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REPRODUCING KERNEL METHOD FOR SOLVING

WIENER-HOPF EQUATIONS OF THE SECOND KIND

A. ALVANDI, T. LOTFI AND M. PARIPOUR

Abstract. This paper proposed a reproducing kernel method for
solving Wiener-Hopf equations of the second kind. In order to elim-
inate the singularity of the equation, a transform is used. The
advantage of this numerical method is the representation of exact
solution in reproducing kernel Hilbert space and accuracy in numer-
ical computation is higher. On the other hand, by improving the
traditional reproducing kernel method and the definition of the op-
erator of W Hilbert space, the solutions of Wiener-Hopf equation of
the second kind are obtained. The approximate solution converges
uniformly and rapidly to the exact solution. Numerical examples
indicate that this method is efficient for solving these equations.
The validity of the method is illustrated with two examples.
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tion..
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1. Introduction

In recent years, numerical methods for solving singular integral equa-
tions have attracted a lot of attention. These equations have many ap-
plications in mathematics and engineering, see for instance Hunter [1],
Paget [2], Lu [3], Krenk [4], Pedas [5]. Recently, the reproducing ker-
nel method for solving singular integral equations in reproducing kernel
space is developed. The advantage of this method is that it converges
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uniformly and rapidly to the exact solution. See Jin [6], Du [7], Chen
[8], Shen [9]. The Wiener-Hopf equation of the second kind is of the
form

(1.1) y(t) +

∫ ∞

0
k(t− s) y(s) ds = g(t), 0 ≤ t <∞,

where k(t) ∈ L1(R) and g(t) ∈ Lp[0,∞)(1 ≤ p <∞) are given functions.
Many authors considered methods for solving equation (1.1) includ-
ing the Clenshaw-Curtis quadrature method, Clenshaw-Curtis-Rational
method and so on [10, 11, 12, 13, 14]. In this study, a new method of solv-
ing solution is proposed in a reproducing kernel Hilbert space(RKHS).
It is called reproducing kernel method. The rest of the paper is orga-
nized as follows. In section next, the reproducing kernel Hilbert space
for solving (1.1) is introduced. In section 3, we discuss reproducing
kernel method for (1.1). We transform (1.1) into integral equation of

finite interval by substituting the variables t and s by t = α(1−τ)
1+τ , and

s = α(1−z)
1+z respectively:

Y (t) + 2α

∫ 1

−1

K(τ, z)

(z + 1)2
Y (z) dz = G(τ), −1 < τ < 1.

We will show that K(τ, z) has singularities along τ = z when τ tend to

-1, to eliminate the singularities, we introduce a new function X(z) ≜
Y (z)

(z + 1)2
. We then proof the numerical method is stable and conver-

gent. Section 4 illustrates two numerical examples. It is shown that the
reproducing kernel method proposed in this paper is efficient. Finally,
concluding remarks are given in Section 5.

2. Preliminaries

2.1. A reproducing kernel Hilbert spaceWm[−1, 1]. In the section,
a RKHS Wm[−1, 1] is introduced for solving Eq. (1.1). The representa-
tion of reproducing kernel becomes simple by improving the definition
of traditional inner product see [15, 16, 17, 18, 19], in Wm[−1, 1].

Definition 1.2.1. Wm[−1, 1] = {u(x)|u(m−1)(x) is an absolutely con-

tinuous real value function, u(m)(x) ∈ L2[−1, 1]}.The inner product and
norm in Wm[−1, 1] are given respectively by

(2.1) ⟨u, v⟩ =
m−1∑
i=0

u(i)(−1)v(i)(−1) +

∫ 1

−1
u(m)(x)v(m)(x) dx
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and

(2.2) ∥u∥m =
√

⟨u, u⟩m, u, v ∈Wm[−1, 1].

Wm[−1, 1] is a reproducing kernel space and its reproducing kernelRx(y)
can be obtained. Now let us find out the expression form of the repro-
ducing kernel function Rx(y) in W

2[−1, 1].

⟨u(y), Rx(y)⟩ = u(−1)Rx(−1) + u′(−1)R′
x(−1) +

∫ 1

−1
u′′(x)R′′

x(y)dy

= u(−1)Rx(−1) + u′(−1)R′
x(−1) + u′(y)R′′

x(y)|1−1−

u(y)R′′′
x (y)|1−1 +

∫ 1

−1
u(y)R(4)

x (y)dy.

Not that the definition of the reproducing kernel u(x) = ⟨u(y), Rx(y)⟩
in Wm[−1, 1], the following equalities are necessary.

(2.3) R(4)
x (y) = δ(y − x)

(2.4) Rx(−1) +R′′′
(−1) = 0,

(2.5) R′
x(−1)−R′′

x(−1) = 0,

(2.6) R′′′
x (1) = 0, R′′

x(1) = 0.

