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A FOURTH-ORDER ITERATIVE METHOD FOR

COMPUTING THE MOORE-PENROSE INVERSE

HAMID ESMAEILI∗, RAZIYEH ERFANIFAR AND MAHDIS RASHIDI

Abstract. In this study, a new fourth-order method to compute
the Moore-Penrose inverse is proposed. Convergence analysis along
with the error estimates of the method is investigated. Every itera-
tion of the method involves four matrix multiplications. A wide set
of numerical comparisons of the proposed method with nine higher
order methods shows that the average number of matrix multipli-
cations and the average CPU time of our method are considerably
less than those of other methods.
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1. Introduction

Many higher order iterative methods have been developed to compute
the Moore-Penrose inverse of a matrix. Iterative algorithms are a subject
of current research (see, e.g., [10, 11, 17, 21, 24]), due to the importance
of the topic in engineering and applied problems such as linear equations,
statistical regression analysis, filtering, signal and image processing, and
control of robot manipulators [5, 9, 14, 16].

In this article, we focus on presenting and demonstrating a new method
as fast as possible with a close attention to reducing the computational
time. To this end, we investigate a convergent iterative method to find
the Moore-Penrose inverse, which could be viewed as an extension of
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the famous Schulz method for such a purpose. It is proved that this
method always converges with fourth-order, and every iteration involves
four matrix multiplications. A theoretical discussion will also be given
to show the behavior of proposed scheme.

In the simple case, when A is a n × n nonsingular complex matrix,
to compute the matrix inverse, various iterative methods, called Schulz-
type methods, already developed [1, 4, 7, 10, 12, 15, 18, 20, 23, 24],
almost all of which are based on iterative solvers for the scalar equation
f(x) = 1

x − a = 0 applied to the matrix equation

f(X) = X−1 −A = 0.

We should also point out that even if the matrix A is singular, these
methods converge to the Moore-Penrose inverse using a proper initial
matrix. A full discussion on this feature of this type of iterative methods
has been given in [1, 2]. So, upon this observation, we first assume that
matrix A is a n× n nonsingular matrix.

The rest of this paper is organized as follows. Section 2 is devoted to
presenting some existing iterative schemes to find matrix inverse. Also,
we propose our new method in Section 2 and prove that it is fourth-
order convergent. In Section 3, we show that one can use our method to
find the Moore-Penrose inverse. In Section 4, some numerical examples
are given to show the performance of the presented method compared
with nine higher order methods. Finally, some conclusions are outlined
in Section 5.

2. Schulz-type iterative methods

Suppose that A is a n × n nonsingular complex matrix. There are
various iterative methods, called Schulz-type methods, to compute A−1.
In the sequel, we remind some of them.

Perhaps, the most frequently used iterative method to approximate
A−1 is the famous Newton method

(2.1) Xk+1 = Xk(2I −AXk), k = 0, 1, 2, . . . ,

originated in [15], in which I is the identity matrix with the same di-
mension as that of matrix A. Note that each iteration of (2.1) involves
two matrix multiplications. Schulz in [15] found that the eigenval-
ues of I − AX0 must have magnitudes less than 1 to ensure the con-
vergence. Since the residuals Ek = I − AXk in each step (2.1) sat-
isfy ‖Ek+1‖ ≤ ‖A‖ ‖Ek‖2, Newton method is a second-order iterative
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method [1]. Similarly, in [10] the relation ‖Aεk+1‖ ≤ ‖Aεk‖2 is verified
for errors of the form εk = Xk −A−1.

Li et al. in [8] investigated the following third-order method, known
as Chebyshev method,

(2.2) Xk+1 = Xk(3I −AXk(3I −AXk)),

and also proposed another iterative method to find A−1 of the same
order as given in

(2.3) Xk+1 = Xk(I + 0.5(I −AXk)(I + (2I −AXk)2)).

We observe that each iteration of (2.2) and (2.3) contain 3 and 4 matrix
multiplications, respectively. Toutounian and Soleymani [23] proposed
the following fourth-order method that involves 5 matrix multiplications:

(2.4) Xk+1 = 0.5Xk(9I −AXk(16I −AXk(14I −AXk(6I −AXk))))).

Krishnamurthy and Sen [6] provided the following fourth-order method
that contains 4 matrix multiplications:

(2.5)
Yk = I −AXk,

Xk+1 = Xk(I + Yk(I + Yk(I + Yk))).

