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DIFFERENTIAL TRANSFORMATION METHOD FOR

SOLVING HYBRID FUZZY DIFFERENTIAL

EQUATIONS

BAHMAN GHAZANFARI AND PARVIN EBRAHIMI

Abstract. In this paper, Differential Transformation Method (DTM)
was studied for solving Hybrid Fuzzy Differential Equations (HFDEs).
The proposed method was also illustrated by some examples and
the error comparison was made using Runge-Kutta method of order
4 (RK4).
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1. Introduction

Hybrid systems are developed to model, design and validate interac-
tive systems of computer programs and continuous systems; i.e. control
systems that are capable of controlling complex systems which have
discrete event dynamics as well as continuous time dynamics. The dif-
ferential systems containing fuzzy valued functions and interaction with
a discrete time controller are called hybrid fuzzy differential systems.
HFDEs are thought of an important research branch of fuzzy differen-
tial equations. Stability properties and analytical results of HFDEs can
be found in [1]-[3].

The concept of fuzzy derivative was first introduced by S. L. Chang,
L. A. Zadeh in [4]. It was followed up by D. Dubois, H. Prade in [5],
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who defined and used the extension principle. Numerical methods of
fuzzy differential equation have been studied by numerous authors such
as [6]-[8]. Furthermore, there are some numerical techniques for solving
hybrid fuzzy differential equations [9]-[12].

All of the above-mentioned methods have introduced discrete solu-
tions; but DTM [13]-[18] is used for finding analytical approximate
solutions of hybrid fuzzy differential equations. In this paper, DTM
was applied for solving hybrid fuzzy differential equations, based on the
Seikkala’s derivative.

The rest of this paper is organized as follows. In Section 2, some
basic definitions are listed for fuzzy valued functions and fuzzy differ-
ential equations. In Section 3, hybrid fuzzy differential systems are
reviewed. In Section 4, the application of DTM is extended to construct
approximate solutions for hybrid fuzzy differential equations. Numerical
experiments are provided in Section 5 and conclusion is made in Section
6.

2. Preliminaries

Denote by E1 the set of all functions u : R → [0, 1] such that (i) u
is normal; that is, there exists an x0 ∈ R such that u(x0) = 1 , (ii)
u is fuzzy convex; i.e. for x, y ∈ R and 0 ≤ λ ≤ 1, u(λx + (1 −
λ)y) ≥ min{u(x), u(y)}, (iii) u is upper semi continuous, and (iv)
[u]0 ≡ the closure of {x ∈ R : u(x) > 0} is compact.
For 0 < α ≤ 1, [u]α = {x ∈ R : u(x) ≥ α} is defined. For later purposes,
0̂ ∈ E1 is defined as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x ̸= 0.
Then, the Seikkala derivative [19] of x : I → E1 is reviewed where I ⊂ R
is an interval. If [x(t)]α = [xα(t), xα(t)] for all t ∈ I and α ∈ [0, 1], then
[x′(t)]α = [(xα)′(t), (xα)′(t)] if [x′(t)]α ∈ E1. Also, consider the initial
value problem (IVP)

(2.1)

{
x′(t) = f(t, x(t)),

x(0) = x0,

where f : [0,∞) × R → R is continuous. (2.1) should be interpreted
using the Seikkala derivative and x0 ∈ E1.
Let [x0]

α = [x0
α, x0

α] and [x(t)]α = [xα(t), xα(t)]. Using the-Zadeh ex-
tension principle, f : [0,∞)× E1 → E1, is obtained where
[f(t, x)]α = [min{f(t, u) : u ∈ [xα(t), xα(t)]}, max{f(t, u) : u ∈ [xα(t), xα(t)]}].
Then, x : [0,∞) → E1 is a solution of (2.1) using the Seikkala derivative and
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x0 ∈ E1 if

(xα)′(t) = min{f(t, u) : u ∈ [xα(t), xα(t)]}, xα(0) = xα
0 ,

(xα)′(t) = max{f(t, u) : u ∈ [xα(t), xα(t)]}, xα(0) = xα
0 ,

for all t ∈ [0,∞) and α ∈ [0, 1]. Finally, consider an f : [0,∞) × R × R → R
which is continuous and IVP

(2.2)

{
x′(t) = f(t, x(t), k),

x(0) = x0.