From (2.3), it has R
(4)
x (y) = 0 as y ̸= x. λ4 = 0 is its characteristic

equation. Then the representation of the reproducing kernel is assumed
by

(2.7) Rx(y) =

{∑4
i=1 ciy

i−1, y ≤ x,∑4
i=1 diy

i−1, y > x,

where coefficients ci, di, {i = 1, 2, 3, 4}, could be obtained by solving the
following equations
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(2.8)



R
(m)
x (x+ 0) = R

(m)
x (x− 0), (m = 0, 1, 2),

R′′′
x (x+ 0)−R′′′

x (x− 0) = 1,

Rx(−1) +R′′′
x (−1) = 0,

R′
x(−1)−R′′

x(−1) = 0,

R′′′
x (1) = 0,

R′′
x(1) = 0.

3. Solving Eq. (1.1) in the Reproducing Kernel Space
3.1. An identical transformation of equation (1.1).

In this section, we proposed an identical transformation of equation
(1.1):

y(t) +

∫ ∞

0
k(t− s) y(s) ds = g(t), 0 ≤ t <∞.

We assume that k(t) ∈ L1(R) is semi-smooth, i.e., k(t) ∈ Cr(0,∞) and
k(t) ∈ Cr(−∞, 0) for certain positive integer r and y(t) ∈ Cr(0,∞)
satisfying

(3.1) |y(t)| ≤ c

t2

for certain c > 0 for large t. Substituting the variables t and s in (1.1)
α(1−τ)
1+τ , and α(1−z)

1+z respectively, we get the following integral equation

(3.2) Y (τ) + 2α

∫ 1

−1

K(τ, z)

(z + 1)2
Y (z) dz = G(τ), −1 < τ ≤ 1,

where

K(τ, z) = k

(
α(1− τ)

1 + τ
− α(1− z)

1 + z

)
, Y (τ) = y

(
α(1− τ)

1 + τ

)
, (3.3)

G(τ) = g
(
α(1−z)
1+z

)
.

We notice that the kernel function of (3.2) has singularities along z = τ
as τ tend to −1 since the denominators τ +1, z+1 and (z+1)2 tend to
infinity. On the other hand, under the assumption (3.1), the integral of
(3.2) satisfies

| K(τ, z)

(z + 1)2
Y (z)| = | K(τ, z)

(z + 1)2
y(
α(1− z)

z + 1
)| ≤ | K(τ, z)

(z + 1)2
c(
α(1− z)

(z + 1)
)−2|
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= | cK(τ,z)
α2(1−z)2

|,
i.e., |K(τ,z)

(z+1)2
Y (z)| is bounded. Now we proposed a way to eliminate the

singularities. Since the factor
1

(z + 1)2
in the kernel function of (3.2) is

independent of τ , we define a new function X(z) ≜ Y (z)

(z + 1)2
and then

subtract the singularities by reformulating (3.2) as
(3.4)

(τ +1)2X(τ)+2α

∫ 1

−1
K(τ, z)X(τ) dz+2α

∫ 1

−1
K(τ, z)(X(z)− X(τ)) dz

= G(τ).
3.2. Representation of Exact Solution for Wiener-Hopf Equa-
tions of the Second Kind.

In this section, exact solution of Eq. (1.1) is obtained by defining op-
erator L :W 2[−1, 1] −→ L2[−1, 1], then Equation (3.4) can be converted
into the form as follows :

(3.5) (Lu)(τ) = G(τ), −1 < τ ≤ 1,

(3.6)

(Lu)(τ) = ((τ + 1)2 + 2α

∫ 1

−1

K(τ, z) dz)u(τ) + 2α

∫ 1

−1

K(τ, z)(u(z)− u(τ)) dz,

it is easy to prove L is a bounded linear operator, and let L∗ is the
conjugate operator of L. In order to obtain the representation of the
exact solution of Eq. (1.1), let
φi(x) = Rxi(x), ψi(x) = L∗φi(x) = [LyRx(y)](xi), (i = 1, 2, . . . ),
where {xi}∞i=1 is dense in the interval [−1, 1]. Hence, one gets

(3.7) ψi(x) = ((xi + 1)2 + 2α

∫ 1

−1
K(xi, y) dy)R(xi, x)

+2α
∫ 1
−1K(xi, y)(R(x, y)−R(xi, y) dy.

Theorem 3.1. If {xi}∞i=1 is dense in [−1, 1], then {ψi(x)}∞i=1 is complete
in W 2[−1, 1].

