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A NOTE ON THE LOCATION OF POLES OF

MEROMORPHIC FUNCTIONS

SANJIB KUMAR DATTA AND TANCHAR MOLLA

Abstract. A meromorphic function on an open set D contained
in the finite complex plane C is of the form of the ratio between
two analytic functions defined on D with denominator not identi-
cally zero. Poles of meromorphic functions are those zeros of the
denominator where numerator does not vanish. Finding all poles
of a meromorphic function is too much difficult. So, it is desirable
to know a region where these poles lie. In the paper we derive a re-
gion containing all the poles of some meromorphic functions. A few
examples with related figures are given here to validate the results
obtained.

Key Words: Meromorphic function, poles, order.

2010 Mathematics Subject Classification: Primary: 30D30; Secondary: 30A10, 30B10,

30C15.

1. Introduction.

Problems involving location of zeros of polynomials have a long his-
tory [12]. In 1829, Cauchy [12] proved the following classical result.

Theorem A. [12] If P (z) =
∑n

j=0 ajz
j is a polynomial of degree

n with complex coefficients, then all the zeros of P (z) lie in |z| ≤
1 +max0≤j≤(n−1)|

aj
an
|.

In a different manner, G. Enström and S. Kakeya [8] introduced follow-
ing result known as Enström-Kakeya theorem.
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Theorem B. [8] If P (z) =
∑n

j=0 ajz
j is a polynomial of degree n with

real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ ... ≤ an, then all the zeros of
P (z) lie in |z| ≤ 1.

There are so many improvements and generalizations of Theorem A for
polynomials in the existing literature [6, 11]. Also, a lots of results on
generalization of Theorem B for polynomials and analytic functions are
found in [1,2,4,5,7–10].Though, such type of results for poles of a mero-
morphic function are not available in the literature.

Generally the poles of a meromorphic function f : D ⊆ C −→ C are
the zeros of 1

f in D. A meromorphic function f in a domain D ⊆ C
analytic in the annulus R1 <| z |< R2 in D can be represented by Lau-
rent’s series as f(z) =

∑
n∈Z anz

n for any z in R1 <| z |< R2 where

an = 1
2πi

∫
C

f(ζ)
ζn+1dζ, n ∈ Z with C = {ζ :| ζ |= r} and R1 < r < R2.

The main aim of this paper is to establish some results about the
region of the poles of meromorphic functions under various conditions
on the above coefficients an’s. We do not explain the standard theories,
notations and definitions of entire and meromorphic functions as those
are available in [13] & [14].

The following definition is well known:

Definition 1.1. The order ρ of a meromorphic function f is defined as

ρ = lim sup
r→∞

log T (r, f)

log r
.

In this paper we first prove the following result:

Theorem 1.2. Let f(z) be a meromorphic function of finite order ρ in
a domain D ⊆ C such that f(z) =

∑∞
n=0 anz

n+
∑−∞

n=−1 anz
n be analytic

in the annulus R1 ≤| z |≤ R2 in D. Also let t1(< R1) & t2(> R2) be
any two positive real numbers such that f(z) is analytic in t1 <| z |< t2
contained in D with

0 < a0 + ρ ≥ t2a1 ≥ t22a2 ≥ ...

and

0 < a−1 ≥
a−2
t1
≥ a−3

t21
≥ ....
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Then the poles of f(z) lie in the region D1 ∪D2 where

D1 =

{
z ∈ D : min

(
t2,

(a0 + ρ)R2

a0 + ρ− t2a1

)
≤| z |≤ max

(
t2,

(a0 + ρ)R2

a0 + ρ− t2a1

)}
and

D2 = {z ∈ D :| z |≤ t1}.

Remark 1.3. The following example with related figure ensures the va-
lidity of Theorem 1.2.

Example 1.4. Let f(z) = 1
(z−1)(z−2)(z−3) .

Then f(z) is meromorphic in C and the poles are at z = 1, 2 & 3.

Now for 1 <| z |< 3
2 , the Laurent’s series expansion of f(z) is

f(z) =
1

3
+

7

36
z +

23

216
z2 + ...+

1

2z
+

1

2z2
+

1

2z3
+ ... .

