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CHARACTERIZATION OF JORDAN *-DERIVATIONS
BY LOCAL ACTION ON RINGS WITH INVOLUTION

XINGXING ZHAO AND XIAOFEI QI

ABSTRACT. Let R be a ring with an involution * and a symmetric
idempotent e. It is shown that, under some mild conditions on R,
an additive map § : R — R satisfies d(ab + ba) = 6(a)b™ + ad(b) +
0(b)a™ + bd(a) whenever ab = e for a,b € R if and only if 0 is a
Jordan *-derivation.
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1. INTRODUCTION

Let R be a ring with an involution *, which will be called a *-ring. Let
R’ € R be a subring. An additive map 6 : R — R is called a Jordan
*_derivation if §(a?) = 6(a)a* + ad(a) for all @ € R'. Note that, if R is
2-torsion free, then a Jordan *-derivation can be equivalently defined as
d(ab+ ba) = §(a)b* 4+ ad(b) + §(b)a* 4+ bd(a) for all a,b € R'. It is easy
to verify that, for every r € R, the map ¢ defined by d(a) = ar — ra* is
a Jordan *-derivation.

The study of Jordan *-derivations has been motivated by the prob-
lem of the representability of quasi-quadratic functionals by sesquilinear
ones. It turns out that the question of whether each quasi-quadratic
functional is generated by some sesquilinear functional is intimately con-
nected with the structure of Jordan *-derivations (see [?, 7, 7, 7] and the
references therein). In [?], Bresar and Vukman proved that, if a unital
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-ring R contains % and a central invertible element p with pu* = —pu,
then every additive Jordan *-derivation of R is inner, that is, it is of the
form x — xa — azx* for some a € R; in particular, every additive Jordan
*_derivation of a unital complex *-algebra is inner. Let B(H) be the alge-
bra of all bounded linear operators on a real or complex Hilbert space H
with dim H > 1 and let A be a standard operator algebra on H. Semrl
in [?] proved that every additive Jordan *-derivation 6 : A — B(H) is
of the form §(A) = AT — T A* for some T € B(H). Let R be a non-
commutative prime *-ring. Lee, Wong and Zhou [?, ?]| showed that any
additive Jordan *-derivation of R is of the form x — za — az* for all
x € R, where a is in the maximal symmetric ring of quotients of R,
except when charR = 2 and dimg RC = 4, where C is the extended
centroid of R. For other related results, see [?, ?] and the references
therein.

Recently, the question of under what conditions an additive map be-
comes a derivation had attracted much attention of many researchers
(for example, see [?, ?|] and the references therein). For Jordan *-
derivations, Qi and Zhang [?] first discussed the properties of Jordan
*_derivations by local action. Let R be a 2-torsion free *-ring with a
nontrivial symmetric idempotent. Under some mild conditions on R,
Qi and Zhang in [?, ?] proved that an additive map 6 on R satisfies
d(ab+ba) = §(a)b*+ad(b)+0(b)a*+bd(a) whenever ab = 0 (respectively,
ab=1) for a,b € R if and only if § is an additive Jordan *-derivation.

The main purpose of the present paper is to continue to consider
the characterization of Jordan *-derivations by acting on a nontrivial
symmetric idempotent. Recall that an element a € R is symmetric
(respectively, skew symmetric) if a* = a (respectively, if a* = —a) and is
idempotent if > = a. For more details about *-rings, the reader can see
the book [?].This is a template article, which you can use as a skeleton
for your own article.

*

2. MAIN RESULT AND ITS PROOF

In this section, we will give the main result of this paper and its proof.

Theorem 2.1. Let R be a 2-torsion free unital *-ring with a non-
trivial symmetric idempotent e1. Assume that R satisfies the following
two conditions:

(1) for a € R, aRe; = {0} implies a = 0, where i = 1,2 and ez =
1-— €1,
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(2) for all a € R, there exists some integer n such that ne; — ejaey is
invertible in ey Req.

Then an additive map § : R — R satisfies 6(ab 4+ ba) = §(a)b* +
ad(b) + d(b)a* + bd(a) whenever ab = ey for a,b € R if and only if § is
a Jordan*-derivation.

Put e;Re; = R;; for any i,j € {1,2}. Then we have the decomposi-
tion R = R11+Ri12+Ra21+Ra. So any element a € R can be expressed
as a = a1 + ai2 + a1 + azz,where a;; € R;;.

Proof of Theorem 2.1. The “if” part is obvious. For the “only if”
part, we will prove it by checking a series of claims.

Claim 1. d(e;) = e1d(e1)ea + e20(eq)er.

By ei1e; = e, we have that

0(erer+erer) = d(er)ej+erd(er)+d(er)ei+erd(er) = 2(0(e1)er+erd(er)).

Since R is 2-torsion free and 0 is additive,one gets d(e1) = d(e1)er +
e10(e1). Multiplying by e; and es from both sides in the equation, re-
spectively, we obtain ejd(ej)e; = ead(e1)ea = 0. So d(e1) = e1(e1)es +
egd(e1)eq.

