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ON THE FORMAL POWER SERIES ALGEBRAS
GENERATED BY A VECTOR SPACE AND A LINEAR
FUNCTIONAL

ALI REZA KHODDAMI

ABSTRACT. Let Z be a vector space ( on C) and ¢ be an element of
Z* (the dual space of #Z), the product r-s = ¢(r)s converts Z into
an associative algebra that we denote it by Z,. We characterize the
nilpotent, idempotent and the left and right zero divisor elements
of Z,[|z]]. Also we show that the set of all nilpotent elements and
also the set of all left zero divisor elements of %, [[z]] are ideals of

Ao ([2])-
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1. INTRODUCTION

Let A be an associative algebra (on C) and

Allz]] = {Zaixi | a; € A},
i=0

be the set of all formal power series with coefficients in A. It is well
known that the set A[[z]] by the following operations of addition, multi-
plication and scalar multiplication is an associative algebra that is called
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the formal power series algebra over A.

i a;rt + i biz! = i(ai + b))z,
=0 i=0 =0
O )Y bia') = () arbig)a,
=0 =0 i=0 k=0
a(z a;x') = Zaaixi, aecC and Zami, Zbixi € Al[x]].
=0 =0 =0 =0

Similarly if R is a ring then R[[z]] is the formal power series ring over
R.

We recall some terminology. An element r of a ring R is called a right
zero divisor, if there exists a nonzero y such that yr = 0. Similarly an
element r is called a left zero divisor, if there exists a nonzero x such
that ro = 0. An element r that is both a left and a right zero divisor
is called a two-sided zero divisor. Also an element r € R is nilpotent if
r™ = 0 for some n > 0. Finally € R is idempotent if r? = 7.

Let Z be a non-zero vector space and ¢ be a non-zero element in Z*
(the dual space of #Z). The product r-s = ¢(r)s, where r, s € Z converts
Z into an associative algebra that we denote it by %Z,,. Endomorphisms
and also automorphisms on %, are investigated in [3]. And also in the
case where Z is a normed vector space and ||| <1,

e Arens regularity and also n—weak amenability of Z, are inves-
tigated in [1].

e Strongly zero-product preserving maps, strongly Jordan zero-
product preserving maps on %, and also polynomial equations
with coeflicients in %, are investigated in [2].

e Strongly Lie zero-product preserving maps on %, and #, are
investigated in [1].

In the case where % is a vector space, we recall some properties of %,
[1]. Let Hom(Z,,C) be the set of all algebraic homomorphisms from
X, into C. Then Hom(Z,,C) = {0, ¢}. Z, is commutative if and only
if dim(#) < 1. Also in the case where dimZ% > 1 then Z(%,) = {0},
where Z(Z,,) is the algebraic center of Z,.

The aim of the present paper is to show that although %, is not commu-
tative and unital in general, the set of all nilpotent elements and also the
set of all left zero divisor elements of Z,[[x]] are ideals of Z,[[x]]. Also
the set of all idempotent elements of %, [[z]] is multiplicative. These
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facts reveal that Z,[[z]] is a source of example or counterexample in the
field of algebraic theory.

2. MAIN RESULTS

In this section we characterize the idempotent and also the nilpotent
elements of Z,[[x]].

Theorem 2.1. Let # be a non-zero vector space and ¢ be a non-zero
element of Z#*. Then an element P = Y 7 a;x* € Zy|[x]] is nilpotent
if and only if a; € ker(p) for all i > 0.

Proof. Let P = Y2 a;x* be nilpotent. Then there exists n > 0 such
that P" = 0. It follows that ag = 0. So ¢(ay) = (¢(ap))” = 0, that
implies ag € ker(p). As a3 = apP = 0, we can conclude that
(P —ap)? = P? — Pag — agP + a3
= P? — Pay.
So by induction we have
(P —ap)"™ = Pt — prg
=0.

This shows that Q@ = P —ag = Y o, a;2" is nilpotent and a’f“ =0,
that implies a1 € ker(y). Similarly by induction one can shows that

(Q _ alx)n+2 — Qn+2 _ Qn+1(a1x)

=0.

So aZH = 0, that implies as € ker(y). Applying induction on i, we can
conclude that a'™ = 0, that implies a; € ker(y) for all i > 0.