Here, ρ = 0, t1 = 1, t2 = 3
2 , a0 = 1

3 and a1 = 7
36 .

Now for ρ = 0 and R2 = 7
5 ,

min(t2,
(a0+ρ)R2

a0+ρ−t2a1 ) = 3
2 and max(t2,

(a0+ρ)R2

a0+ρ−t2a1 ) = 4.8.

Hence by Theorem 1.2, the poles of f(z) lie in

{z ∈ C :| z |≤ 1}U{z ∈ C :
3

2
≤| z |≤ 4.8} .

Remark 1.5. Considering ρ = (k−1)a0 where k ≥ 1, the following result
is an immediate consequence of Theorem 1.2.

Corollary 1.6. Let f(z) be a meromorphic function of finite order in a
domain D ⊆ C such that f(z) =

∑∞
n=0 anz

n +
∑−∞

n=−1 anz
n be analytic

in the annulus R1 ≤| z |≤ R2 in D. Also let t1(< R1) & t2(> R2) be
any two positive real numbers such that f(z) is analytic in t1 <| z |< t2
contained in D with for some k ≥ 1,

0 < ka0 ≥ t2a1 ≥ t22a2 ≥ ...

and

0 < a−1 ≥
a−2
t1
≥ a−3

t21
≥ ....
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| z |≤ 1

1.5 ≤| z |≤ 4.8

Figure 1. Distribution of poles of f(z) = 1
3 + 7

36z +
23
216z

2 + ...+ 1
2z + 1

2z2
+ 1

2z3
+ ...

Then the poles of f(z) lie in the region D′1 ∪D′2 where

D′1 =

{
z ∈ D : min

(
t2,

ka0R2

ka0 − t2a1

)
≤| z |≤ max

(
t2,

ka0R2

ka0 − t2a1

)}
and

D′2 = {z ∈ D :| z |≤ t1}.

Remark 1.7. The following example with related figure justifies the va-
lidity of Corollary 1.6.

Example 1.8. Let f(z) = 1
(z−1)(z−2)(3−z) .

Then f(z) is meromorphic in C and the poles are at z = 1, 2 & 3.

Now for 2 <| z |< 3, the Laurent’s series expansion of f(z) is

f(z) =
1

16
+

1

18
z +

1

54
z2 + ...+

1

2z
+

3

2z2
+ ... .

Here, t1 = 2, t2 = 3, a0 = 1
16 and a1 = 1

18 .

Now for k = 4 and R2 = 14
5 ,
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min
(
t2,

ka0R2
ka0−t2a1

)
= 3 and max

(
t2,

ka0R2
ka0−t2a1

)
= 8.4.

Hence by Corollary 1.6, the poles of f(z) lie in

{z ∈ C :| z |≤ 2}U{z ∈ C : 3 ≤| z |≤ 8.4} .

x

y

z=1

z=2

z=3

| z |≤ 2

3 ≤| z |≤ 8.4

Figure 2. Distribution of poles of f(z) = 1
16 + 1

18z +
1
54z

2 + ...+ 1
2z + 3

2z2
+ ...

Finally, we establish following result without imposing any restrictions
on the coefficients of the negative power of z.

Theorem 1.9. Let f(z) be a meromorphic function in a domain D ⊆ C
and f(z) =

∑
n∈Z anz

n be analytic in the annulus R1 ≤| z |≤ R2. Also
let t1(< R1) & t2(> R2) be any two positive real numbers such that f(z)
is analytic in t1 <| z |< t2 contained in D with

Max
|z|=R2

|
∞∑
n=1

(an−1 − t2an)zn |≤M.

Then the poles of f(z) lie in the region D3 ∪D4 where

D3 =

{
z ∈ D : min

(
t2,

M

| a0 − t2a1 |

)
≤| z |≤ max

(
t2,

M

| a0 − t2a1 |

)}
and
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D4 = {z ∈ D :| z |≤ t1}.

Remark 1.10. The following example with related figure ensures the
validity of Theorem 1.9.

Example 1.11. Let f(z) = 1
(z+i)(z−2)(z+3) .

