تعداد نشریات | 27 |
تعداد شمارهها | 363 |
تعداد مقالات | 3,209 |
تعداد مشاهده مقاله | 4,716,156 |
تعداد دریافت فایل اصل مقاله | 3,222,345 |
Existence theorem of finite krasner hyperfields | ||
Journal of Hyperstructures | ||
دوره 10، شماره 1، شهریور 2021، صفحه 38-46 اصل مقاله (273.81 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22098/jhs.2021.2639 | ||
نویسندگان | ||
Yuming Feng* 1؛ Surdive Atamewoue Tsafack2؛ Ogadoa Amassayoga3؛ Babatunde Oluwaseun Onasanya4 | ||
1School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing 404100, P. R. China | ||
2School of Three Gorges Artificial Intelligence, Chongqing Three Gorges University, Chongqing 404100, P. R. China; Department of Mathematics, Higher Teacher Training College, University of Yaounde 1, Cameroon | ||
3Department of Mathematics, Faculty of Science, University of Yaounde 1, Cameroon | ||
4Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges University, Chongqing 404100, P. R. China; Department of Mathematics, University of Ibadan, Nigeria | ||
چکیده | ||
The concern of this paper is to show that there always exist Krasner hyperfields of order n, where n is an integer greater than or equal to 2. | ||
کلیدواژهها | ||
Krasner hyperrings؛ Krasner hyperfields | ||
مراجع | ||
[1] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and applications, International Academic Press, USA (2007). [2] C. G. Massouros, Methods of constructing hyper elds, Internat J. Math & Math. Sci., 8 (1985), 725-228. [3] D. Stratigopoulos, Hyperanneaux non-commutatifs:le radical d'un hyperanneau, somme sous-directe des hyperanneaux Artiniens et thorie des elements idempotents, C.R.Acad.Sci.Paris, serie A, 269 (1969), 627-629. [4] E. H. Moore, A doubly-in nite system of simple groups, in E. H. Moore; et al. (eds.), Mathematical Papers Read at the International Mathematics Congress Held in Connection with the World's Columbian Exposition, Macmillan & Co., (1896), 208-242. [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed, Oxford, England: Clarendon Press (1979). [6] J. Mittas, Hyperanneaux et certaines de leurs proprietes, C.R.Acad.Sc.Paris, serie A, 269 (1969), 623-626. [7] J. Mittas, Sur les Hyperanneaux et les Hypercorps, Mathematica Balkanica: Beograd 3 (1973), 368-382. [8] J. Mittas, Hyperanneaux Canoniques, Mathematica Balkanica: Beograd 2 (1972), 165-179. [9] M. Iranmanesh, M. Jafarpour, H. Aghabozorgi and J.M. ZHAN, Classi cation of Krasner Hyper elds of Order 4, Acta. Math. Sin.-English Ser. 36 (2020), 889-902. https://doi.org/10.1007/s10114-020-8282-z. [10] M. Krasner, A class of hyperrings and hyper elds, Internat. J. Math. and Math. Sci. 6 (1983), 307-312. [11] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academical Publications: Dordrecht (2003). [12] R. Ameri, M. Eyvazi and S. Hoskova-Mayerova, Advanced results in enumeration of hyper elds, AIMS Mathematics, 5 (2020), 6552-6579. [13] S. Atamewoue, S. Ndjeya, L. Strungmann and C. Lele, Codes over hyper elds, Discussiones Mathematicae General Algebra and Applications, 37 (2017), 147-160. [14] Sang-Cho Chung, Chemical Hyperstructures for Vanadium, Journal of the Chungcheng Mathematical Society 27 (2014), 309{317. DOI: 10.14403/jcms.2014.27.2.309. | ||
آمار تعداد مشاهده مقاله: 49 تعداد دریافت فایل اصل مقاله: 98 |