton for all $a, b \in H$. Similarly, we can show that $\beta^{*}(a) \circ \beta^{*}(b)$ is also singleton for all $a, b \in H$. Now assume that ρ is a strongly congruence on H satisfying the condition (3.1) and prove that $\beta \subseteq \rho$. Consider the natural homomorphism $\pi: H \rightarrow \frac{H}{\rho}$ with $\pi(x)=\rho(x)$ for all $x \in H$. Assume that $x \beta y$ for some $x, y \in H$. Then there exists $u \in U$ such that $\{x, y\} \subseteq u$. It follows that $\{\pi(x), \pi(y)\} \subseteq$ $\pi(u)=\rho(u)$. Since $|\rho(u)|=1$, we get $\pi(x)=\pi(y)$, that is, $\rho(x)=\rho(y)$. Hence $x \rho y$ and so $\beta \subseteq \rho$. Thus it follows from Theorem 3.2 that $\beta^{*} \subseteq \rho$, which completes the proof.

Corollary 3.8. If β^{*} is regular on H, then $\frac{H}{\beta^{*}}$ is a pseudo BCK-algebra.
Proof. It follows from Theorems 2.14 and 3.6.
Theorem 3.9. Let ρ be an equivalence relation on H, then the following are equivalent.
(1) ρ is a regular strongly congruence on H.
(2) $\frac{H}{\rho}$ is a pseudo BCK-algebra.

Proof. (1) \Rightarrow (2) It suffices to show that $\rho(x) * \rho(y)$ and $\rho(x) \circ \rho(y)$ are singleton for all $x, y \in H$. Since $x \rho x$ and ρ is a strongly congruence on H, we get $(x * y) \overline{\bar{\rho}}(x * y)$ and $(x \circ y) \overline{\bar{\rho}}(x \circ y)$. This implies that $u \rho u^{\prime}$ for all $u, u^{\prime} \in x * y\left(u, u^{\prime} \in x \circ y\right)$. Therefore $\rho(x) * \rho(y)$ and $\rho(x) \circ \rho(y)$ are singleton for all $x, y \in H$ and so the result holds.
$(2) \Rightarrow(1)$ Let $\frac{H}{\rho}$ be a pseudo $B C K$-algebra and $x \rho y$, then $\rho(x) * \rho(t)=$ $\rho(y) * \rho(t)$ is singleton for all $t \in H$. Hence for any $a \in x * t$ and $b \in y * t$, $\rho(a)=\rho(b)$. It follows that $(x * t) \overline{\bar{\rho}}(y * t)$. Similarly, we have $(t * x) \overline{\bar{\rho}}(t * y)$. Thus ρ is a strongly $*$-congruence. By the similar argument, we can show that ρ is a strongly o-congruence. Thus ρ is strongly congruence on H. The regularity of ρ follows from Theorem 2.11 and Definition 2.12.

Note that in the proof of above theorem part (1) \Rightarrow (2), we used only the condition strongly congruence of ρ. So we have the following result:

Corollary 3.10. For every strongly congruence ρ on $H, \rho(x) * \rho(y)$ and $\rho(x) \circ \rho(y)$ are singleton for all $x, y \in H$.

Corollary 3.11. For every regular strongly congruence ρ on $H,[0]_{\rho}$ is a reflexive hyper pseudo BCK-ideal of type 1 .
Proof. It follows from Theorems 2.14 and 3.9.
Note that if θ and ρ are two relations on H_{1} and H_{2}, respectively, then the relation $\theta \times \rho$ on $H_{1} \times H_{2}$ is defined by

$$
\left(\forall(a, b),(c, d) \in H_{1} \times H_{2}\right)(a, b) \theta \times \rho(c, d) \Leftrightarrow a \theta c \text { and } b \rho d .
$$

It is well known that $\theta \times \rho$ is (reflexive, symmetric) transitive if and only if θ and ρ are both (reflexive, symmetric) transitive.
Lemma 3.12. Let H_{1}, H_{2} be two hyper pseudo BCK-algebras, then
(i) $\beta_{H_{1} \times H_{2}}=\beta_{H_{1}} \times \beta_{H_{2}}$;
(ii) $\beta_{H_{1} \times H_{2}}^{*}=\beta_{H_{1}}^{*} \times \beta_{H_{2}}^{*}$.