Then f(z) is meromorphic in C and the poles of f(z) are at z =
−i, 2 & − 3.

Now for 2 <| z |< 3, the Laurent’s series expansion of f(z) is

f(z) = { 1

30
− 1

90
z +

1

270
z2 − ...}+ {− 1

10z
+ (

2

15
+
i

6
)

1

z2
+ ...}

Here, t1 = 2, t2 = 3 and an = (−1)n 1
30.3n , n = 0, 1, 2, ... .

Taking R2 = 5
2 , we see that

Max|z|= 5
2
|
∑∞

n=1(an−1 − 3an)zn |≤ 1 .

Also min(t2,
M

|a0−t2a1|) = 3 and max(t2,
M

|a0−t2a1|) = 15 .

Hence by Theorem 1.9, the poles of f(z) lie in the region

{z ∈ C :| z |≤ 2}U{z ∈ C : 3 ≤| z |≤ 15} .

2. Lemmas.

In this section we present a lemma which will be needed in the sequel
.

Lemma 2.1. [3] If f(z) is analytic in | z |≤ R, f(0) = 0, f ′(0) = b and
| f(z) |≤M for | z |= R, then for | z |≤ R,

| f(z) |≤ M | z |
R2

.
M | z | +R2 | b |
M+ | b || z |

.
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x

y

z=-i z=2

z=-3 | z |≤ 2
3 ≤| z |≤ 15

Figure 3. Distribution of poles of f(z) = 1
30 −

1
90z +

1
270z

2 − ...}+ {− 1
10z + ( 2

15 + i
6) 1
z2

+ ...

3. Proofs of the Theorems.

Proof of Theorem 1.2. For R1 ≤| z |≤ R2, it follows that

(3.1) | f(z) |≤|
∞∑
n=0

anz
n | + |

−∞∑
n=−1

anz
n | .

Clearly, lim
n→∞

anR
n
2 = 0 and lim

n→−∞
anR

n
1 = 0.

Now for | z |≤ R2 < t2, we get that

| (z − t2)
∞∑
n=0

anz
n |= |

∞∑
n=0

anz
n+1 − t2

∞∑
n=0

anz
n |

= | −a0t2 + (a0 − t2a1)z +
∞∑
n=2

(an−1 − t2an)zn |

= | −a0t2 − ρz + (a0 + ρ− t2a1)z +
∞∑
n=2

(an−1 − t2an)zn |

≤ | a0 | t2 + ρ | z | + | (a0 + ρ− t2a1)z +
∞∑
n=2

(an−1 − t2an)zn |

= | a0 | t2 + ρ | z | + | G(z) | .(3.2)



144 Sanjib Kumar Datta, Tanchar Molla

For | z |= R2, we have

| G(z) |= | (a0 + ρ− t2a1)z +
∞∑
n=2

(an−1 − t2an)zn |

≤ | a0 + ρ− t2a1 || z | + |
∞∑
n=2

| (an−1 − t2an) || zn |

=(a0 + ρ− t2a1)R2 +
∞∑
n=2

(an−1 − t2an)Rn2

≤(a0 + ρ−R2a1) +

∞∑
n=2

(an−1 −R2an)Rn2

=(a0 + ρ)R2.

Clearly G(z) is analytic in | z |≤ R2, G(0) = 0, G′(0) = (a0 + ρ − t2a1)
and | G(z) |≤ (a0 + ρ)R2 for | z |= R2. Hence by Lemma 2.1, it follows
that

| G(z) |≤(a0 + ρ)R2 | z |
R2

2

.
(a0 + ρ)R2 | z | +R2

2 | a0 + ρ− t2a1 |
(a0 + ρ)R2+ | a0 + ρ− t2a1 || z |

=
(a0 + ρ) | z | {(a0 + ρ) | z | +R2 | a0 + ρ− t2a1 |}

(a0 + ρ)R2+ | a0 + ρ− t2a1 || z |

≤(a0 + ρ) | z | {(a0 + ρ) | z | +R2 | a0 + ρ− t2a1 |}
(a0 + ρ)R2− | a0 + ρ− t2a1 || z |

.