Now, define 7(a) = d(a) — (aap — apa™) for all @ € R, where ag =
e10(e1)ea — exd(eq)er. It is easily checked that 7 : R — R is also an
additive map satisfying

7(ab+ ba) = 7(a)b* + ar(b) + 7(b)a* + br(a) (2.1)
whenever ab = ey for a,b € R and
7’(61) = 0. (2.2)

Claim 2. T(R“) - Rii7 1= 1,2.
For any asy € Rag, since ej (e +az2) = e1, by Egs.(2.1)-(2.2), we have

0= 7(e1(e1 +ag)+ (e1 + axn)er)
= 7(e1)(e1 +a)" +eiT(er + axn) + 7(e1 + ax)el + (e1 + ag)7(e1)
= e17(a) + T(age)er = 2e17(ax)er + e17(aze)es + eaT(agn)e;.

It follows that e17(age)es = eaT(age)e; = e17(az)er = 0. So
T(agg) € Rog for all agg € Ros. (2.3)
For any invertible a1 € R11, since aﬁlall = e1, we have

0= T(al_llau + aual_ll)
= 7(ay)a}; + ajy m(ann) + m(a11)(a)* + anr(ar).
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Since (afll + agg)ayy = e1, by Egs.(2.2)-(2.4), one has

0= T((al_ll + GQQ)CLH + au(al_ll + agg))
= 7(ag +axn)aj; + (ay + a)7(a1)
+7(a11)(aly + a22)* + an7(al) + az)
= 7(ay)a}, + T(ag)ai; + ajy T(a1n) + aer(an)
+7(an)(ay))* + 7(a11)as, + ant(ay) + ani7(ag)
= agT(an)+ 7(ai1)as,.

Particularly, by taking ase = es in the above equation, one gets ea7(a11)+
7(a11)e2 = 0, which implies ea7(a11)e; = e17(a11)e2 = ea7(a1)es = 0 as
R is 2-torsion free. So 7(a11) € Rq; for all invertible elements a11 € R3.

Now for any element aj; € Ri1, by the assumption (2), there exists
some integer n such that ne; — a1 is invertible. Hence, by the additivity
of 7, 7(a11) = 7(ne1 — ay1) € Ri1, completing the proof of the claim.

Claim 3. T(Ri_j) - Rij —{-le', 1< 75 7] <20

Take any a;; € Rij, 1 < @ # j < 2. Since ej(ag1 + e1) = e and
(e1 + a12)e; = ey, by Egs.(2.1)-(2.2), we have

T(el((:LQl -+ 61) + (agl + 61)61)

= 7(e1)(az1 +e1)" +e17(az +e1)
+7(a21 + e1)e] + (az1 +e1)7(er)

= e17(az1) + 7(az21)er

T(az1)

and

T(a12) = 7((e1 + ai2)er + ei(er + a2))
= 7(e1+a2)e] + (ex1 + a12)7(er)
+7(e1)(e1 + a12)* + e17(e1 + ai2)
= T(a12)61 -+ 617’(@12).

Multiplying by e; and es from both sides in the above two equations,
respectively, one can easily obtain e;7(a;j)e; = ej7(a;j)e; = 0 for 1 <
i # 7 < 2. So the claim holds.

Claim 4. For any a; € Ry and a;; € R;; with 1 <7 # 5 < 2, we
have T(au‘aij) = T(aij)a;-“i + CLZ‘Z‘T(aij).
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For any invertible element a11 € R11 and any ai2 € R12, noting that
(ail + a12)a1n = e1, by Eq.(2.4) and Claim 2, we have

T(anaz) = T((al_ll +aiz)ai + a11(a1_11 + a12))
= 7(ayy +a2)al; + (a7 + aw2)(an)
+T(a11)(a1_11 +ap)* + allT(al_ll + a12)
= 7(ay))aj; + T(a2)ai; + ajf' T(an) + aip7(a11)
+7(an)(ay))* + 7(an)aty + ant(ay) + anr(a)
= 7(a12)ai; + ai17(ar2).

Thus, for any a11 € R11, by the assumption (2), ne; —aq; is invertible. So
the above equation yields 7((ne; —a11)a12) = 7(a12)(ner —ai1)* +(ne; —
a11)7(a12), which and Claim 3 implies that 7(aij1a12) = T(a12)ai; +
a117(a12) holds for all a1; € R11 and a2 € Rqa.