As another example, a ninth-order method, could be presented as

Xk+1 = Xk(I+Yk(I+Yk(I+Yk(I+Yk(I+Yk(I+Yk(I+Yk(I+Yk)))))))).

The number of matrix multiplications of the above method can be re-
duced from 9 to 7 if it is rewritten as follows:

(2.6)

Bk = Y 2
k ,

Ck = B2
k,

Dk = C2
k ,

Xk+1 = Xk((I + Yk)(I +Bk)(I + Ck) +Dk).

Soleymani et al. [19] provided the following sixth-order method that
contains 5 matrix multiplications:

(2.7)

Bk = AXk

Sk = Bk(−I +Bk)

Xk+1 = Xk(2I −Bk)(3I − 2Bk + Sk)(I + Sk).
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Soleymani and Stanimirović [18] investigated the following ninth-order
method that has 7 matrix multiplications in each iteration:

(2.8)

Bk = AXk

Sk = −7I +Bk(9I +Bk(−5I +Bk))

Tk = BkSk

Xk+1 = −0.125XkSk(12I + Tk(6I + Tk)).

Also, Soleymani et al. [20] proposed another ninth-order method, again
involving 7 matrix multiplications in each iteration, as

(2.9)

Bk = AXk

Sk = 3I +Bk(−3I +Bk)

Tk = BkSk

Xk+1 = −1
9 XkSk(−29I + Tk(33I + Tk(−15I + 2Tk))).

Remark 2.1. All of the above methods are initiated by

(2.10) X0 = αA∗, 0 < α <
2

σ2
1

,

in which σ1 denote the largest singular value of A. There are another
choices for X0 too. A discussion on choosing the initial approximation
X0 is given in [2, 11]. Perhaps, in general case, the simplest choice for
X0 is

(2.11) X0 = αA∗,

in which α is an appropriate constant.

Beside the above methods, we investigate our method to find Moore-
Penrose inverse as follows:

Xk+1 = Xk

[
9I − 26(AXk) + 34(AXk)2 − 21(AXk)3 + 5(AXk)4

]
.

We can rewrite our method in the way

(2.12)

Bk = AXk

Ck = B2
k

Xk+1 = Xk [9I − 26Bk + Ck(34I − 21Bk + 5Ck)] .

Note that every iteration of the method (2.12) involves four matrix mul-
tiplications. In the sequel, we prove that the method (2.12) is fourth-
order convergent.
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Let us consider the following singular value decomposition of the ma-
trix A:

(2.13) A = USV ∗, S = diag(σ1, . . . , σn), σ1 ≥ · · · ≥ σn > 0,

where U and V are unitary matrices. Using

(2.14) X0 = βA∗,

in which β is a constant, we can deduce that each iterate of the method
(2.12) has a singular value decomposition of the form

Xk = V SkU
∗, Sk = diag(s

(k)
1 , . . . , s(k)

n ),

where

S0 = βS,

and

(2.15) Sk+1 = Sk
[
9I − 26SSk + 34(SSk)2 − 21(SSk)3 + 5(SSk)4

]
.

Therefore, the diagonal matrices Rk = SSk = diag(r
(k)
1 , . . . , r

(k)
n ) satisfy

Rk+1 := g(Rk) = 9Rk − 26R2
k + 34R3

k − 21R4
k + 5R5

k,

that means

(2.16) r
(k+1)
i = g(r

(k)
i ) = 9r

(k)
i − 26r

(k)2
i + 34r

(k)3
i − 21r

(k)4
i + 5r

(k)5
i .

In the following theorem, we show that the sequences (2.16) are

fourth-order convergent to ri = 1 for any r
(0)
i ∈ (0, 1 + γ), in which

γ is a suitable constant.

Theorem 2.2. For any initial point r(0) ∈ (0, 1 + γ), the sequence

r(k+1) = g(r(k)) is fourth-order convergent to r = 1, in which the func-
tion g(r) is defined by (2.16) and γ = 0.53.

Proof. We can find that the real fixed points and the critical points of
g(r) as follows:

g(r) = r =⇒ r = 0, 1, 1 + γ,

g′(r) = 0 =⇒ r = 0.36 , 1, 1, 1,

in which

γ =
1

15

[
1 +

3

√
316 + 30

√
114− 14

3
√

316 + 30
√

114

]
≈ 0.53.
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Noting g′′(0.36) = −6.55 < 0 and g(4)(1) = 96 > 0, we can deduce that
0.36 is a local maximizer and 1 is a local minimizer of g(r). On the
other hand, g(0) = 0 < 1 = g(1) and g(0.36) ≈ 1.13 < 1 + γ = g(1 + γ).
Therefore, r = 0, 1 and r = 0.36, 1 + γ are minimizer and maximizer
of g(r) in the interval [0, 1 + γ], respectively. Moreover, the interval
[0, 1 + γ] maps into itself by the function g(r).
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Figure 1. Graphs of the line y = x and the function y = g(x).