Therefore from (3.2), we obtain for | z |≤ R2 < t2 that

|
∞∑

n=0

anz
n | ≤

1

| z − t2 |

[
| a0 | t2 + ρ | z | +

(a0 + ρ) | z | {(a0 + ρ) | z | +R2 | a0 + ρ− t2a1 |}
(a0 + ρ)R2− | a0 + ρ− t2a1 || z |

]

≤

[
(| a0 | t2 + ρ | z |){(a0 + ρ)R2− | a0 + ρ− t2a1 || z |}

+ (a0 + ρ) | z | .{(a0 + ρ) | z | +R2 | a0 + ρ− t2a1 |}

]
(t2− | z |){(a0 + ρ)R2− | a0 + ρ− t2a1 || z |}

.

Now for | z |≥ R1 > t1, it follows that
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|
(

1

z
− 1

t1

) −∞∑
n=−1

anz
n |=|

−∞∑
n=−1

anz
n−1 − 1

t1

−∞∑
n=−1

anz
n |

=| −a−1
t1z

+
−∞∑
n=−1

(an −
an−1
t1

)zn−1 |

≤ a−1
t1 | z |

+
−∞∑
n=−1

| an −
an−1
t1
|| z |n−1

≤ a−1
t1 | z |

+
−∞∑
n=−1

(an −
an−1
t1

)Rn−11

≤ a−1
t1 | z |

+
−∞∑
n=−1

(an −
an−1
R1

)Rn−11

=
a−1
t1 | z |

+
a−1
R2

1

.

Therefore |
∑−∞

n=−1 anz
n |≤ 1

| 1
z
− 1

t1
|(
a−1

t1|z| + a−1

R2
1

)

=
a−1(R2

1+t1|z|)
|t1−z|R2

1

≤ a−1(R2
1+t1|z|)

(|z|−t1)R2
1

.

Hence from (3.1), we get that

|f(z)| ≤

[
(| a0 | t2 + ρ | z |){(a0 + ρ)R2− | a0 + ρ− t2a1 || z |}

+ (a0 + ρ) | z | .{(a0 + ρ) | z | +R2 | a0 + ρ− t2a1 |}

]
(t2− | z |){(a0 + ρ)R2− | a0 + ρ− t2a1 || z |}

+
a−1(R

2
1 + t1 | z |)

(| z | −t1)R2
1

=

 (| z | −t1)R2
1[(| a0 | t2 + ρ | z |){(a0 + ρ)R2− | a0 + ρ− t2a1 || z |}

+(a0 + ρ) | z | .{(a0 + ρ) | z | +R2 | a0 + ρ− t2a1 |}]+
a−1(R

2
1 + t1 | z |)[(t2− | z |){(a0 + ρ)R2− | a0 + ρ− t2a1 || z |}]


R2

1(t2− | z |)(| z | −t1){(a0 + ρ)R2− | a0 + ρ− t2a1 || z |}

Therefore 1
|f(z)| > 0 if (t2− | z |)(| z | −t1){(a0 +ρ)R2− | a0 +ρ− t2a1 ||

z |} > 0.

Now for | z |> t2, it follows that

1
|f(z)| > 0 if (a0 + ρ)R2− | a0 + ρ− t2a1 || z |< 0

i.e, 1
|f(z)| > 0 if | z |> (a0+ρ)R2

a0+ρ−t2a1 .
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Hence the zeros of 1
f(z) lie in the annular region

min

(
t2,

(a0 + ρ)R2

a0 + ρ− t2a1

)
≤| z |≤ max

(
t2,

(a0 + ρ)R2

a0 + ρ− t2a1

)
.

Consequently, the poles of f(z) lie in

D1 =

{
z ∈ D : min

(
t2,

(a0 + ρ)R2

a0 + ρ− t2a1

)
≤| z |≤ max

(
t2,

(a0 + ρ)R2

a0 + ρ− t2a1

)}
.

Also for | z |< t1 < t2, we see that

1
|f(z)| > 0 if | z |> (a0+ρ)R2

a0+ρ−t2a1 .

Hence the zeros of 1
f(z) lie in | z |≤ t1.

Therefore the poles of f(z) lie in D2 = {z ∈ D :| z |≤ t1}.