Now, for any ags € Roe and by € Ra1, since (€1 + aza — agebor)(e1 +
ba1) = e1, by Eq.(2.2), Claims 2-3, we have

7(b21)

= 7((e1 + aze — azbar)(e1 + ba1) + (e1 + ba1)(e1 + azz — azebai))

= 7(e1 + az — axbar)(e1 + ba1)* + (e1 + a2z — axzbai)T(e1 + ba1)
+7(e1 + bo1)(e1 + aga — ageba1)™ + (e1 + bo1)T(e1 + age — azebar)

= —7(ageba1)er — T(ageba1)bsy + e17(ba1) + aga7(ba1) — agebaiT(bo1)
+7(b21)er + 7(ba1)ase — T(b21)(ageb21)* — e17(azeba1) — ba17(ag2b21),

and so

T(ag2b21) = aga7(ba1) + 7(ba1)as, — T(a2b21)bs,
—a22b217(b21) — T(b21)(@22b21)* — ba17(azebar).
Replacing by 2bs; by b1 in the above equation and noting that R is

2-torsion free, one has

T(ag2bo1) = aga7(ba1) + 7(ba1)asy — 27 (agebar )b,
—2a22b217(b21) — 27(b21)(a22b21)* — 2ba17(a22b21).

Combining the above two equations, we obtain 7(agebo1) = age7(b21) +
7(b21)as, and

T(a22b21)b5; + ag2bo17(b21) + 7(ba1)(ageba1)* + bo17(azebe1) = 0. (2.5)

So the claim is true.

Similarly, one can check the following claim.

Claim 5. For any aj; € R;j and a;; € Ryj with 1 <1 # j < 2, we
have 7(aija;;) = 7(aij)aj; + ai(az;) + 7(ajj)ai; + aji7(aij).
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In addition, by a similar argument to that of Eq.(2.5), one can show
that

T(a12a22)aly + a12a227(a12) + 7(a12)(a12a22)" + a127(a12a22) =0 (2.6)

holds for all a12 € Ri2 and ags € Raa.

Claim 6. For any a;; € R;; with 1 <7 # j < 2, we have 0 =
7(aij)aj; + aiyT(aij).

By taking a1; = e; and ags = ez in Eqs.(2.5)-(2.6), the claim is
obvious.

Claim 7. For any a; € Ry, we have T(a?i) = 7(ai)al; + aiut(ai),
1< <2,

Take any a;; € Ry and aj; € Ry (1 <@ # j < 2). By Claim 5, we
have

7(ajiaiiaii)
= T(ajiay)aj; + ajiasT(aq) + 7(ai)(aji0:4)" + aiT(aji044)
= 7(aji)(aiiai)* + ajim(ai)ay; + 7(ai)aja;
—I-aiﬁ(aji)afi + ajiaiiT(aii) + T(aii)(ajiaii)* + az’ﬂ(aji)afi
—I—aiiajﬁ(aii) + aiﬂ(aii)a;} + aiiaiﬁ(aﬁ)

and

T(ajiaiai) = T(azi)(aiai)" + ajit(aiaq) + 7(aiaq)al; + aiaq(ag).
Comparing the above two equations gives
aji[T(aiai) —7(ai)af; —aiT(ai)|+[1(aiaq) —7(ai)af; — a7 (aig)]aj; =0,
which and Claim 2 imply
aji[T(aizai) =7 (i) ag;—auT(ai)] = [T(aiai)—T(ai)a;—aqT(ai)]a;; = 0.
That is, [T(aiai) — T(ai)al; — aiT(ai)]e;ae; = 0 holds for all a € R.
It follows from the assumption (1) that 7(aai) = 7(ai)al; + aiT(ai)
holds for all a;; € Ri;.

Claim 8. For any a;; € Ri; and aj; € Ry, we have 7(ajja;) =
T(aji)aj; + azit(ai), 1 <i#j < 2.
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For any a2 € R12 and b1 € Ro1, we have from (€1+(I12—a12521)(€1+
b21) = €1 that

T(a12) — 7(a12b21) + 7(b21) + 7(b21a12) — 7(b21a12b21)

= 7((e1 + aiz — aizbar)(e1 + bar) + (€1 + ba1)(e1 + a12 — a12b21))

= 7(e1 + ai2 — aizbar)(e1 + ba1)* + (e1 + arz — a12bo1)7(e1 + bay)
+7(e1 + ba1)(e1 + a1z — arzba1)* + (e1 + bar)7(e1 + a12 — ajzbar)

= T<a12)61 + T(alg)b§1 — T(a12b21)61 — T(algbgl)bgl + 617’([)21)
+a127(b21) — a12ba17(b21) + 7(b21)e1r + T(ba21)aiy, — T(ba21)(a12b21)*
+e17(a12) — e17(ai12bo1) + bar7(a12) — bar7(ai2ba).

By Claims 2-4, the above equation reduces to

7(ba1a12) = T(a12)b3; + b217(a12)
and

7(a12b21) = a127(b21) + 7(b21)ajs.
The claim holds.

Claim 9. 7 is a Jordan *-derivation. Therefore, 0 is a Jordan *-
derivation.

For any a = Z?,j:l a;; € R, by Claims 4-8 and the additivity of
7, one can easily check 7(a?) = 7(a)a* + ar(a), that is, 7 is a Jordan
*_derivation. Now by the definition of 7, it is obvious that ¢ is also a
Jordan *-derivation. O
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