Considering an arbitrary initial point r(0) ∈ (0, 1 + γ), one can easily
obtain the following considerations (For clarification, see Figure 1):

• The unique solution of the equation g(r) = 1 in the interval [0, 1)
is 1

5 .

• g(r) is increasing in the interval (0, 1
5). Therefore, if r(k) ∈ (0, 1

5),
for some k, then there exists an index k0 ≥ k such that either
r(k0) = 1

5 , and so r(k0+1) = 1, or r(k0+1) ∈ (1
5 , 1).

• If r(k) ∈ (1
5 , 1), for some k, then r(k+1) ∈ (1, 1 + γ).

• If r(k) ∈ (1, 1 + γ), for some k, then the sequence {r(k+`)}`≥1 ⊆
[1, 1 + γ) is a strictly decreasing sequence converging to r = 1.
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Noting the above considerations, we can conclude that the sequence
r(k+1) = g(r(k)) is convergent to r = 1. On the other hand,

g′(1) = g′′(1) = g′′′(1) = 0

implies that the convergence is fourth-order (See [3]). �

Considering Theorem 2.2, we conclude that if βσ2
1 = r

(0)
1 ∈ (0, 1.53),

then βσ2
i = r

(0)
i ∈ (0, 1.53), for all i, and

lim
k→∞

Rk = I.

Hence,

lim
k→∞

Sk = S−1,

so

lim
k→∞

Xk = V S−1U∗ = A−1.

Moreover, the order of convergence is four. Therefore, the following
theorem is proved.

Theorem 2.3. Consider the nonsingular matrix A, and suppose that
σ2

1 denotes the largest singular value of A. Moreover, assume that the
initial approximation X0 is defined by (2.14), in which

(2.17) 0 < β <
1.53

σ2
1

.

Then, the sequence {Xk}k≥0 generated by (2.12) converges to the inverse
matrix A−1 with fourth-order.

Remark 2.4. Consider the initial matrix X0 according to (2.14), with
β from (2.17). Since σ2

1 is a (the) largest singular value of A, we have
σ2

1 = ‖A‖22 ≤ ‖A‖1 ‖A‖∞. Therefore, the selection

(2.18) β =
1

‖A‖1 ‖A‖∞

satisfies both in (2.17) and (2.10).
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3. Moore-Penrose inverse

The Moore-Penrose inverse of a m×n complex matrix A, denoted by
A†, is a unique n × m matrix X satisfying the following four Penrose
equations:

(3.1) AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA,

where A∗ is the conjugate transpose of A.
Now, suppose that rank(A) = r ≤ min{m,n} and consider the sin-

gular value decomposition of A as follows:

A = U

[
S 0
0 0

]
V ∗, S = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0.

It is well known that

A† = V

[
S−1 0

0 0

]
U∗.

Let us now extend the contributed method (2.12) for calculating the
Moore-Penrose inverse A†. That is, we must analytically reveal that the
sequence {Xk}k≥0 generated by the iterative Schulz-type method (2.12),
tends to the Moore-Penrose inverse as well.

Using mathematical induction, it would be easy to check that the
iterates produced at each cycle of (2.12) satisfy the following relations:

(3.2)
(AXk)∗ = AXk, (XkA)∗ = XkA,

A†AXk = Xk, XkAA
† = Xk.

If we take X0 = βA∗, which β is defined by (2.17), then

X0 = αA∗ = V

[
S0 0
0 0

]
U∗,

where

S0 = βS.

is a diagonal matrix. Therefore,

V ∗X0U =

[
S0 0
0 0

]
.

Now, the principle of mathematical induction and (3.2) lead to

(3.3) V ∗XkU =

[
Sk 0
0 0

]
,
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in which Sk is a diagonal matrix satisfying the following relation:

(3.4) Sk+1 = Sk
[
9I − 26SSk + 34(SSk)2 − 21(SSk)3 + 5(SSk)4

]
.

This is the same as (2.15) and the proof of the Theorem 2.2 show that

lim
k→∞

Sk = S−1.