As in [20] to interpret (2.2) using the Seikkala derivative and x0, k ∈ E1, by
the Zadeh extension principle, f : [0,∞)× E1 × E1 → E1 is used where

[f(t, x, k)]α = [min{f(t, u, uk) : u ∈ [xα(t), xα(t)], uk ∈ [kα, k
α
]},

max{f(t, u, uk) : u ∈ [xα(t), xα(t)], uk ∈ [kα, k
α
]}].

where kα = [kα, k
α
]. Then x : [0,∞) → E1 is a solution of (2.2) using the

Seikkala derivative and x0, k ∈ E1 if

(xα)′(t) = min{f(t, u, uk) : u ∈ [xα(t), xα(t)], uk ∈ [kα, k
α
]}, xα(0) = xα

0 ,

(xα)′(t) = max{f(t, u, uk) : u ∈ [xα(t), xα(t)], uk ∈ [kα, k
α
]}, xα(0) = xα

0 ,

for all t ∈ [0,∞) and α ∈ [0, 1]. (see[20], p.45)

3. Hybrid fuzzy differential system

Consider the hybrid fuzzy differential system

(3.1)

{
x′(t) = f(t, x(t), λk(xk)), t ∈ [tk, tk+1],

x(tk) = xk,

where ′ denotes Seikkala differentiation and

0 ≤ t0 < t1 < · · · < tk < · · · , tk → ∞, f ∈ C[R+ ×E1 ×E1, E1], λk ∈ [E1, E1].

To be specific the system would look like

x′(t) =



x′
0(t) = f(t, x0(t), λ0(x0)), x0(t0) = x0, t0 ≤ t ≤ t1,

x′
1(t) = f(t, x1(t), λ1(x1)), x1(t1) = x1, t1 ≤ t ≤ t2,

...
x′
k(t) = f(t, xk(t), λk(xk)), xk(tk) = xk, tk ≤ t ≤ tk+1,

...
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Assuming that the existence and uniqueness of solution of (3.1) hold for each
[tk, tk+1], by the solution of (3.1) the following function is generated:

x(t) = x(t, t0, x0) =



x0(t) t0 ≤ t ≤ t1,
x1(t) t1 ≤ t ≤ t2,

...
xk(t) tk ≤ t ≤ tk+1,

...

( 3.1) may be replaced with an equivalent system{
x′(t) = f(t, x, λk(xk)) = hk(t, x, x), x(tk) = xk,

x′(t) = f(t, x, λk(xk)) = gk(t, x, x), x(tk) = xk,

which possesses a unique solution (x, x) which is a fuzzy function. That is
for each t, the pair [x(t; r), x(t; r)] is a fuzzy number, where x(t; r), x(t; r) are
respectively solutions of the parametric form given by

(3.2)

{
x′(t; r) = hk[t, x(t; r), x(t; r)], x(tk; r) = xk(r),
x′(t; r) = gk[t, x(t; r), x(t; r)], x(tk; r) = xk(r),

for r ∈ [0, 1].

4. Differential transformation method

In this section, for a hybrid fuzzy differential equation (3.1), differential
transformation method is developed via the application of differential transfor-
mation method for fuzzy differential equation in [21] when f and λk in (3.1)
can be obtained via the Zadeh extension principle from f ∈ C[R+ × R× R,R]
and λk ∈ C[R,R].

Basic definitions and fundamental operations of the differential transform
are introduced in [13, 14]. Differential transform of the function u(x) is in the
following form

(4.1) U(k) =
1

k!

[
dku(x)

dxk

]
(x0)

,

where u(x) is original function and U(k) is transformed function. The inverse
differential transform of U(k) is defined as

(4.2) u(x) =
∞∑
k=0

U(k)(x− x0)
k.