Proof. (i) Let U_{1}, U_{2} and U be the all finite combinations of elements of H_{1}, H_{2} and $H_{1} \times H_{2}$ respectively, then, by the composition of elements of $H_{1} \times H_{2}$, we get $U=U_{1} \times U_{2}$. Hence we have $(a, b) \beta_{H_{1} \times H_{2}}(c, d) \Leftrightarrow$ $\{(a, b),(c, d)\} \subseteq u$ for some $u \in U \Leftrightarrow\{a, c\} \subseteq u_{1}$ and $\{b, d\} \subseteq u_{2}$ for some $u_{1} \in U_{1}$ and $u_{2} \in U_{2} \Leftrightarrow a \beta_{1} c$ and $b \beta_{2} d$. This completes the proof of (i).
(ii) By (i), we have $(a, b) \beta_{H_{1} \times H_{2}}(c, d) \Leftrightarrow a \beta_{1} c$ and $b \beta_{2} d$. Then using Definition 3.1, the proof is straightforward.

Lemma 3.13. Let H_{1}, H_{2} be two hyper pseudo BCK-algebras, then $\beta_{H_{1} \times H_{2}}^{*}$ is regular if and only if $\beta_{H_{1}}^{*}$ and $\beta_{H_{2}}^{*}$ are regular.
Proof. Let $\beta_{H_{1}}^{*}$ and $\beta_{H_{2}}^{*}$ be regular and let $\left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right) \beta_{H_{1} \times H_{2}}^{*}\{(0,0)\}$ and $\left(x_{2}, y_{2}\right) \circ\left(x_{1}, y_{1}\right) \beta_{H_{1} \times H_{2}}^{*}\{(0,0)\}$, then there exist $(a, b) \in\left(x_{1}, y_{1}\right) \circ$ $\left(x_{2}, y_{2}\right)$ and $\left(a^{\prime}, b^{\prime}\right) \in\left(x_{2}, y_{2}\right) \circ\left(x_{1}, y_{1}\right)$ such that $(a, b) \beta_{H_{1} \times H_{2}}^{*}(0,0)$ and $\left(a^{\prime}, b^{\prime}\right) \beta_{H_{1} \times H_{2}}^{*}(0,0)$. Now by Lemma 3.12, we have $a \beta_{H_{1}}^{*} 0, b \beta_{H_{2}}^{*} 0, a^{\prime} \beta_{H_{1}}^{*} 0$ and $b^{\prime} \beta_{H_{2}}^{*} 0$. It follows that $\left(x_{1} \circ x_{2}\right) \beta_{H_{1}}^{*}\{0\},\left(x_{2} \circ x_{1}\right) \beta_{H_{1}}^{*}\{0\},\left(y_{1} \circ\right.$ $\left.y_{2}\right) \beta_{H_{2}}^{*}\{0\}$ and $\left(y_{2} \circ y_{1}\right) \beta_{H_{2}}^{*}\{0\}$. Since $\beta_{H_{1}}^{*}$ and $\beta_{H_{2}}^{*}$ are regular, we get $x_{1} \beta_{H_{1}}^{*} x_{2}$ and $y_{1} \beta_{H_{2}}^{*} y_{2}$ and so by Lemma 3.12, we conclude $\left(x_{1}, y_{1}\right) \beta_{H_{1} \times H_{2}}^{*}$ $\left(x_{2}, y_{2}\right)$. Therefore $\beta_{H_{1} \times H_{2}}^{*}$ is regular.