Thus all the poles of f(z) lie in the region D1 ∪D2.

This proves the theorem. �

Proof of Theorem 1.9. For R1 ≤| z |≤ R2,

(3.3) | f(z) |≤|
∞∑
n=0

anz
n | + |

−∞∑
n=−1

anz
n |, R1 ≤| z |≤ R2.

Now for | z |≤ R2 < t2, it follows that

| (z − t2)
∞∑
n=0

anz
n | =| −a0t2 +

∞∑
n=1

(an−1 − t2an)zn |

≤| a0t2 | + |
∞∑
n=1

(an−1 − t2an)zn |

=| a0t2 | + | G(z) | .(3.4)

Also for | z |= R2,

| G(z) |=|
∞∑
n=1

(an−1 − t2an)zn |≤ Max
|z|=R2

|
∞∑
n=1

(an−1 − t2an)zn |≤M
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and G(z) being analytic in | z |≤ R2, G(0) = 0, G′(0) = (a0 − t2a1),
applying Lemma 2.1 we obtain that

| G(z) |≤M | z |
R2

2

M | z | +R2
2 | a0 − t2a1 |

M+ | a0 − t2a1 || z |

≤M | z | (M | z | +R
2
2 | a0 − t2a1 |)

R2
2(M− | a0 − t2a1 || z |)

for | z |≤ R2.

Therefore for | z |≤ R2 < t2, it follows from (3.4) that

|
∞∑

n=0

anz
n | ≤

1

| z − t2 |
R2

2 | a0 | t2(M− | a0 − t2a1 || z |) +M | z | (M | z | +R2
2 | a0 − t2a1 |)

R2
2(M− | a0 − t2a1 || z |)

≤
| a0 | t2(M− | a0 − t2a1 || z |) +M | z | (M | z | +R2

2 | a0 − t2a1 |)
R2

2(t2− | z |)(M− | a0 − t2a1 || z |)
.

Now for | z |≥ R1 > t1,

| (1

z
− 1

t1
)
−∞∑
n=−1

anz
n | =| −a−1

t1z
+
−∞∑
n=−1

(an −
1

t1
an−1)z

n−1 |

≤ | a−1 |
t1 | z |

+ |
−∞∑
n=−1

(an −
1

t1
an−1)z

n−1 |

≤ | a−1 |
t1 | z |

+M1

where M1 = Max
|z|=R1

|
−∞∑
n=−1

(an −
1

t1
an−1)z

n−1 | .

Therefore

|
−∞∑
n=−1

anz
n | ≤ 1

| t1 − z |
{| a−1 | +t1M1 | z |}

≤ 1

| z | −t1
{| a−1 | +t1M1 | z |} for | z |≥ R1 > t1.
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Hence for R1 ≤| z |≤ R2, we get from (3.3) that

| f(z) |≤R
2
2 | a0 | t2(M− | a0 − t2a1 || z |) +M | z | (M | z | +R2

2 | a0 − t2a1 |)
R2

2(t2− | z |)(M− | a0 − t2a1 || z |)
+

| a−1 | +t1M1 | z |
| z | −t1

=

[
(| z | −t1){R2

2 | a0 | t2(M− | a0 − t2a1 || z |) +M | z | (M | z | +R2
2 | a0 − t2a1 |)}

+ (t2− | z |)(M− | a0 − t2a1 || z |)(| a−1 | +t1M1 | z |)

]
R2

2(| z | −t1)(t2− | z |)(M− | a0 − t2a1 || z |)
.

Therefore 1
|f(z)| > 0 if (| z | −t1)(t2− | z |)(M− | a0 − t2a1 || z |) > 0.

In a like manner as in the proof of Theorem 1.2, the poles of f(z) lie in
the region D3 ∪D4 where

D3 =

{
z ∈ D : min

(
t2,

M

| a0 − t2a1 |

)
≤| z |≤ max

(
t2,

M

| a0 − t2a1 |

)}
and

D4 = {z ∈ D :| z |≤ t1}.

Thus the theorem is established. �

Future prospect. In the line of the works as carried out in the
paper one may think of proving the results in case of meromorphic func-
tions of infinite order.
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