)

For the converse let a; € ker(p) for all i > 0. So

pP? = Z(Z akai_k)xi

=0 k=0
o) A
=3O elar)aip)a’
=0 k=0
[e) 7
=> D 0a'=0
=0 k=0

This shows that P is nilpotent. O
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As the condition a; € ker(y) is equivalent to a? = 0, by applying
Theorem 2.1 we can present the following results.

Corollary 2.2. Let % be a non-zero vector space and ¢ be a non-zero
element of Z*. Then an element P = Y 72 a;x' € Ay|[x]] is nilpotent
if and only if a? =0 for all i > 0.

It is well known that for a commutative ring R with an identity ele-
ment, if P = Y% a;z’ € R[[z]] is nilpotent, then a; is nilpotent for all
1 > 0. But the converse is not the case in general. It is true whenever R
is Noetherian. We recall that in the case where dim% > 1, #,, is nei-
ther commutative nor unital. But Theorem 2.3 shows that the set of all
nilpotent elements of Z,[[x]] is an ideal that is worthy of consideration.

Theorem 2.3. Let Z be a non-zero vector space and @ be a nmon-zero
element of Z*. Also let A be the set of all nilpotent elements in Z,|[x]].
Then A is an ideal.

Proof. Let > 2 aix’, Yoo bz’ € A and Y oo cixt € By[[z]]. So by
Theorem 2.1 a;, b; € ker(p) for all i > 0. As

i a;zt + i bz = i(ai + bi)xi,
i=0 i=0 i=0
O ai)O e’y =D O arciop)at,
i=0 i=0 i=0 k=0
O )OO aia’) = O crai_p)al,
i=0 i=0 i=0 k=0

and ker(y) is an ideal, so

i i
a; + b;, Z AkCi—os Z crai— € ker(y),
k=0 k=0

for all 4 > 0. Hence by Theorem 2.1 .4 is an ideal. 0

Theorem 2.4. Let % be a non-zero vector space and ¢ be a non-zero
element of Z#*. Then an element P =2 a;x"* € X,|[z]] is idempotent
if and only if one of the following statements holds.

(1) P=0.

(2) p(ag) =1 and a; € ker(p) for alli > 1.
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Proof. Let P =32, a;x* be idempotent. So P? = P. It follows that

(A
(2.1) ai =Y apai, i>0.
k=0

So ag = a3, that implies ag = ¢(ag)ag. Equivalently (p(ag) — 1)ag = 0.
If ap = 0, then by (2.1) a; = 0 inductively. So P = 0. In the case where
v(ag) = 1 since a1 = apaj + ajap, we can conclude that
a1 = p(ag)ar + ¢(a1)ao
= a1 + p(ay)ap.
Hence ¢(a1) = 0. Also
az = apa2 + ajal + azag
= ¢(ao)az + p(a1)ar + p(az)ao
=as + 0+ p(az)ao.
So p(az) = 0. Applying (2.1) inductively, we can conclude that for all
i>1,¢(a;) =0.
For the converse if P = 0 then obviously P is idempotent. Let ¢(ag) =1
and ¢(a;) =0 for all ¢ > 1. Then

i i
Z arpai— = Z o(ar)ai—r = a;.
k=0 k=0

It follows that P2 = P. O

Theorem 2.4 shows that in spite of %Z,[[z]] is not commutative, the
set of all idempotent elements of Z,[[x]] is multiplicative.

Theorem 2.5. Let % be a vector space and dim%Z > 1. Also let ¢ be
a non-zero element of Z*. Then each element of Z,[x]| is a right zero
divisor.

Proof. Let P =" a;z' be an arbitrary element of Z,,[[z]]. Asdim % >
1 so ker(p) # {0}. Let 0 # a € ker(p). Obviously aP = 0. This shows
that P is a right zero divisor. O

Note that in the case where dim % = 1, the only two-sided zero divisor
in Z,[x]] is P =0.