Conversely, let $x, y \in H_{1}$ such that $x \circ y \beta_{H_{1}}^{*}\{0\}$ and $y \circ x \beta_{H_{1}}^{*}\{0\}$. Therefore there exist $a \in x \circ y$ and $b \in y \circ x$ such that $a \beta_{H_{1}}^{*} 0$ and $b \beta_{H_{1}}^{*} 0$. Hence $(a, 0) \beta_{H_{1} \times H_{2}}^{*}(0,0)$ and $(b, 0) \beta_{H_{1} \times H_{2}}^{*}(0,0)$. Since $(a, 0) \in(x, 0) \circ$ $(y, 0)$ and $(b, 0) \in(y, 0) \circ(x, 0)$, we get $(x, 0) \circ(y, 0) \beta_{H_{1} \times H_{2}}^{*}\{(0,0)\}$ and $(y, 0) \circ(x, 0) \beta_{H_{1} \times H_{2}}^{*}\{(0,0)\}$. Thus by the regularity of $\beta_{H_{1} \times H_{2}}^{*}$, we obtain $(x, 0) \beta_{H_{1} \times H_{2}}^{*}(y, 0)$ and so by Lemma 3.12, we have $x \beta_{H_{1}}^{*} y$. Therefore $\beta_{H_{1}}^{*}$ is regular. Similarly, we can show that $\beta_{H_{2}}^{*}$ is also regular.

Theorem 3.14. Let $(X ; *, \circ, 0)$ be a (hyper) pseudo BCK-algebra, then for any set Y with $|X|=|Y|$, there are two (hyper) binary operations on Y, denoted by $*^{\prime}$ and \circ^{\prime} such that $\left(Y ; *^{\prime}, \circ^{\prime}, 0^{\prime}\right)$ is a (hyper) pseudo $B C K$-algebra and $(X ; *, \circ, 0) \cong\left(Y ; *^{\prime}, \circ^{\prime}, 0^{\prime}\right)$.

Proof. Let $(X ; *, 0,0)$ be a pseudo $B C K$-algebra. The case that X is a hyper pseudo $B C K$-algebra can be proved in a similar way. By $|X|=|Y|$, there exists a bijection mapping $f: X \rightarrow Y$. We define the operations $*^{\prime}$ and \circ^{\prime} on Y as follows:

$$
\begin{array}{ll}
\left(\forall x^{\prime}, y^{\prime} \in Y\right) \quad & x^{\prime} *^{\prime} y^{\prime}=f\left(f^{-1}\left(x^{\prime}\right) * f^{-1}\left(y^{\prime}\right)\right), \\
& x^{\prime} \circ^{\prime} y^{\prime}=f\left(f^{-1}\left(x^{\prime}\right) \circ f^{-1}\left(y^{\prime}\right)\right), \\
& x^{\prime} \preceq^{\prime} y^{\prime} \Leftrightarrow x^{\prime} *^{\prime} y^{\prime}=0^{\prime} \Leftrightarrow x^{\prime} \circ^{\prime} y^{\prime}=0^{\prime} . \tag{3.4}
\end{array}
$$

Clearly, the operations $*^{\prime}$ and \circ^{\prime} are well-defined. We take $0^{\prime}=f(0)$. By (3.2) and (3.3), it is easy to see that

$$
\begin{equation*}
f^{-1}\left(x^{\prime} *^{\prime} y^{\prime}\right)=f^{-1}\left(x^{\prime}\right) * f^{-1}\left(y^{\prime}\right) ; f^{-1}\left(x^{\prime} \circ^{\prime} y^{\prime}\right)=f^{-1}\left(x^{\prime}\right) \circ f^{-1}\left(y^{\prime}\right) \tag{3.5}
\end{equation*}
$$