When (x0) are taken as (0), the function u(x), (4.2) is expressed as follows:

(4.3) u(x) =
∞∑
k=0

1

k!

[
dku(x)

dxk

]
(0)

xk.
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Table 1. The original function and transformed function

u(x) U(k)

u(x) = f(x)± g(x) U(k) = F (k)±G(k)
u(x) = λf(x), λ ∈ R U(k) = λF (k)

u(x) = xm U(k) = δ(k −m) =

{
1, k = m
0, otherwise

u(x) = drf(x)/dxr, r ∈ N U(k) = (k + 1) · · · (k + r)F (k + r)

u(x) = f(x)g(x) U(k) =
∑k

r=0 F (r)G(k − r)

Eq. (4.3) implies that the concept of differential transform is derived from
Taylor series expansion.

In this paper, the lower case letters represent original function and upper
case letters stand for the transformed function (T-function). The fundamental
mathematical operations performed by differential transform method can be
readily obtained, as listed in Table 1.
The differential transform of fuzzy function
x(t, r) =

(
x(t, r), x(t, r)

)
can be defined as follows:

(4.4) X(k, r) =
1

k!

[
dkx(t, r)

dtk

]
(t0)

,

and

(4.5) X(k, r) =
1

k!

[
dkx(t, r)

dtk

]
(t0)

,

The inverse differential transform of X(k, r) and X(k, r) is defined respectively
as

(4.6) x(t, r) =

∞∑
k=0

X(k, r)(t− t0)
k.

and

(4.7) x(t, r) =
∞∑
k=0

X(k, r)(t− t0)
k.

When (t0) are taken as (0), the functions x(t, r) and x(t, r) of (4.4) and (4.5),
are expressed as follows:

(4.8) X(k, r) =
1

k!

[
dkx(t, r)

dtk

]
(0)

,
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and

(4.9) X(k, r) =
1

k!

[
dkx(t, r)

dtk

]
(0)

,

Eqs. (4.8) and (4.9) imply that the concept of fuzzy differential transform is
derived from fuzzy Taylor series expansion.

5. DTM with fixed grid size

The objective of this section is to find the solution of (3.2) at the equally
spaced grid points t0, t1, t2, · · · , tN , where ti = a+ ih, for each i = 0, 1, · · · , N
and h = (b−a)

N .
The domain of interest [a, b] is divided to N sub-domains and the approxima-
tion functions in each sub-domain are xi(t, r), i = 0, 1, 2, · · · , N−1, respectively.
Taking differential transformation of (3.2), transformed equation describes the
relationship between spectrum of x(t, r) as

(k + 1)X(K + 1, r) = H(t,X(t, r),X(t, r)),(5.1)

(k + 1)X(K + 1, r) = G(t,X(t, r), X(t, r))(5.2)

where H(.) denotes transformed function of hk(t, x(t, r), x(t, r)), and G(.) de-
notes transformed function of gk(t, x(t, r), x(t, r)). From the initial condition,
the following can be obtained:

X(0, r) = x0(r), X(0, r) = x0(r).

In the first sub-domain, x(t, r), x(t, r) can be described by x0(t, r) and x0(t, r),
respectively. They can be represented in terms of their nth-order Taylor poly-
nomials with respect to a, that is

x0(t, r) = X0(0, r) +X0(1, r)(t− a) +X0(2, r)(t− a)2 + · · ·+X0(n, r)(t− a)n,

x0(t, r) = X0(0, r) +X0(1, r)(t− a) +X0(2, r)(t− a)2 + · · ·+X0(n, r)(t− a)n,

where the subscript 0 denotes that the Taylor polynomial is expanded to t0 = a.
Once the Taylor polynomial is obtained x(t1, r) can be evaluated as