Theorem 2.6. Let # be a non-zero vector space and ¢ be a non-zero
element of Z*. Then an element P = ;2 a;x" € Zy[[x]] is a left zero
divisor if and only if a; € ker(p) for all i > 0.
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Proof. Let P = Y2 a;x" € Zy[[z]] be a left zero divisor. Then there
exists an element 0 # Q = > 2 b;z’ such that

PQ= (> ax')()_bi')
=0 =0

= Z(Z akbi_k)a:i

i=0 k=0
(2.2) = 0.
As Q # 0, let j be the smallest index such that b; # 0. The equation
(2.2) implies that 0 = Y7 _; arbj_, = aob;. So ¢(ag)b; = 0. This shows
that ag € ker(y). Similarly

J+1

0= Z agbji1-k
k=0

= agpbjy1 + a1b;

= ¢(ao)bj+1 + ¢(a1)b;

= ¢(a1)b;.
So a1 € ker(y). Applying (2.2) inductively, we can conclude that a; €
ker(yp) for all i > 0.

For the converse let a; € ker(yp) for all i+ > 0. Choose 0 # b € Z,.
Clearly Pb = 0. This shows that P is a left zero divisor. ([l

Applying Theorems 2.5 and 2.6, we can conclude the following results.

Corollary 2.7. Let # be a non-zero vector space and dim% > 1. Also
let ¢ be a non-zero element of %*. Then an element P = Z?io a;xt €
Ko|[2]] is a two-sided zero divisor if and only if a; € ker(y) for alli > 0.

Corollary 2.8. Let #Z be a non-zero vector space and @ be a non-zero
element of Z*. Then the set of all left zero divisor elements in Z,|[x]]
s an ideal.

Proof. Let £ be the set of all left zero divisor elements of Z,[[z]]. Be-
cause ker(y) is an ideal, an argument similar to the proof of Theorem
2.3 can be applied to show that .# is an ideal. ]

In the sequel let e € ¢~ 1({1}) and Z,[z] be the polynomial algebra
over Z,. Also set z° = e.
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Theorem 2.9. Let # be a non-zero vector space and @ be a non-zero
element of #*. Also let ¢ : X lx] — C be a linear mapping and
e € o Y ({1}). Then ¢ € Hom(Z,[z],C) if and only if

Yker(p)[z]) =0 and (ex™) = (¢(ex))™
for allm > 0.

Proof. If ¢ = 0, then the proof is clear. Let 0 # ¢ € Hom(%,x],C),
P € ker(p)[z] and Q € Z,[z]. As PQ =0, so (P)y(Q) = ¢(PQ) = 0.

It follows that )(P) = 0. Also the equality (ex)™ = ex™ implies,
Y(ex™) = ((ex)™)
= (¢Y(ex))™, m > 0.

For the converse let ¥ (ker(p)[z]) = 0 and ¥ (ex™) = (¢(ex))™ for all
m > 0. Clearly for all a € Z, we have

(2.3) a = pla)e + K(a),

where K(a) = a — p(a)e € ker(p). Let P = > ja;x’ be an arbitrary
element of Z,[z]. So by (2.3)

n

P = (pla)e + K(a))'

=0
n . n .
= Z o(a;)ex’ + Z K(a;)z".
=0 =0

It follows that

n

B(P) = (> plaer’ + 3 K(ap)a')

=0 i=0
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Hence for P ="' | a;z" and Q = Y_1*; bz’ we can conclude that

m+n 1

Y(PQ) = (D (O arbi i)z’
=0 k=0

m+n i
— Z go(z agbi—1) (Y (ex))’
1=0 k=0

m+4n 1

=3 (3 elan) b)) (W(ex))
=0 k=0

= (D plan)(@(ex)) (D w(bi) (9((ex))")
=0

i=0
= Y(P)p(Q).
This shows that 1 € Hom(%,x],C). O
Applying Theorem 2.9, we can present the following result.

Corollary 2.10. Let Z be a non-zero vector space and @ be a non-zero
element of Z*. Also let ¢ : Z,|[z]] — C be a linear mapping and
e € o ({1}). If v € Hom(Z,[[z]],C) then

Yker(p)[[z]]) =0 and tp(ex™) = (¢(ex))™
for allm > 0.

Remark 2.11. It is clear that the map @ : Z,[[x]] — C defined by,
P> ') = p(ag),
=0

is an algebraic homomorphism.
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