For any $x^{\prime}, y^{\prime} \in Y$, we have

$$
\begin{aligned}
x^{\prime} \preceq^{\prime} y^{\prime} & \Leftrightarrow x^{\prime} *^{\prime} y^{\prime}=0^{\prime} \quad \text { by }(3.4) \\
& \Leftrightarrow f\left(f^{-1}\left(x^{\prime}\right) * f^{-1}\left(y^{\prime}\right)\right)=0^{\prime} \quad \text { by }(3.2) \\
& \Leftrightarrow f^{-1}\left(x^{\prime}\right) * f^{-1}\left(y^{\prime}\right)=0 \quad \text { by injectivity of } f \\
& \Leftrightarrow f^{-1}\left(x^{\prime}\right) \preceq f^{-1}\left(y^{\prime}\right) \quad \text { by }(3.4) .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\left(\forall x^{\prime}, y^{\prime} \in Y\right) x^{\prime} \preceq^{\prime} y^{\prime} \Leftrightarrow f^{-1}\left(x^{\prime}\right) \preceq f^{-1}\left(y^{\prime}\right) \tag{3.6}
\end{equation*}
$$

Now we show that $\left(Y ; *^{\prime}, \circ^{\prime}, 0^{\prime}\right)$ satisfies the axioms of pseudo $B C K$ algebra. For any $x^{\prime}, y^{\prime}, z^{\prime} \in Y$, by axiom (a1) of X, we have

$$
\left[f^{-1}\left(x^{\prime}\right) * f^{-1}\left(y^{\prime}\right)\right] \circ\left[f^{-1}\left(x^{\prime}\right) * f^{-1}\left(z^{\prime}\right)\right] \preceq f^{-1}\left(z^{\prime}\right) * f^{-1}\left(y^{\prime}\right)
$$

Thus, by (3.5), we conclude

$$
f^{-1}\left[\left(x^{\prime} *^{\prime} y^{\prime}\right) \circ^{\prime}\left(x^{\prime} *^{\prime} z^{\prime}\right)\right] \preceq f^{-1}\left(z^{\prime} *^{\prime} y^{\prime}\right),
$$

and so by (3.6), we get $\left(x^{\prime} *^{\prime} y^{\prime}\right) \circ^{\prime}\left(x^{\prime} *^{\prime} z^{\prime}\right) \preceq z^{\prime} *^{\prime} y^{\prime}$. Thus the axiom (a1) of Y holds. By the similar argument, we can prove the remainder axioms of pseudo $B C K$-algebra of Y. Therefore $\left(Y, *^{\prime}, \circ^{\prime}, 0^{\prime}\right)$ is a pseudo $B C K$-algebra.

Theorem 3.15. [6] Let $(G ; ., \vee, \wedge, 0,1)$ be a lattice ordered group (ℓ group) and $G^{+}=\{g \in G \mid g \geq 0\}$ be its positive cone. If one defines $x * y=x \cdot y^{-1} \vee 0$ and $x \circ y=y^{-1} \cdot(x \vee 0)$ (G is not necessarily commutative) then $(G ; *, \circ, 0)$ is a pseudo BCK-algebra.

Example 3.4. [9] Let $G=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$. We define binary operation + on G as follows:
$\left(k_{1}, m_{1}, n_{1}\right)+\left(k_{2}, m_{2}, n_{2}\right)= \begin{cases}\left(m_{1}+k_{2}, m_{2}+k_{1}, n_{1}+n_{2}\right) & \text { if } n_{2} \text { is odd } \\ \left(k_{1}+k_{2}, m_{1}+m_{2}, n_{1}+n_{2}\right) & \text { if } n_{2} \text { is even },\end{cases}$ $0=(0,0,0)$ is the neutral element, and

$$
-(k, m, n)= \begin{cases}(-m,-k,-n) & \text { if } n \text { is odd } \\ (-k,-m,-n) & \text { if } n \text { is even },\end{cases}
$$

then G is a non abelian ℓ-group with the positive cone $G^{+}=\mathbb{Z} \times \mathbb{Z} \times$ $\mathbb{Z} \cup \mathbb{Z} \times \mathbb{Z} \times\{0\}$.