x(t1, r) = X0(0, r) +X0(1, r)(t1 − a) + · · ·+X0(n, r)(t1 − a)n

= X0(0, r) +X0(1, r)h+ · · ·+X0(n, r)h
n

=

n∑
j=0

X0(j, r)h
j ,

x(t1, r) = X0(0, r) +X0(1, r)(t1 − a) + · · ·+X0(n, r)(t1 − a)n

= X0(0, r) +X0(1, r)h+ · · ·+X0(n, r)h
n

=
n∑

j=0

X0(j, r)h
j .
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The final value, x0(t1, r) of the first sub-domain is the initial value of the second
sub-domain, i.e. x1(t1, r) = X1(0, r) = x0(t1, r). In a similar manner x(t2, r)
can be represented as

x(t2, r) ≈ x1(t2, r) = X1(0, r) +X1(1, r)h+ · · ·+X1(n, r)h
n

=
n∑

j=0

X1(j, r)h
j ,

x(t2, r) ≈ x1(t2, r) = X1(0, r) +X1(1, r)h+ · · ·+X1(n, r)h
n

=
n∑

j=0

X1(j, r)h
j .

Hence, the solution on the grid points (ti+1) can be obtained as follows:

x(ti+1, r) ≈ xi(ti+1, r) =
n∑

j=0

Xi(j, r)h
j ,

x(ti+1, r) ≈ xi(ti+1, r) =

n∑
j=0

Xi(j, r)h
j .

Remark 5.1. Convergence of DTM for hybrid fuzzy differential equations should
be mentioned as well. Since the fuzzy differential transform has been derived
from fuzzy Taylor series expansion, convergence of DTM can be proven similar
to that given in [7].

6. Examples

To present a clear overview of this study and illustrate the above-discussed
technique, the following examples are considered.
The bound of errors for these examples is used as follows:

bound of error = max{error of x(t, r), error of x(t, r)}

Example 1. Consider the following hybrid fuzzy differential equation

(6.1){
x′(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k, k = 0, 1, 2, · · ·
x(0, r) = [0.75 + 0.25r, 1.125− 0.125r], 0 ≤ r ≤ 1,

where

m(t) =

{
2(t(mod 1)), if t(mod 1) ≤ 0.5,

2(1− t(mod 1)), if t(mod 1) > 0.5,

and

λk(µ) =

{
0, if k = 0,
µ, if k ∈ {1, 2, · · · }.
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The hybrid fuzzy IVP(6.1) is equivalent to the following system of fuzzy IVPs: x′
0(t) = x0(t), t ∈ [0, 1]

x0(0, r) = [0.75 + 0.25r, 1.125− 0.125r] , 0 ≤ r ≤ 1,
x′
i(t) = xi(t) +m(t)xi(ti), t ∈ [ti, ti+1], xi(ti) = xi−1(ti), i = 1, 2, · · · .

In (6.1), x(t) + m(t)λk(x(tk)) is a continuous function of t, x, and λk(x(tk)).
Therefore, using Example 6.1 of Kaleva [22], for each k = 0, 1, 2, · · · . The fuzzy
IVP {

x′(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k,
x(tk) = xtk,

has a unique solution on [tk, tk+1].
For t ∈ [0, 1] the following is given{

x′
0(t) = x0(t), t ∈ [0, 1]

x0(0, r) = [0.75 + 0.25r, 1.125− 0.125r], 0 ≤ r ≤ 1,

or

(6.2)

{
x′
0(t, r) = x0(t, r), x0(0, r) = (0.75 + 0.25r),

x′
0(t, r) = x0(t, r), x0(0, r) = (1.125− 0.125r).

Taking fuzzy differential transform of (6.2), results in

(6.3)

{
(k + 1)X0(k + 1, r) = X0(k, r),
(k + 1)X0(k + 1, r) = X0(k, r).

From the initial conditions, the following can be written

(6.4) X0(0, r) = (0.75 + 0.25r), X0(0, r) = (1.125− 0.125r).

