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ON THE MATRIX OF RANK ONE OVER A UFD

SOMAYEH HADJIREZAEI AND SOMAYEH KARIMZADEH

Abstract. In this paper we characterize all matrices of rank one
over a unique factorization domain (UFD). Also we find the R-
module generated by the rows and the R-module generated by the
columns of a matrix of rank one and assert some properties of them.
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1. Introduction

Let R denotes a commutative ring with identity and A be an m × n
matrix over R. Each of the m rows of A can be regarded as an element
of Rn and each of the n columns of A can be regarded as an element
of Rm. The i-th row of A will be denoted by Rowi(A) and the j-
th column of A will be denoted by Colj(A). Thus if A = (aij)m×n,
then Rowi(A) = (ai1, ..., ain) and Colj(A) = (a1j , ..., amj)

t. The R-
submodule of Rn generated by Row1(A), ..., Rowm(A) is denoted by <
A >r and the R-submodule of Rm generated by Col1(A), ..., Coln(A) is
denoted by < A >c. The set of all m× n matrices with entries from R
will be denoted by Mm×n(R). For each t = 1, ..., r = min{m,n}, It(A)
will denote the ideal in R generated by all t × t minors of A. Thus we
have the following ascending chain of ideals in R:

Ir(A) ⊆ Ir−1(A) ⊆ ... ⊆ I2(A) ⊆ I1(A) ⊆ R.
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It will be notationally convenient to extend the definition of It(A) to all
values of t ∈ Z as follows: It(A) = 0, if t > min{m,n} and It(A) = R,
if t ≤ 0. Then we have It(A) ⊆ It−1(A), for all t ∈ Z.
The rank of A, denoted by rk(A), is the following integer: rk(A)=max{t |
AnnR(It(A)) = 0} ([1]). Suppose F is a field and A ∈ Mm×n(F ). In
most elementary textbooks in linear algebra, the classical rank of A,
denoted by rankF (A) is defined to be the maximum number of linearly
independent rows (or columns) of A. It is well known that rankF (A)
is the largest integer t such that A contains a t × t submatrix whose
determinant is nonzero. (See [2, Chapter 3, Theorem 3.22]). Since F
is a field, AnnF (It(A)) = 0 if and only if It(A) ̸= 0. Thus rk(A) is the
largest integer t such that A contains a t× t submatrix whose determi-
nant is nonzero. In other words, rk(A) =rankF (A).
We can carry this discussion one step further. Suppose that R is an in-
tegral domain with quotient field F . Let A ∈ Mm×n(R). Since R ⊆ F ,
Mm×n(R) ⊆ Mm×n(F ), and we can view A as a matrix in Mm×n(F ).
Since R is an integral domain, AnnR(It(A)) = 0 if and only if It(A) ̸= 0.
Thus, rk(A)=max{t | A has a nonzero t × t minor}. Now this num-
ber max{t | A has a nonzero t× t minor} is the same whether we view
A as a matrix in Mm×n(R) or Mm×n(F ). Hence, rk(A) is just the
classical rank of A when A is viewed as a matrix in Mm×n(F ). So
rk(A) =rankF (A), in this case.

2. Matrix of rank one

Let R be a commutative ring. Elements a, b of R are said to be
associates if a | b and b | a. A nonunit and nonzero element p ∈ R
is called an irreducible element, If p = ab implies that either a or b
is a unit element of R. Recall that an integral domain R is a unique
factorization domain (UFD) provided every nonzero nonunit element of
R can be written a = p1...pn, with p1, ..., pn irreducible and if a = q1...qm
(qi irreducible) then n = m and for some permutation σ of {1, ..., n},
pi and qi are associates for every i. Note that in a unique factorization
domain (UFD), a greatest common divisor (GCD) of any collection of
elements always exists. Also, for every a, b, c in a UFD, if a | bc and a, b
are relatively prime (i.e. GCD(a, b) = 1), then a | c.
In the next Theorem we characterize all m×n matrices of rank one over
a unique factorization domain.
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Theorem 2.1. Let R be a UFD and 0 ̸= A = (aij) ∈ Mm×n(R) be a
matrix of rank one. Let xj = GCD(a1j , ..., amj), 1 ≤ j ≤ n. If l-th
column of A is nonzero, then

A =


a1l
xl

x1 ... a1l ...
a1l
xl

xn

...
...

...
...

...
aml

xl
x1 ... aml ...

aml

xl
xn

 .