Corollary 3.16. For any infinite countable set X, there exist the binary operations $*$ and \circ on X and a constant $0 \in X$ such that $(X ; *, \circ, 0)$ is a pseudo BCK-algebra.

Proof. It follows from Theorem 3.15 and Example 3.4.

4. Fundamental pseudo $B C K$-algebra

In this section, applying the concept of fundamental algebra [12] on pseudo $B C K$-algebra, we prove that any pseudo $B C K$-algebra is fundamental.

Definition 4.1. A pseudo BCK-algebra H is called fundamental, if there exists a non-trivial hyper pseudo BCK-algebra K such that $\frac{K}{\beta^{*}} \cong$ H.

Theorem 4.2. Let $\left(H_{1} ; *_{1}, \circ_{1}, 0_{1}\right)$ and $\left(H_{2} ; *_{2}, \circ_{2}, 0_{2}\right)$ be two pseudo BCK-algebras. Define the hyperoperations $*$ and \circ on $H=H_{1} \times H_{2}$ as follows:

$$
\begin{gather*}
\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left\{\left(x_{1} *_{1} x_{2}, y_{1}\right),\left(x_{1} *_{1} x_{2}, y_{1} *_{2} y_{2}\right)\right\} ; \tag{4.1}\\
\left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right)=\left\{\left(x_{1} \circ_{1} x_{2}, y_{1}\right),\left(x_{1} \circ_{1} x_{2}, y_{1} \circ_{2} y_{2}\right)\right\} .
\end{gather*}
$$

Then $H=\left(H_{1} \times H_{2} ; *, \circ,(0,0)\right)$ is a hyper pseudo BCK-algebra.
Proof. We show that the hyperoperations * and \circ defined on H satisfy the axioms of hyper pseudo $B C K$-algebras. Applying (4.1) and the axiom $(P H K 1)$ of H_{1} and H_{2}, we have, for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in$ H,
$\left[\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)\right] *\left[\left(x_{3}, y_{3}\right) *\left(x_{2}, y_{2}\right)\right]=$
$\left\{\left(x_{1} *_{1} x_{2}, y_{1}\right),\left(x_{1} *_{1} x_{2}, y_{1} *_{2} y_{2}\right)\right\} *\left\{\left(x_{3} *_{1} x_{2}, y_{3}\right),\left(x_{3} *_{1} x_{2}, y_{3} *_{2} y_{2}\right)\right\}=$ $\left\{\left(x_{1} *_{1} x_{2}, y_{1}\right) *\left(x_{3} *_{1} x_{2}, y_{3}\right)\right\} \cup\left\{\left(x_{1} *_{1} x_{2}, y_{1}\right) *\left(x_{3} *_{1} x_{2}, y_{3} *_{2} y_{2}\right)\right\} \cup\left\{\left(x_{1} *_{1}\right.\right.$ $\left.\left.x_{2}, y_{1} *_{2} y_{2}\right) *\left(x_{3} *_{1} x_{2}, y_{3}\right)\right\} \cup\left\{\left(x_{1} *_{1} x_{2}, y_{1} *_{2} y_{2}\right) *\left(x_{3} *_{1} x_{2}, y_{3} *_{2} y_{2}\right)\right\}=$ $\left\{\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right), y_{1}\right),\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right), y_{1} *_{2} y_{3}\right)\right.$,
$\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right), y_{1}\right),\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right), y_{1} *_{2}\left(y_{3} *_{2} y_{2}\right)\right)$,
$\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right), y_{1} *_{2} y_{2}\right),\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right),\left(y_{1} *_{1} y_{2}\right) *_{2} y_{3}\right)$, $\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right), y_{1} *_{2} y_{2}\right),\left(\left(x_{1} *_{1} x_{2}\right) *_{1}\left(x_{3} *_{1} x_{2}\right),\left(y_{1} *_{2} y_{2}\right) *_{2}\left(y_{3} *_{2}\right.\right.$ $\left.\left.\left.y_{2}\right)\right)\right\} \ll\left\{\left(x_{1} * x_{3}, y_{1}\right),\left(x_{1} * x_{3}, y_{1} * y_{3}\right)\right\}=\left(x_{1}, y_{1}\right) *\left(x_{3}, y_{3}\right)$.