Substituting Eqs. (6.4) in (6.3), lead to all spectra that can be found as

x0(t, r) = (0.75 + 0.25r) + (0.75 + 0.25r)t+ (0.75 + 0.25r)t2

+ (0.75 + 0.25r)t3 + · · · .(6.5)

and

x0(t, r) = (1.125− 0.125r) + (1.125− 0.125r)t+ (1.125− 0.125r)t2

+ (1.125− 0.125r)t3 + · · · .(6.6)

For t ∈ [1, 2] :

(6.7)

{
x′(t, r) = x(t, r) +m(t)λk(x(tk, r)), t ∈ [1, 2],

x(tk, r) = xtk .

Let N = 10 and h = 0.1. The differential equation of a system between ti and
ti+1 can be represented as

(6.8)

{
x′(t∗, r) = x(t∗, r) +m(t∗ + ti)λk(x(t

∗, r)), t ∈ [1, 2],
x(ti, r) = xti

where t∗ = t− ti. Taking differential transformation of (6.8), it can be obtained
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that for i = 1, 2, · · · , 6{
Xi(k + 1, r) = [Xi(k, r) + 2(δ(k − 1) + tiδ(k)− δ(k))x(1, r)]/(k + 1),
Xi(k + 1, r) = [Xi(k, r) + 2(δ(k − 1) + tiδ(k)− δ(k))x(1, r) ]/(k + 1),

and for i = 7, · · · , 10{
Xi(k + 1, r) = [Xi(k, r) + 2(2δ(k)− tiδ(k)− δ(k − 1))x(1, r)]/(k + 1),
Xi(k + 1, r) = [Xi(k, r) + 2(2δ(k)− tiδ(k)− δ(k − 1))x(1, r) ]/(k + 1).

From the initial conditions:

(6.9) X0(0, r) = x0(1, r), X0(0, r) = x0(1, r).

For t ∈ [0, 1], the exact solution of (6.1) satisfies

x(t; r) =
(
(0.75 + 0.25r)et, (1.125− 0.125r)et

)
.

For t ∈ [1, 1.5], the exact solution of (6.1) satisfies

x(t; r) = x(1; r)(3et−1 − 2t).

Therefore,
x(1; r) = [(0.75 + 0.25r)e, (1.125− 0.125r)e],

x(1.5; r) = x(1; r)(3
√
e− 3).

For t ∈ [1.5, 2], the exact solution of (6.1) satisfies

(6.10) x(t; r) = x(1; r)(2t− 2 + et−1.5(3
√
e− 4)).

Therefore,

(6.11) x(2.0; r) = x(1; r)(2 + 3e− 4
√
e).

The exact and approximate solutions (DTM4 and RK4) and (DTM5 and RK4)
are compared and plotted for 0 ≤ r ≤ 1, at t = 2 in Figures 1 and 2, respec-
tively.
The errors of approximate solutions are shown by DTM and RK4 in Table 2.
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Example 2. Consider hybrid fuzzy differential equation
(6.12){

x′(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k, k = 0, 1, 2, · · ·
x(0, r) = [0.75 + 0.25r, 1.125− 0.125r], 0 ≤ r ≤ 1,

where m(t) = |sin(πt)| and

λk(µ) =

{
0, if k = 0,
µ, if k ∈ {1, 2, · · · }.
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Figure 1. Exact and approximate solutions for 0 ≤ r ≤ 1, at t = 2.
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Figure 2. Exact and approximate solutions for 0 ≤ r ≤ 1, at t = 2.
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Table 2. Comparison of errors with Exp.1 for 0 ≤ r ≤
1, at t = 2.