Proof. Let (aij) ∈ Mm×n(R) be a matrix of rank one and l-th column
of A be nonzero. We consider two cases.
Case 1: Suppose thatGCD(a1l, . . . , aml) = 1. Assume that ai1l, ..., aitl ̸=
0, where 1 ≤ i1 < ... < it ≤ m and ail = 0, for all i ̸= ik, 1 ≤ k ≤ t.
Put dk = GCD(aikl, a(ik+1)l), 1 ≤ k ≤ t and, for the moment, fix j, 1 ≤
j ̸= l ≤ n. Since rk(A) = 1, hence for i = 1, . . . , t we have aikla(ik+1)j =

aikja(ik+1)l. Thus
aikl

dk
a(ik+1)j = aikj

a(ik+1)l

dk
and so

aikl

dk
| aikj which im-

plies that there exists rkj ∈ R such that aikj =
aikl

dk
rkj and so a(ik+1)j =

a(ik+1)l

dk
rkj , 1 ≤ k ≤ t. Therefore aikj =

aikl

dk
rkj =

aikl

dk−1
r(k−1)j , 2 ≤ k ≤ t

and ai1j = a1l
d1

r1j . Hence, rkjdk−1 = r(k−1)jdk. Now, we show by in-

duction that dk
GCD(d1,...,dk)

| rkj . For k = 2, since r2jd1 = r1jd2, hence
d2

GCD(d1,d2)
| r2j . Assume that dksk = rkjGCD(d1, . . . , dk), for some

sk ∈ R. We have r(k+1)jdksk = rkjdk+1sk. Thus

(2.1) r(k+1)jGCD(d1, . . . , dk) = dk+1sk.

On the other hand, from r(k+1)jdk = rkjdk+1 we obtain
dk+1

GCD(dk,dk+1)
|

r(k+1)j and so there exists s′k ∈ R such that

(2.2) r(k+1)jGCD(dk, dk+1) = dk+1s
′
k.

Combining (2.1) and (2.2) we have

dk+1skGCD(dk, dk+1) = r(k+1)jGCD(d1, . . . , dk)GCD(dk, dk+1)

= dk+1s
′
kGCD(d1, . . . , dk).

Thus skGCD(dk, dk+1) = s′kGCD(d1, . . . , dk) and so
GCD(dk,dk+1)

GCD(d1,...,dk+1)
| s′k.

Now, by (2.2), we have
dk+1GCD(dk,dk+1)
GCD(d1,...,dk+1)

| r(k+1)jGCD(dk, dk+1) and

hence
dk+1

GCD(d1,...,dk+1)
| r(k+1)j which completes the induction. Therefore dt =
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dt
GCD(d1,...,dt)

| rtj . Since rtjdt−1 = r(t−1)jdt, hence dt−1 | r(t−1)j . Con-

tinuing this process, we have dk | rkj , 1 ≤ k ≤ t. As a consequence,

aikj =
aikl

dk
rkj = aikl

rkj
dk

, 1 ≤ k ≤ t. Also for i ̸= ik, 1 ≤ k ≤ t, we have

ai1 = 0. Since rk(A) = 1, hence ai2a11 = a12ai1 = 0. So ai2 = 0. Thus

for all 1 ≤ i ≤ m, we have aij =
ail
xl

xj .

Case 2: Suppose that GCD(a1l, . . . , aml) = xl is not a unit element of
R. For the moment, fix j, 1 ≤ j ̸= l ≤ n. By the same argument
and notation as in case 1, we have dt

GCD(d1,...,dt)
| rtj . Thus dt

xl
| rtj and

therefore there exists r′tj ∈ R such that rtj = dt
xl
r′tj . Thus atj = atl

xl
r′tj .

On the other hand, r(t−1)jdt = rtjdt−1. Hence r(t−1)jdt = dt
xl
r′tjdt−1

and so r(t−1)j = r′tj
dt−1

xl
. Therefore a(t−1)j =

a(t−1)1

d(t−1)j
r(t−1)j =

a(t−1)l

xl
r′tj .

Continuing this process we obtain rkj = r′tj
dk
xl

and so aikj =
aikl

xl
r′tj ,

1 ≤ k ≤ t, 1 ≤ j ̸= l ≤ n. Thus in fact, r′tj = GCD(a1j , ..., amj) = xj .
Hence

A =


a1l
xl

x1 ... a1l ...
a1l
xl

xn

...
...

...
...

...
aml

xl
x1 ... aml ...

aml

xl
xn

 .

□

Corollary 2.2. Let R be UFD and A = (aij) ∈ Mm×n(R) be a matrix
of rank one with nonzero column l. Let xj = GCD(a1j , ..., amj), 1 ≤
j ≤ n, I be the ideal of R generated by x1, ..., xn and J be the ideal of R

generated by
a1l
xl

, ...,
aml

xl
. Then

(1) < A >c= I < (
a1l
xl

, ...,
aml

xl
)t >;

(2) < A >r= J < (x1, ..., xn) > .