Therefore,

lim
k→∞

Xk = V

(
S−1 0

0 0

)
U∗ = A†.

Moreover, the order of convergence is four. Hence, we have the following
theorem.

Theorem 3.1. Let A be a m×n complex matrix of rank r and suppose
that σ1 is the largest singular value of A. Moreover, assume that the
initial approximation X0 is defined by (2.14), in which β is defined by
(2.17). Then, the sequence {Xk}k≥0 generated by (2.12) converges to
the Moore-Penrose inverse A† with fourth-order.

Remark 3.2. If m ≤ n, then we apply (2.12) in the same form, in which
I denotes the m×m identity matrix. On the other hand, for case m > n
we must apply (2.12) with A∗ instead of A and use the n × n identity
matrix. So, for the case m > n, we compute (A∗)†, that is (A†)∗.

We can study the convergence properties of the algorithm (2.12) using
the error matrix Ek = Xk−A†. The matrix formula representing Ek+1 is
a sum of possible zero-order term consisting of a matrix which does not
depend upon Ek, one or more first-order matrix terms in which Ek or
E∗k appears only once, one or more second-order terms in which Ek and
E∗k appear at least twice, and so on [13]. To compute error estimates,
first note that

A†AEk = Ek, EkAA
† = Ek

according to (3.2). Therefore,

Xk(AXk) = A† + 2Ek + EkAEk,

Xk(AXk)2 = A† + 3Ek + 3EkAEk + (EkA)2Ek,

Xk(AXk)3 = A† + 4Ek + 6EkAEk + 4(EkA)2Ek + (EkA)3Ek,

Xk(AXk)4 = A† + 5Ek + 10EkAEk + 10(EkA)2Ek + 5(EkA)3Ek

+ (EkA)4Ek.
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Now, substituting Xk = A† + Ek in (2.12) results in

A† + Ek+1 = Xk+1

= 9Xk − 26XkAXk + 34Xk(AXk)2 − 21Xk(AXk)3

+ 5Xk(AXk)4

= A† + 7(EkA)3Ek + 8(EkA)4Ek,

such that

(3.5) Ek+1 = 7(EkA)3Ek + 8(EkA)4Ek.

Hence, we have the following theorem.

Theorem 3.3. Let A be a m×n nonzero complex matrix. If the initial
approximation X0 is defined by (2.14), with β from (2.17), then

‖A(X0 −A†)‖ < 1,

and iterative method (2.12) converges to A† with fourth-order. Its first,
second, third, fourth and fifth order error terms are given by

(3.6)

error1 = error2 = error3 = 0,

error4 = 7(EkA)3Ek,

error5 = 8(EkA)4Ek.

in which Ek = Xk −A† denotes the error matrix.

Proof. Take P = AA† and S = I −AX0. Then, P 2 = P and

PS = AA†(I −AX0) = AA† −AX0

= AA† −AX0AA
† = (I −AX0)AA† = SP.

On the other hand, it is proved [22] that for n × n matrices M and N
such that M2 = M and MN = NM , one has

ρ(MN) ≤ ρ(N).

Consequently, we attain

ρ(A(X0 −A†)) = ρ(A(βA∗ −A†))
≤ ρ(I − βAA∗)
= max

1≤i≤r
|1− λi(βAA∗)|

= max
1≤i≤r

|1− βσ2
i |.
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By using (2.17), we conclude that

‖AE0‖ = ‖A(X0 −A†)‖ ≤ ρ(A(X0 −A†)) ≤ max
1≤i≤r

|1− βσ2
i | < 1.

Now, we can immediately derive (3.6) from (3.5). Furthermore, (3.5)
results in

AEk+1 = 7(AEk)4 + 8(AEkA)5.

Hence,

‖AEk+1‖ ≤ (7 + 8‖AEk‖) ‖AEk‖4,
and therefore ‖AEk‖ → 0, since ‖AE0‖ < 1. On the other hand,

‖Ek+1‖ = ‖A†AEk+1‖ ≤ ‖A†‖ ‖AEk+1‖ ≤ ‖A†‖ (7 + 8‖AEk‖) ‖AEk‖4

results in

‖Ek+1‖ ≤
[
‖A†‖ ‖A‖4 (7 + 8‖A‖ ‖Ek‖)

]
‖Ek‖4.