Similarly, we have $\left(\left(x_{1}, y_{1}\right) \circ\left(x_{2}, y_{2}\right)\right) \circ\left(\left(x_{3}, y_{3}\right) \circ\left(x_{2}, y_{2}\right)\right) \ll\left(x_{1}, y_{1}\right) \circ$ $\left(x_{3}, y_{3}\right)$. Hence (PHK1) on H holds. Similar to the proof of (PHK1), we can show that the remainder axioms hold. Therefore $H=\left(H_{1} \times\right.$ $\left.H_{2} ; *, \circ,(0,0)\right)$ is a hyper pseudo $B C K$ algebra.
Lemma 4.3. If $H_{1} \times H_{2}$ is the hyper pseudo BCK-algebra as in Theorem 4.2, then $\beta_{H_{1} \times H_{2}}^{*}$ is regular.
Proof. We first show that $(a, b) \beta(0,0)$ implies $a=0$ for any $(a, b) \in$ $H_{1} \times H_{2}$. By the assumption, there exists $u=\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right) \ldots \otimes$ $\left(x_{n-1}, y_{n-1}\right) \otimes\left(x_{n}, y_{n}\right) \in U$ such that $\{(a, b),(0,0)\} \subseteq u$. By the definition of hyperoperations $*$ and \circ on $H_{1} \times H_{2}$ as in Theorem 4.2, we have $u=\left\{\left(x_{1} \otimes x_{2} \ldots \otimes x_{n-1} \otimes x_{n}, t\right) \mid t \in T\right\}$, where
$T=\left\{y_{1}\right\} \cup\left\{y_{1} \otimes y_{i 1} \mid 1<i 1 \leq n\right\} \cup\left\{y_{1} \otimes y_{i 1} \otimes y_{i 2} \mid 1<i 1<\right.$ $i 2 \leq n\} \cup \ldots \cup\left\{y_{1} \otimes \ldots \otimes y_{n}\right\}$. By setting $x_{0}=x_{1} \otimes \ldots \otimes x_{n}$, it follows from $\{(a, b),(0,0)\} \subseteq u$ that $x_{0}=0=a$. For convenience, we use β^{*} to denote the $\beta_{H_{1} \times H_{2}}^{*}$. Now let $x \circ y \beta^{*}(0,0)$ and $y \circ x \beta^{*}(0,0)$, where $x=\left(x_{1}, y_{1}\right)$ and $y=\left(x_{2}, y_{2}\right)$. Hence there exist $(a, b) \in x \circ$ y and $\left(a^{\prime}, b^{\prime}\right) \in y \circ x$ such that $(a, b) \beta^{*}(0,0)$ and $\left(a^{\prime}, b^{\prime}\right) \beta^{*}(0,0)$ and so by the previous argument $a=0=a^{\prime}$. Thus $(0, b) \in x \circ y=\left\{\left(x_{1} \circ\right.\right.$
$\left.\left.x_{2}, y_{1}\right),\left(x_{1} \circ x_{2}, y_{1} \circ y_{2}\right)\right\}$ and so $x_{1} \circ x_{2}=0$, that is, $x_{1} \ll x_{2}$. Similarly, from $\left(0, b^{\prime}\right) \in\left\{\left(x_{2} \circ x_{1}, y_{2}\right),\left(x_{2} \circ x_{1}, y_{2} \circ y_{1}\right)\right\}$, we get $x_{2} \ll x_{1}$ and so $x_{1}=x_{2}$. Hence $x=\left(x_{1}, y_{1}\right)$ and $y=\left(x_{1}, y_{2}\right)$, which imply $x \circ y=$ $\left\{\left(0, y_{1}\right),\left(0, y_{1} \circ y_{2}\right)\right\}$ and $y \circ x=\left\{\left(0, y_{2}\right),\left(0, y_{2} \circ y_{1}\right)\right\}$. Since $(x \circ \underline{y}) \beta^{*}(0,0)$ and $(y \circ x) \beta^{*}(0,0)$, it follows that $x \circ(x \circ y) \bar{\beta}^{*} x$ and $y \circ(y \circ x) \bar{\beta}^{*} y$. Now, since