Proof. By Theorem 2.1, it is obvious. □

Let µ(M) denotes the minimal number of generators of M . It is well
known that if A is a matrix over a field F , then rk(A) = s if and only if
the dimension of column space of A (equal to the dimension of row space
of A) is s. Let R be a principal ideal domain (PID) and A ∈ Mm×n(R).
Then < A >c is a submodule of Rm. Since R is a PID and Rm is a
free R-module, then < A >c is a free R- module. In fact < A >c is
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free of rank s if and only if rk(A) = s. (See Proposition 2.3, from [3,
Proposition 7-2-11 ]).

Proposition 2.3. If A is an n ×m matrix of rank r > 0 over a prin-
cipal ideal domain R, then A is equivalent to a matrix of the form(

Lr 0
0 0

)
, where Lr is an r × r diagonal matrix with nonzero diag-

onal entries d1, ..., dr such that d1 | ... | dr. The ideals (d1), ..., (dr) in R
are uniquely determined by the equivalence class of A.

Thus if R is either a field or a PID and A is a matrix over R, then
rk(A) = s if and only if µ(< A >r) = µ(< A >c) = s.
Now, let R be an integral domain with quotient field F and A = (aij) ∈
Mm×n(R) be a matrix with µ(< A >r) = 1 (or µ(< A >c) = 1). Since
R ⊆ F , Mm×n(R) ⊆ Mm×n(F ), and we can view A as a matrix in
Mm×n(F ). Thus the dimension of row space (or the dimension of row
space ) of A is 1. So rankF (A) =rk(A) = 1. Hence we have the following
Proposition.

Proposition 2.4. Let R be an integral domain and A ∈ Mm×n(R). Let
µ(< A >r) = 1 or µ(< A >c) = 1. Then rk(A) = 1.

One of the interesting question is “ If A is a matrix of rank 1 over a
UFD, whether µ(< A >c) or µ(< A >r) is 1?.” Here we give some ex-
ample which shows that it is not true in general (Example 2.6). Further
we use the following Lemma.

Lemma 2.5. Let (R,P ) be a local integral domain and I be a finitely
generated ideal of R. If I < (y1, ..., yn) > is a nonzero cyclic R-module,
then I is a principal ideal of R.

Proof. Let I =< a1, ..., am > and I < (y1, ..., yn) >=< (b1, ..., bn) >, for
some bi ∈ R, 1 ≤ i ≤ n. Then ai(y1, ..., yn) = si(b1, ..., bn), for some
si ∈ R, 1 ≤ i ≤ n. Hence for all 1 ≤ i ≤ m and 1 ≤ j ≤ n we have

(2.3) aiyj = sibj .

On the other hand, (b1, ..., bn) =
∑m

i=1 riai(y1, ..., yn), for some ri ∈ R.
Thus bj =

∑m
i=1 riaiyj , 1 ≤ j ≤ n. So by (2.3), bj =

∑m
i=1 riaiyj =∑m

i=1 risibj . Since R is an integral domain and (b1, ..., bn) ̸= 0, hence∑m
i=1 risi = 1. Thus there exists some 1 ≤ k ≤ m, such that sk ̸∈ P .

So sk is a unit element of R. Thus (b1, ..., bn) = s−1
k ak(y1, ..., yn). Let

i, 1 ≤ i ≤ m be arbitrary and fixed. By (2.3), we have aiyj = sibj =
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sis
−1
k akyj . Since (y1, ..., yn) ̸= 0, then ai ∈< ak >. Therefore I is a

principal ideal. □
Example 2.6. Let (R,P ) be a local UFD and p, q ∈ R be two irreducible

elements of R which are not associates and a ∈ R. Let A =

(
p pa
q qa

)
.

Thus < A >c=< (p, q)t >, whence < A >r=< p, q >< (1, a) > is
not cyclic. Because if < A >r be a cyclic R-module, then by Lemma
2.5, < p, q > is a principal ideal. Let < p, q >=< x >, for some
element x ∈ R. Thus there exist some r, s ∈ R such that p = rx and
q = sx. Since p, q are two irreducible elements of R, hence r, s are
unit elements or x is unit. If x is a unit element, then < p, q >= R,
a contradiction, because p, q ∈ P . Therefore r, s are unit elements of
R. So q = sx = sr−1p and p = rx = rs−1q. This means that p, q are
associates, a contradiction. Thus < A >r=< p, q >< (1, a) > is not

cyclic. Similarly we have A =

(
p q
pa qa

)
is a matrix of rank one such

that < A >r=< (p, q) > is a cyclic R-module but < A >c=< (p, q)t >
is not a cyclic module.