Consequently, Xk → A† and the order of convergence is four. �

4. Numerical experiments

In this section, we will make some numerical comparisons of our pro-
posed method (2.12) with other methods presented here. To this end,
we focus on the total number of matrix multiplications and CPU times
required for convergence. Table 1 denotes convergence order and number
of matrix multiplications in any iteration of different methods.

Table 1. Convergence order and number of matrix multiplications for different methods

Method (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.12)

Convergence
order 2 3 3 4 4 9 6 9 9 4

Matrix
multiplications 2 3 4 5 4 7 5 7 7 4

We present three different types of tests. Test 1 is devoted to compar-
ing the schemes to find the inverse of some randomly generated dense
square matrices, Test 2 gives some comparison to find the Moore-Penrose
inverse of dense matrices, and Test 3 gives some comparison to find the
Moore-Penrose inverse of some randomly generated large sparse matri-
ces. All tests were carried out with a Matlab code while the computer
specifications are Microsoft Windows XP Intel(R), Pentium(R) 4, CPU
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2.60 GHz, with 2 GB of RAM. We use the initial matrix X0 defined in
(2.14), with β from (2.17). The stop criterion is

‖Xk+1 −Xk‖∞
1 + ‖Xk‖∞

< 10−7

and the maximum number of iterations is set to 100 in our written
codes as the maximum number of cycle for the methods is considered in
comparisons.

Test 1. In this test, we compute the inverse of dense nonsingular square
matrixA, where 10 matrices of the sizesm×m, m = 100, 200, 300, 400, 500,
are randomly generated as follows:

A = 100 rand(m,m)− 10 rand(m,m).

Average number of matrix multiplications and average of CPU times
required for convergence are listed in Table 2. In this table, DIM, MAT
and TIME denote the size of A, average values of matrix multiplications
and elapsed times in seconds, respectively.

Table 2. Average values of matrix multiplications and elapsed times to compute the

inverse of a dense nonsingular square matrix by different methods

Methods (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.12)

DIM:100× 100

MAT 63.2 61.5 73.2 77.5 66.0 76.3 65.5 72.8 74.9 46.8
TIME 0.05 0.04 0.07 0.05 0.05 0.08 0.05 0.05 0.05 0.04

DIM:200× 200

MAT 66.2 63.9 76.4 81.0 68.8 79.8 68.0 75.6 79.1 48.8
TIME 0.33 0.32 0.48 0.40 0.34 0.56 0.35 0.38 0.40 0.30

DIM:300× 300

MAT 70.0 67.50 81.20 85.0 72.80 84.0 72.0 79.8 82.6 51.2
TIME 1.22 1.17 1.76 1.50 1.25 2.06 1.28 1.39 1.44 1.13

DIM:400× 400
MAT 72.2 69.9 82.8 88.0 75.2 86.8 74.5 82.6 83.3 52.0

TIME 2.94 2.84 4.20 3.60 3.03 4.98 3.07 3.35 3.39 2.68

DIM:500× 500

MAT 73.0 70.8 84.0 88.5 76.4 87.5 75.5 84.0 85.4 53.2
TIME 5.77 5.60 8.30 7.04 5.99 9.79 6.04 6.63 6.76 5.33

From Table 2, we can see that our method (2.12) is more better than
others both in matrix multiplications and CPU time. The worst one is
fourth-order method (2.4). Note that the ninth-order method (2.8) acts
like the third-order method (2.3). [Also, the sixth-order method (2.7)
acts like the fourth-order method (2.5)]. The third-order method (2.2)
and the second-order method (2.1) are better than other higher order
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methods, although they are not comparable with our method (2.12).
Hence, we can consider the scheme (2.12) as the fastest method.

Test 2. In this test, we compute the Moore-Penrose inverse of randomly
generated dense matrix A of the size m× n, n = m+ 50, as follows:

A = 100 rand(m,n)− 10 rand(m,n).

Again, for each m = 100, 200, 300, 400, 500, we have performed 10 tests
and compared the average values of matrix multiplications and elapsed
times in seconds. The results of comparisons are reported in Table 3,
in terms of the number of matrix multiplications and the computational
time (in seconds).

From Table 3, we can see that our method (2.12) is more better than
others both in matrix multiplications and CPU time. The worst one is
ninth-order method (2.6). Note that the ninth-order method (2.8) acts
like the third-order method (2.3). [Also, the sixth-order method (2.7)
acts like the fourth-order method (2.5)]. The third-order method (2.2)
and the second-order method (2.1) are better than other higher order
methods, although they are not comparable with our method (2.12).
Hence, we can consider the scheme (2.12) as the fastest method.

