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SOME GENERALIZED RESULTS OF ZEROS OF POLAR
DERIVATIVE OF A POLYNOMIAL

RAM MILAN SINGH

ABSTRACT. In the present paper, we further generalize and extend
various results on zeroes of polar derivatives of polynomials due to
Gulzar, Zargar and Akhter (2019), who gave extension and general-
ization of various results on Enestrom-Kakeya theorem established
by various researchers in the literature.
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1. INTRODUCTION

If f(z) be the k' degree polynomial with real cofficients. Let Dgf(2)
be the polar derivative of f(z) with respect to the point § and it is
defined by Dgf(z) = kf(z) + (8 — 2z)f'(2). In this case the degree of
Dsf(z) at most Kk — 1 and 8 — oo then it generalized the ordinary
derivative,

/ . Dﬁ f (z)
F(z) = Jim, 3
Regarding the zeroes of f(z), Enestrom-Kakeya proved the following
result.

Theorem 1.1 Let f(z) = Zf:o a;z" be the kt" degree polynomial with
real coefficients such that 0 < ag < a1 < ... < ap—1 < a, then all the
zeroes of f(z) lies . Regarding the multiplicity of zeroes of f(z), Aziz
and Mahammad [1], proved the following result
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Theorem 1.2 Let f(z) = Zf:o a;z' be the k" degree polynomial with
real coefficients such that 0 < ag < a1 < ... < an—1 < a, then all the
zeroes of |f(z)]| > ﬁ, are simple.

Gulzar, Zargar, and A khter [6] extended the above results to the polar
derivatives, there exist some generalizations and extentions of Enestrom
Kakeya theorem in [2,3,5,8,9,10].

In the present paper, we generalize and extend various results on
zeroes of polar derivatives of polynomials due to Gulzar, Zargar, and A

khter [6]

2. PREPARATION OF MANUSCRIPT

Theorem 2.1 Let f(2) = Zf];:o a;z" be the kt" degree polynomial with
real coefficients and 8 be a real number v > 0,0 < ¢t < 1, such that for
some

thy, > by_1 > -+ > b3 > by — «y then all zeroes of Dgf(z) which does
not lie in
|bk| + t (bg— |bg| — b2 + [b2| + 2y

b |

2] <

are simple, where by = (s—1) [sfas + (k — (s — 1))as—_1], for, s = 1,2,3, ...

Proof- Let f(z) = apz® + ap_12*"1 4+ -+ + a1z + ag be the k" de-
gree polynomial with real coefficients, then by the definition of polar
derivative, we know that

Dpf(z) =kf(2) + (B —2)f'(2),
Dsf(z) = kf(2) + Bf'(2) = 2f'(2),

Therefore,

Dsf(z) =k (akzk +ap_12" N+ kayz + ao) +

B (akkzk_l + ap_1(k — l)zk_2 R al)
—Z <akkzk*1 + ak,l(k — 1)2’{72 + -+ a1>
= kap2® + kap_12" 7 4 - 4 karz + kag + BagkzF
Bag—1(k —1)zF2+ - + Bay

—apk2® —ap_1(k— 12"t — o — 2y
Thus,

Dsf(2) = [Bkag + (k — (k — Dag_1)] 2* 1+ [B(k — Dag_1+
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(k= (k —2)ap_2)] 2" 24 - + [2Baz + (k — 1)a1] z + [Ba1 + kag)
Therefore,
D f(2) = bpz" 2 + bp_1 2"+ 4 byz® + gz + b
where by = (s — 1) [sfas + (k — (s — 1))as—1], for s =2,3,4,......... N
Now consider g(z) = (1 — z) D} f(z), so that
g9(z) =(1-2) [bkzk_Q Fbp 12" by F b3z bz}
Then

[br—1—bp_ 2\ [bg—2—br_3|
B ITECR R S B L et Bl EE
lg(2)] > |bx] |2] [ or | { T \lb:,‘kb? n |z‘\l;92‘2
If |z| < 1, then é <
— 1 |by, — tby, + tby, — b—1| + - -
2)| > bg| |2|F 2 [z —{ K k
9(2)| = |bil|2] ] X + b3 — — (by — ) +| ba]|

_ b — thg| + [tb — br—1| + -+ +
> k—2 B |br. k k— Ok—1
2 o127 |11~ P 2

1, therefore

|bk|

EMMMZ@d— u—wmw¢m—m+w+wm]