Now, we show that if < A >c (< A >r) is a cyclic module, then
< A >r (< A >c) is always in the form of above.

Proposition 2.7. Let (R,P ) be a local UFD and A = (aij) ∈ Mm×n(R)
be a matrix of rank one with nonzero column l. Then

(1) If < A >c is a nonzero cyclic R-module, then < A >r=<
a1k, ..., amk >< (r1, ..., 1, ..., rn) >, for some 1 ≤ k ≤ n and
ri ∈ R ( 1 is in k-th place).

(2) If < A >r is a nonzero cyclic R-module, then < A >c=<
x1, ..., xn >< (s1, ..., 1, ..., sm)t >, for some si ∈ R ( 1 is in
l-th place).

Proof. Let < A >c be a cyclic R-module. By Corollary 2.2 and Lemma
2.5, < x1, ..., xn > is a principal ideal. Since R is a local ring, hence there
exists some nonzero element xk, 1 ≤ k ≤ n such that < x1, ..., xn >=<
xk > . Thus xi = rixk, 1 ≤ i ≤ n. Since < A >c is nonzero and
< x1, ..., xn >=< xk >, hence k-th column of A is nonzero, so by Corol-

lary 2.2, we have < A >r=<
a1k
xk

, ...,
amk

xk
>< (x1, ..., xn) >= xk <

a1k
xk

, ...,
amk

xk
>< (x1, ..., xn) >=< a1k, ..., amk >< (r1, ..., 1, ..., rn) >.

Now, let < A >r be a cyclic R-module. So by Corollary 2.2 and
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Lemma 2.5, <
a1l
xl

, ...,
aml

xl
> is a principal ideal. Since R is a local

ring, hence there exists some nonzero element akl, 1 ≤ k ≤ m such that

<
a1l
xl

, ...,
aml

xl
>=<

akl
xl

> . Thus
ail
xl

= si
akl
xl

, 1 ≤ i ≤ m. There-

fore ail = siakl. So xl = GCD(a1l, ..., aml) = akl. Hence by Corol-

lary 2.2, < A >c=< x1, ..., xn >< (
a1l
xl

, ...,
aml

xl
)t >=< x1, ..., xn ><

(s1, ..., 1, ..., sm)t >.
□

Proposition 2.8. Let R be a UFD and A ∈ Mn×n(R) be a matrix of
rank one. Then Ak = (trA)k−1A, for every k ∈ N.

Proof. Let A be a nonzero matrix of rank one, then by Theorem 2.1,
there exists some 1 ≤ l ≤ n such that

A =


a1l
xl

x1 ... a1l ...
a1l
xl

xn

...
...

...
...

...
anl
xl

x1 ... anl ...
anl
xl

xn

 .

We have

A2 =


∑n

i=1

a1l
xl

xi
ail
xl

x1 ...
∑n

i=1

a1l
xl

xiail ...
∑n

i=1

a1l
xl

xi
ail
xl

xn

...
...

...
...

...∑n
i=1

anl
xl

xi
ail
xl

x1 ...
∑n

i=1

anl
xl

xiail ...
∑n

i=1

anl
xl

xi
ail
xl

xn

 =


∑n

i=1

ail
xl

xi
a1l
xl

x1 ...
∑n

i=1

ail
xl

xia1l ...
∑n

i=1

ail
xl

xi
anl
xl

xn

...
...

...
...

...∑n
i=1

ail
xl

xi
anl
xl

x1 ...
∑n

i=1

ail
xl

xianl ...
∑n

i=1

ail
xl

xi
anl
xl

xn

 = (trA)A.

Hence Ak = (trA)k−1A, for every k ∈ N. □

Corollary 2.9. Let R be a UFD and A ∈ Mn×n(R) be a matrix of rank
one. Then tr(Ak) = (trA)k.

Proof. By Proposition 2.8, Ak = (trA)k−1A. Thus tr(Ak) = (trA)k =
(trA)k−1 trA = (trA)k.

Corollary 2.10. Let R be a UFD and 0 ̸= A ∈ Mn×n(R) be a matrix
of rank one. Then

(1) A is nilpotent if and only if trA = 0.



40 Somayeh Hadjirezaei and Somayeh Karimzadeh

(2) A is idempotent if and only if trA = 1.

Proof. By Proposition 2.8, Ak = (trA)k−1A, for every k ∈ N. Thus,
since R is an integral domain, hence Ak = (trA)k−1A = 0 if and only if
trA = 0 and A2 = A if and only if trA = 1. □
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