Proof. If for any u(x) ∈ W 2[−1, 1], it has ⟨u(x), ψi(x)⟩ = 0 i =
1, 2, . . . ,
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namely

⟨u(x), ψi(x)⟩ = ⟨u(x), (LyRx(y)(xi)⟩
= Ly⟨u(x), Rx(y)⟩(xi)
= [Lyu(y)](xi) = 0.(3.8)

Note that {xi}∞i=1 is a dense set. It follows that Lyu(x) ≡ 0. From the
existence and uniqueness of the solution of Eq. (1.1), it follows that
u(x) ≡ 0. So {ψi(x)}∞i=1 is complete in W 2[−1, 1]. □

By Gram-Schmidt process, we obtain an orthogonal basis {ψ̄i(x)}∞i=1

of W 2[−1, 1], such that

(3.9) ψ̄i(x) =

i∑
k=1

βikψk(x),

where βik are orthogonal coefficients. In order to obtain βik, let

ψi(x) =

i∑
k=1

Bikψ̄k(x).

⟨ψi(x), ψ̄i(x)⟩ =
i−1∑
k=1

B2
ik +B2

ii,

Bii =

√√√√⟨ψi(x), ψi(x)⟩ −
i−1∑
k=1

B2
ik.

βii =
1√

⟨ψi(x), ψi(x)⟩ −
∑i−1

k=1B
2
ik

.

(3.10) βij = βii

−
i−1∑
k=j

Bikβkj

 .

Theorem 3.2. If u(x) is the solution of Eq. (1.1), then

(3.11) u(x) =

∞∑
i=1

i∑
k=1

βikG(xk)ψ̄i(x),
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Proof. u(x) can be expanded to Fourier series in term of normal orthog-
onal basis ψ̄i(x) in W

2[−1, 1],

u(x) =

∞∑
i=1

⟨u(x), ψ̄i(x)⟩ψ̄i(x) =

∞∑
i=1

i∑
k=1

βik⟨u(x), ψk(x)⟩ψ̄i(x)

=

∞∑
i=1

i∑
k=1

βik⟨u(x),L∗φk(x)⟩ψ̄i(x) =

∞∑
i=1

i∑
k=1

βik⟨Lu(x), φk(x)⟩ψ̄i(x)

=
∞∑
i=1

i∑
k=1

βik⟨G(x), φk(x)⟩ψ̄i(x) =
∞∑
i=1

i∑
k=1

βikG(xk)ψ̄i(x).

(3.12)

The proof is complete.□
By truncating the series of the left-hand side of (3.11), we obtain the

approximate solution of Eq. (1.1)

(3.13) un(x) =

n∑
i=1

i∑
k=1

βikG(xk)ψ̄i(x).

un(x) in (3.13) is the n-term intercept of u(x) in (3.11), so un(x) −→
u(x) in W 2[−1, 1] as n −→ ∞.

Theorem 3.3. Suppose the following conditions are satisfied
(i) ∥un(x)∥W 2 is bounded;
(ii) {xi}∞i=1 is dense in [−1, 1]. Then n-term approximate solution un(x)
converges to the exact solution u(x) of Eq. (1.1) and the exact solution
is expressed as

(3.14) u(x) =

∞∑
i=1

Biψ̄i(x),

where Bi =
∑i

k=1 βikG(xk).
Proof. (i) The convergence of un(x) will be proved. From (3.13), one
gets

(3.15) un(x) = un−1(x) +Bnψ̄n(x).

From the orthogonality of {ψ̄i(x)}∞i=1, it follows that

∥un(x)∥2W 2 = ∥un−1(x)∥2W 2 + ∥Bn∥2.

The sequence ∥un(x)∥W 2 is monotone increasing. Due to ∥un(x)∥W 2

being bounded, ∥un(x)∥W 2 is convergent as soon as n −→ ∞. Then
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there exists a constant c such that

(3.16)
∞∑
i=1

B2
i = c.

let m > n, in view of (um−um−1) ⊥ (um−1−um−2) ⊥ · · · ⊥ (un+1−un),
it follows that

∥(um − un)∥2W 2 = ∥um − um−1 + um−1 − um−2 + · · ·+ un+1 − un∥2W 2

= ∥um − um−1∥2W 2 + ∥um−1 − um−2∥2W 2 + . . .(3.17)

+ ∥un+1 − un∥2W 2 =

m∑
i=n+1

(Bi)
2 −→ 0, (n −→ ∞).

Considering the completeness of W 2[−1, 1], it has

un(x)
∥.∥W2−→ u(x), n −→ ∞.

(ii) It is proved that u(x) is the solution of Eq. (3.5).
From (3.14), it follows

(Lu)(xj) =
∞∑
i=1

Bi⟨Lψ̄i(x), φj(x)⟩

=

∞∑
i=1

Bi⟨ψ̄i(x),L∗φj(x)⟩

=

∞∑
i=1

Bi⟨ψ̄i(x), ψj(x)⟩,

it follows that
n∑

i=1

βnj(Lu)(xj) =
∞∑
i=1

Bi

⟨
ψ̄i(x),

n∑
j=1

βnjψj(x)
⟩
W 2

=
∞∑
i=1

Bi⟨ψ̄i(x), ψ̄n(x)⟩W 2 = Bn.