1
I
>mmw2%|w,wmw< ~lal) — b+ 27+ ]}

Hence g(z) > 0, if |z| > W {Ibk| + t (b, — |bk|) — b2 + 27 + |ba|}, this
implies that |g(z)| > 1 lie in

2] < ‘{\bk!ﬂ(bk—\bk! — by + 2y + [ba[}

|br,
Since the zeroes of g(z) whose modulus is less than or equal to one are
lie in

2] < o {10x] +# (b — [b&]) — b2 + 2 + [b2}

|b |
It follows that all the zeroes of g(z) lie in

|z] < {Ibk] 4+ (b — [bk|) — b2 + 27 + [b2|},

Ibl

Since all the zeroes of g(z) are also the zeroes of Dg’f(z) lie in

2| < {1ok] +t (b, — [bx]) — ba + 27 + |ba[}

Ib\
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Thus all the zeroes of Dg’f(z) lie in

21 < g bl + b = ) = o +25 + [
In other words all the zeroes of Dgf(z) which does not lie in
21 < o bl + b = ) = o+ 2y + [
are simple, where b = (s — 1)[sfas+ (k—(s—1))as_1],

for s =2,3,4,5,...,k.

Theorem 2.2 Let f(z) = Zf:o a;z" be the k™ degree polynomial with
real coefficients and 8 be a real number £ > 1,0 < v < 1, such that for
some

thy > bp—1 > -+ >bg > by — 7

then all zeroes of Dgf(z) which does not lie in

tby_bo + ’62‘ + 2
b
are simple, where bs = (s — 1) [sfas + (k — (s — 1))as—1], for
s=1,2,3,... .k
Proof- Let f(z) = apz® + ap_12°"' + -~ + a1z + ag be the k" de-
gree polynomial with real coefficients, then by the definition of polar
derivative,

lz4+t—1| <

Dpf(z) =kf(z) + (B —2)f'(2)
Dsf(z) = kf(2) + Bf'(2) = 2f'(2)

Therefore,
Dpf(z) =k (axz” + ap_12""1 + - + karz + ao)
+4 (akkzk_l + ak_l(k: — 1)zk_2 4+ 4+ al)
-z (akkzk_l tap_1(k—1)z2F2 4. 4 al)
= kapz® + kap_ 12"+ + kai1z + kag
+/3akk'zk71 + Bak_l(k — l)zk*Q + -+ Bay
—akzF — ax—1(k — 1)Zk_1 — - zay

Thus,

Dpf(2) = [Bhag + (k = (k = Da-1)] *
+ B0k = Dary + (k= (k= 2)ag)] 22
+--- 4+ [28a2 + (k — 1)a1] z + [Bar + kao]



133

Now, find D f(z) we get,

Déf(z) = bkzk’2 + bkflz’kiS + -+ b42’2 ~+ b3z by

where bs = (s — 1) [sfas + (k — (s — 1))as—_1], for s = 2,3,4,...,n now
consider g(z) = (1 — 2)Dj f(2), so that
then

g(z) = (1 - Z) [bkzk*Z + bk,12k73 +- b422 + b32’+b2:|

_ lbr—1—bk—2| | |brk—2—br_3]
‘zﬁ—t—l’—i |tbk bk;—1|‘|‘ o _|Zb‘ | “|‘b | [2]2
|| et |33\k—§ + |z|k2—2

l9(2)] > bl |21+~

1
If |z] <1, then — <1

2] =
9(2)] 2 [bel 121772 [|2 4+ £ = 1] = gy (It — bal -+ + by =5 = (b2 = )+ b1}
> ol 121572 (12 + ¢ = 1] = gy {Jtbg = by + -+ [b — (b2 = 9) +]] + [bal]}

> [by| |25 | |2+ ¢ = 1] = g {(tbr — be—1) + -+ by — (b2 =) + 7| + b2}

> [ou] 121572 |2+ £ = 1] = gy {20k — ba + 27 + [bal}

Hence g(z) > 0, if |z +t—1| > ﬁ {tby, — br—1 + 27 + |b2|}, this implies
that |g(z)| > 1 are lie in

1
||
Since all the zeroes of g(z) whose modulus is less than or equal to one
already lie in

|Z+t—1|§ {tbk—b2+2’y+’bz‘}

tt—1] < |b1k|{tbk—b2+27+]bg\}

It follows that all the zeroes of g(z) lie in
tt-1] < |b1k’{tbk—b2+2fy+ bo]}

Since all the zeroes of g(z) are also the zeroes of Dg’ f(z) therefore lie in
etrt—1] < wi,{tbk—bg+27+ bo]}

In other words all the zeroes of Dgf(z) which does not lie in

1
|Z+t—1|Sm{tbk—bg—i-Q’y—}-’bQ‘}
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are simple.