$$
\left(x_{1}, y_{1}\right) \circ\left(\left(x_{1}, y_{1}\right) \circ\left(x_{1}, y_{2}\right)\right)=\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, 0\right),\left(x_{1}, y_{1} \circ\left(y_{1} \circ y_{2}\right)\right)\right\}
$$

and

$$
\left(x_{1}, y_{2}\right) \circ\left(\left(x_{1}, y_{2}\right) \circ\left(x_{1}, y_{1}\right)\right)=\left\{\left(x_{1}, y_{2}\right),\left(x_{1}, 0\right),\left(x_{1}, y_{2} \circ\left(y_{2} \circ y_{1}\right)\right)\right\},
$$

we have $\left(x_{1}, 0\right) \in(x \circ(x \circ y)) \cap(y \circ(y \circ x))$. Hence $\left(x_{1}, 0\right) \beta^{*} x$ and $\left(x_{1}, 0\right) \beta^{*} y$ and so $x \beta^{*} y$. Therefore β^{*} is regular.

Theorem 4.4. Every pseudo BCK-algebra is fundamental.
Proof. Let H be a pseudo $B C K$-algebra and consider the hyper pseudo $B C K$-algebra $H \times H$ as in Theorem 4.2. We show that $\beta^{*}((a, b))=$ $\{(a, x) \mid x \in H\}$ for all $(a, b) \in H \times H$. Let $(c, d) \beta(a, b)$, then $\{(a, b),(c, d)\}$ $\subseteq u$ for some $u \in\left(x_{1}, y_{1}\right) \otimes \ldots \otimes\left(x_{n}, y_{n}\right) \in U$ in which $\left(x_{i}, y_{i}\right) \in H \times H$, $1 \leq i \leq n$. Thus similar to the proof of Lemma 4.3, it follows from $\{(a, b),(c, d)\} \subseteq u$ that $a=c=x_{0}$ and so $\beta^{*}((a, b)) \subseteq\{(a, x) \mid x \in$ $H\}$. On the other hand, since $(a, x) *(0, x)=\{(a, x),(a, 0)\}$, we get $(a, x) \beta(a, 0)$ for all $x \in H$. Hence $(a, x) \beta(a, 0) \beta(a, b)$ and so $(a, x) \beta^{*}(a, b)$ for all $x \in H$. It follows that $\{(a, x) \mid x \in H\} \subseteq \beta^{*}(a, b)$ and so the equality holds. Now we define the function $\varphi: \frac{H \times \bar{H}}{\beta_{H \times H}^{*}} \rightarrow H$ by $\varphi\left(\beta^{*}(a, b)\right)=a$. We note that $\beta^{*}(a, b)=\beta^{*}(c, d)$ if and only if $a=c$ if and only if $\varphi\left(\beta^{*}(a, b)\right)=\varphi\left(\beta^{*}(c, d)\right)$. Thus φ is well-defined and one to one. Clearly, φ is onto. Since

$$
\begin{aligned}
\beta^{*}(a, b) * \beta^{*}(c, d) & =\left\{\beta^{*}\left(t, t^{\prime}\right) \mid\left(t, t^{\prime}\right) \in(a, b) *(c, d)\right\} \\
& =\left\{\beta^{*}\left(t, t^{\prime}\right) \mid\left(t, t^{\prime}\right) \in\{(a * c, b),(a * c, b * d)\}\right\} \\
& =\left\{\beta^{*}\left(\left(a * c, t^{\prime}\right)\right) \mid t^{\prime}=b \text { or } t^{\prime} \in b * d\right\},
\end{aligned}
$$