Table 3. Average values of matrix multiplications and elapsed times to compute the

Moore-Penrose inverse of a dense rectangular matrix by different methods

Methods (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.12)

DIM:100× 150
MAT 36.2 36.0 44.0 45.0 40.0 49.0 40.0 43.4 48.3 31.6

TIME 0.04 0.03 0.04 0.04 0.03 0.05 0.04 0.04 0.04 0.04

DIM:200× 250

MAT 41.6 41.4 48.0 51.0 44.0 54.6 45.0 49.0 49.7 32.0
TIME 0.26 0.24 0.33 0.28 0.24 0.40 0.26 0.27 0.27 0.22

DIM:300× 350
MAT 44.4 44.7 52.0 55.0 48.0 56.0 49.5 56.0 56.0 36.0

TIME 0.89 0.87 1.20 1.03 0.90 1.41 0.96 1.05 1.05 0.85

DIM:400× 450
MAT 46.4 45.0 56.0 60.0 48.8 56.0 50.0 56.0 56.0 36.0
TIME 2.12 1.98 2.99 2.57 2.09 3.29 2.21 2.39 2.40 1.95

DIM:500× 550

MAT 48.2 48.3 56.4 60.5 52.0 63.0 50.5 56.7 59.5 38.0
TIME 4.22 4.10 5.82 5.02 4.30 7.21 4.30 4.69 4.93 3.98

Test 3. This experiment evaluates the applicability of the new method
(2.12) to find Moore-Penrose inverse of 10 random large sparse matrices
of the size 1000 × 1500 containing approximately 6000 nonzero entries
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as follows:

A = sprand(1000, 1500, 0.004).

The results of comparisons are reported in Table 4, in terms of number
of matrix multiplications and computational time (in seconds).

Table 4. Average values of matrix multiplications and elapsed times to compute the

Moore-Penrose inverse of a 1000× 1500 matrix by different methods

Methods (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.9) (2.12)
MAT 47.4 46.5 56.0 58.5 50.8 60.9 50.5 55.3 58.8 36.8
TIME 85.35 91.38 115.64 120.01 103.33 129.42 113.30 123.83 133.64 74.36

From Table 4, we can see that our method (2.12) is more better than
others both in matrix multiplications and CPU time. The worst one is
ninth-order method (2.6). Note that the ninth-order method (2.8) acts
like the third-order method (2.3). [Also, the sixth-order method (2.7)
acts like the fourth-order method (2.5)]. The third-order method (2.2)
and the second-order method (2.1) are better than other higher order
methods, although they are not comparable with our method (2.12).
Hence, we can consider the scheme (2.12) as the fastest method.

5. Conclusions

In this paper, we proposed a new method to find the Moore-Penrose
inverse. It is proved that this method is fourth-order convergent. A wide
set of random numerical experiments showed that its number of matrix
multiplications and CPU time are considerably less than those of other
higher methods. So, our method could be considered as a fast method.
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the pseudo-inverse computation in reconstruction of blurred images, Filomat 26
(2012), 453–465.

[10] H.S. Najafi, M.S. Solary, Computational algorithms for computing the inverse of
a square matrix, quasi-inverse of a non-square matrix and block matrices, Appl.
Math. Comput. 183 (2006), 539–550.

[11] V.Y. Pan, R. Schreiber, An improved Newton iteration for the generalized inverse
of a matrix with applications, SIAM J. Sci. Stat. Comput. 12 (1991), 1109–1131.

[12] V.Y. Pan, Newton’s iteration for matrix inversion, advances and extensions, ma-
trix methods: theory algorithms and applications, Singapore: World Scientific
(2010).

[13] W.H. Pierce, A self-correcting matrix iteration for the Moore-Penrose inverse,
Linear Algebra Appl. 244 (1996), 357-363.

[14] P. Roland, P.G. Beim, Inverse problems in neural field theory, SIAM J. Appl.
Dynam. Sys. 8 (2009), 1405–1433.

[15] G. Schulz, Iterative Berechmmg der reziproken Matrix, Z. Angew. Math. Mech.
13 (1933), 57–59.

[16] L. Sciavicco, B. Siciliano, Modelling and control of robot manipulators, London:
Springer–Verlag (2000).

[17] X. Sheng, G. Chen: The generalized weighted Moore-Penrose inverse, J. Appl.
Math. Comput. 25 (2007), 407–413.
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