Theorem 2.3 Let f(z) = Z?:o a;z* be the k" degree polynomial with
real coefficients and 8 be a real number v > 0,0 < ¢ < 1, such that for
some

thy > bp—1 > - > b3 > by + 1y

then all zeroes of Dgf(z) which does not lie in
|bie] — t (bg, + |bk|) + b2 + |b2| + 2

z| <
= e
are simple, where by = (s — 1) [sBas + (kK — (s — 1))as—1], for
s=1,2,3,...,k

Proof. Let f(z) = apz® + ap_12F"1 + -+ + a1z + ag be the k" de-
gree polynomial with real coefficients, then by the definition of polar
derivative, we know that

Dgf(2) =kf(2) + (B —2)f'(2)
Dgf(2) = kf(2) + Bf(2) — 2f'(2),
Therefore,

Dgf(z) =k (agz® + ap—12871 + - + karz + ag)

+6 (akkzk_l +ap—1(k — 1)Zk_2 +---+ al)

—z (akkzk*1 tap1(k—1)2F2 4. 4 a1)

= kapz® + kap_12""1 + - + ka2 + kag

+Barkz* 1 + Bag_1(k — 1)2F"2 + .- + Bay

—apk2® —ap_1(k —1)2F1 — o — zay
Dsf(z) = [Bkar + (k — (k — 1)ag_1)] zk_1+[5(k —Dag—1 + (k= (k — 2)ag—2)] k2

+ -+ [2Baz + (k — D)ay] z + [Bay + kag),
Therefore,

Dg'f(2) = bp2" "2 4+ by 12872 o by 4 b3z 4 by
where by = (s — 1) [sfas + (kK — (s — 1))as—1], for s =2,3,4,...,n
Now consider g(z) = (1 — 2)Dg' f(z), so that
g(z) = (1—2) [bkzk_z +bp12" P g2 by + b2}
Then

ko 1 b — bp—1| + |bk71|;‘b’“72| + |bk72‘;|§k73|
9(2) = [bg] [2]*77 |[2] = 7 lbs—ba| | lba]
|bk’ +-- |Z‘k_3 + |Z|k—2
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1
If |z| <1, then — <1

E

_ 1 |br, — tbg + tby — br—1| + |bg—1 — bg—o| +
> b k—2 _ L k k k — Ok—1
l9(2)] 2 [bx] | [’Z’ |bk\{ oo [ba = ba| + [bs + 7 — (b2 +7) +] ba|

_ 1 |br, — thi| + [tbg — br—1| + |bp—1 — bg—o| +
l9(2)1 = 1ol [|Z| 0] { < by = by| + [bg — (b2 + )+ v| + [ba]]

>‘b Hz’ka L 1_tbk|+(bk l_tbk) +
= b | b2+’7*bs)+|7!+|bzl

S - >|bkr—tbk+b2+2v+rb2r}}

> ol 12152 [ 121 = L {1l - <bk+|bk|>+b2+2v+|b2}}

|b |
Hence g(z) > 0, if |2| > W {1br| =t (b + |bk|) + b2 + 2 + |b2|}, this
implies that |g(z)| > 1 are lie in

2| < {Ibg| =t (bg + |br|) + b2 + 27 + [b2]}

Ib |
Since the zeroes of g(z) whose modulus is less than or equal to one lie
in

2| < {1bk] =t (bx + |br]) + b2 + 27 + [b2|}

1
(x|
It follows that all the zeroes of g(z) lie in

2| < {Ibg| =t (bg + [br]) + b2 + 27 + [b2]}

Ib\

Since all the zeroes of g(z) are also the zeroes of Dg’f(2) lie in

2| < {Ibg| =t (bg + |br|) + b2 + 27 + [b2]}

|b |
Thus all the zeroes of Dg’f(2) lie in
1
|z] < Tor] {1bk| =t (b + [bk|) + b2 + 27 + |bal}
In other words all the zeroes of Dgf(%) which does not lie in

1
ol < gy (1ol = ¢ B+ (o) 4 02 42+ [eal)

are simple, where bs = (s — 1) [sfas + (k — (s — 1))as—1],
for s =2,3,4,5,...,k.
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