it follows that $\varphi\left(\beta^{*}(a, b) * \beta^{*}(c, d)\right)=a * c=\varphi\left(\beta^{*}(a, b)\right) * \varphi\left(\beta^{*}(c, d)\right)$. Similarly, we have $\varphi\left(\beta^{*}(a, b) \circ \beta^{*}(c, d)\right)=\varphi\left(\beta^{*}(a, b)\right) \circ \varphi\left(\beta^{*}(c, d)\right)$. Thus φ is an isomorphism and $\frac{H_{1} \times H_{2}}{\beta_{H_{1} \times H_{2}}}=\frac{H_{1} \times H_{2}}{\beta^{*}} \cong H$. Therefore H is fundamental.

Acknowledgments

The authors are deeply grateful to the referees for the valuable suggestions and comments.

References

[1] R.A. Borzooei, A. Rezazadeh and R. Ameri, On hyper pseudo BCK-algebra, Iranian Journal of Mathematical Sciences and Informatics, 9(1) (2014), 13-29.
[2] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publication, 2003.
[3] P. Corsini, Prolegomena of Hypergroup theory (Second Edition), Aviani Editor, 1993.
[4] A. Dvurecenskij, On Pseudo MV-algebras, Soft Computing 5 (2001), 347-354.
[5] G. Georgescu and A. Iorgulescu, Pseudo BCK-algebra: an extension of BCKalgebra. In Proceeding of DMTCS 01: Combinatorics, Computability and Logic, Springer, London (2001), 97-114.
[6] J. Halas, Deductive systems and annihilators of pseudo BCK-algebra. Italian Journal of Pure and Applied Mathematics, 25 (2009), 83-94.
[7] H. Harizavi, T. Koochakpoor and R.A. Borzooei, Hyper Pseudo BCK-Algebras with condition (S) and (P), Malaysian Journal of Mathematical Sciences. 8(1) (2014), 87-108.
[8] H. Harizavi, T. Koochakpoor and R.A. Borzooei, Quotient Hyper Pseudo BCKAlgebras, General Algebra and Application. 33(2) (2013), 147-165.
[9] Y. Imai and K. Iséki, On Axiom System of Prepositional Calculi, XIV. Proc Japan Acad, 42 (1966), 26-29.
[10] Y.B. Jun, M.M. Zahedi, X.L. Xin and R.A. Borzooei, On Hyper BCK-algebra, Italian Journal of Pure and Applied Mathematics, 10 (2000), 127-136.
[11] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm, (1934), 45-49.
[12] C. Pelea, On the fundamental relation of a multialgebra, Ital. J. Pure Appl. Math. 10 (2001), 141-146.
[13] Feng. Yuming and Li. Benxiu, Generalized Hyperoperations Defined on Topological Space, Journal of Discerete Mathematical Sciences and Cryptography, 18 (2015), 195-200.
[14] Feng. Yuming and P. Corsini, On fuzzy Corsini's Hyperoperations, Journal of Applied Mathematics, Volume 2012 (2o12), 1-9.
[15] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press Inc, 1994.

Habib Harizavi

Department of Mathematics, Shahid Chamran University of Ahvaz, P.O.Box 6135783151, Ahvaz, Iran
Email:harizavi@scu.ac.ir

Rajab Ali Borzooei
Department of Mathematics, Shahid Beheshti University, P.O.Box 1983969411, Tehran, Iran
Email:borzooei@sbu.ac.ir
Taiybeh Koochakpoor
Department of Mathematics, Payame Noor University of Tehran, P.O.Box 1659639884,Tehran, Iran
Email:koochakp@yahoo.com

[^0]: Received: 22 March 2016, Accepted: 3 August 2016. Communicated by Yuming Feng;
 *Address correspondence to H. Harizavi; E-mail: harizavi@scu.ac.ir
 (c) 2016 University of Mohaghegh Ardabili.