r DTM4 DTM5 DTM8 RK4
0.0 3.9854628e-2 6.4688403e-3 1.2249628e-5 3.9836828e-2
0.1 3.9411799e-2 6.3969643e-3 1.2113521e-5 3.9414765e-2
0.2 3.8968970e-2 6.3250883e-3 1.1977414e-5 3.8957103e-2
0.3 3.8526140e-2 6.2532123e-3 1.1841307e-5 3.8532936e-2
0.4 3.8083311e-2 6.1813363e-3 1.1705200e-5 3.8080745e-2
0.5 3.7640482e-2 6.1094603e-3 1.1569093e-5 3.7655315e-2
0.6 3.7197653e-2 6.0375843e-3 1.1432986e-5 3.7197653e-2
0.7 3.6754824e-2 5.9657083e-3 1.1296879e-5 3.6739991e-2
0.8 3.6311994e-2 5.8938323e-3 1.1160772e-5 3.6317928e-2
0.9 3.5869165e-2 5.8219563e-3 1.1024665e-5 3.5860265e-2
1.0 3.5426336e-2 5.7500803e-3 1.0888558e-5 3.5438203e-2

Since, x(t) + m(t)λk(x(tk)) is a continuous function of t, x, and λk(x(tk)) in
(6.1). Therefore, the fuzzy IVP

(6.13)

{
x′(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k,

x(tk) = xtk,

has a unique solution on [tk, tk+1] (see [22]). For t ∈ [0, 1] :{
x′(t) = x(t), t ∈ [0, 1],

x(0, r) = [0.75 + 0.25r, 1.125− 0.125r], 0 ≤ r ≤ 1.

The approximate solution is given by

x0(t, r) = (0.75 + 0.25r) + (0.75 + 0.25r)t+ (0.75 + 0.25r)t2

+ (0.75 + 0.25r)t3 + · · · .

and

x0(t, r) = (1.125− 0.125r) + (1.125− 0.125r)t+ (1.125− 0.125r)t2

+ (1.125− 0.125r)t3 + · · · .

For t ∈ [1, 2] :

(6.14)

{
x′(t, r) = x(t, r) +m(t)λk(x(tk, r)), t ∈ [1, 2],

x(tk, r) = xtk .

Let N = 10 and h = 0.1. The differential equation of a system between ti and
ti+1 can be represented as

(6.15)

{
x′(t∗, r) = x(t∗, r)− sin(π(t∗ + ti))x(1, r), t ∈ [1, 2],

x(ti, r) = xti
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where t∗ = t−ti. Taking differential transformation of (6.15), it can be obtained
that, for i = 1, 2, · · · , 10

(k + 1)Xi(k + 1, r) = Xi(k, r)−
(
cos(πti)

πk

k!
sin(

πk

2
)

+ sin(πti)
πk

k!
cos(

πk

2
)
)
x0(1, r)),(6.16)

(k + 1)Xi(k + 1, r) = Xi(k, r)−
(
cos(πti)

πk

k!
sin(

πk

2
)

+ sin(πti)
πk

k!
cos(

πk

2
)
)
x0(1, r)),(6.17)

From the initial conditions, the following can be written:

(6.18) X(0, r) = x0(1, r), X(0, r) = x0(1, r).

For t ∈ [1, 2], the exact solution of (6.12) satisfies

x(t, r) =
(
(0.75 + 0.25r)et, (1.125− 0.125r)et

)
.

For t ∈ [1, 2], the exact solution of (6.12) satisfies

x(t; r) = x(1; r)
πcos(πt) + sin(πt)

π2 + 1
+

et

e
x(1; r)(1 +

π

π2 + 1
),

x(t; r) = x(1; r)
πcos(πt) + sin(πt)

π2 + 1
+

et

e
x(1; r)(1 +

π

π2 + 1
).

Therefore,

x(1; r) = [(0.75 + 0.25r)e, (1.125− 0.125r)e],

and

x(2; r) = (
π

π2 + 1
+ e(1 +

π

π2 + 1
))x(1; r).

The exact and approximate solutions (DTM4 and RK4) and (DTM5 and RK4)
are compared and plotted for 0 ≤ r ≤ 1, at t = 2 in Figure 3, 4, respectively.
Errors of approximate solutions are demonstrated by DTM and RK4 in Table
3.

7. Conclusion

In this paper, the fuzzy differential transformation method was introduced
for approximate solution of hybrid fuzzy differential equations and it was illus-
trated by some numerical examples. Useful comparison results were obtained
to show that DTM was remarkably effective and simple.
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