If n = 1, then (Lu)(x1) = G(x1). If n = 2 then β21(Lu)(x1)+β22(Lu)(x2)
= β21G(x1) + β22G(x2). It is clear that (Lu)(x2) = G(x2). Moreover,
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it is easy to see by induction that (Lu)(xj) = G(xj). Since {xi}∞i=1 is
dense on [−1, 1], for any x ∈ [−1, 1]

(3.18) (Lu)(x) = G(x).

That is, u(x) is the solution of Equation (3.5) and

(3.19) u(x) =

∞∑
i=1

Biψ̄i(x).

The proof is complete. □
3.3. The Stability of the Solution on the Eq. (3.5).
Let u(x) be a solution of (3.5). It is called that the approximate method
on solution u(x) from un(x) with the right-hand side Gn(x) is stable in
W 2[−1, 1], if limn→∞ ∥G − Gn∥W 2 = 0, then limn→∞ ∥u − un∥W 2 = 0.
Let (Lun)(x) = Gn(x) and G(x) = Gn(x) + ϵn(x),
where ϵn(x) is a perturbation and ϵn(x) → 0(n → ∞). See [20, 21].
From the form (3.11), note that

u(x) =
∞∑
i=1

i∑
k=1

βikG(xk)ψ̄i(x),

and

un(x) =

∞∑
i=1

i∑
k=1

βikGn(xk)ψ̄i(x),

it follows

u(x)− un(x) =

∞∑
i=1

i∑
k=1

βikϵn(xk)ψ̄i(x) = L−1ϵn(x).

From the continuity of L−1 and ϵn(x) → 0(n→ ∞), it follows

lim
n→∞

∥u(x)− un(x)∥ = ∥L−1∥ lim
n→∞

|ϵn(x)| = 0.

Then, the method is stable.

4. Numerical examples

Example 4.1. Consider

u(t) +
∫∞
0

1

1 + (t− s)2
u(s) ds = g(t), 0 ≤ t <∞,

where

g(t) =
1

1 + t2
+

1

4 + t2
(π + arctan(t)) +

ln(1 + t2)

t(4 + t2)
.
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The exact solution of the equation is u(t) =
1

(1 + t2)
. Using the method

presented in section 3, taking n = 11 and n = 20. The absolute errors
u11 − u and u20 − u are given in Table 1 and Figure 1.

Table 1
Numerical results of Example 4.1

Node |u11 − u| |u20 − u|
-0.9 8.77083E-6 1.54070E-8
-0.7 5.11982E-6 9.70029E-9
-0.5 6.89540E-6 1.41000E-8
-0.3 2.08658E-6 5.96931E-8
-0.1 9.13911E-6 1.90117E-8
0.1 4.23227E-5 1.11963E-7
0.3 6.43560E-5 2.80711E-7
0.5 1.41120E-5 5.64622E-8
0.7 4.27360E-4 7.76620E-7
0.9 1.09958E-3 2.58520E-6

Example 4.2. Consider

u(t) +
∫∞
0 k(t− s)u(s) ds = (2 + t+

t2

2
+
t3

3
)e−t, 0 ≤ t <∞,

where k(t) = (1+ |t|+ t2)e−|t|. The exact solution of the above equation
is u(t) = e−t. Using the method presented in section 3, taking n = 11
and n = 20. The absolute errors u11 − u and u20 − u are given in Table
2 and Figure 2.

Table 2
Numerical results of Example 4.2

Node |u11 − u| |u20 − u|
-0.95 1.53861E-12 1.77174E-14
-0.75 2.72086E-6 1.16039E-9
-0.55 6.00161E-7 2.46969E-9
-0.35 6.74903E-6 5.62538E-9
-0.15 1.78160E-4 1.30169E-8
0.05 5.95211E-4 3.02134E-8
0.25 3.62010E-4 7.02237E-8
0.45 1.54430E-3 1.64547E-7
0.65 2.09719E-3 4.16000E-7
0.85 1.36754E-2 1.76546E-6
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Figure 1. The absolute errors for n=11 and n=20, respectively.
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Figure 2. The absolute errors for n=11 and n=20, respectively.

5. Conclusion

In this paper, we use a new constructive method to find the approxi-
mate solution for Wiener-Hopf equations of the second kind in the repro-
ducing kernel space. Using this method, we obtain the sequence which
is proved to converge to the exact solution uniformly. The results from
the numerical examples show that the present method is accurate and
reliable for solving these equations.
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