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ON PRIMARY HYPERIDEALS OF TERNARY

HYPERSEMIRING
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Abstract. In this article, we introduce the notions of radical of
hyperideals and primary hyperideals of a ternary hypersemiring.
We obtain some important properties of radical of hyperideals and
primary hyperideals on a particular class of hyperideals, called C-
ternary hyperideals in ternary hypersemirings. We also generalize
the concept of prime and primary avoidance theorem in ternary
hypersemirings for C-ternary hyperideals.
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1. Introduction

The theory of hyperstructures is a well established branch of clas-
sical algebraic theory. The hyperstructure theory was first introduced
by the French mathematician, F. Marty [10] in 1934. Since then, alge-
braic hyperstructures have been investigated by many mathematicians
with numerous applications in both pure and applied sciences. Alge-
braic hyperstructures are a suitable generalization of classical algebraic
structures. The concept of multiplicative hyperring was initiated by R.
Rota [12] in 1982. In [11], Procesi and Rota introduced and studied
the prime hyperideals in multiplicative hyperrings. R. Ameri, A. Ko-
rdi and S. Sarka-Mayerova introduced the notion of coprime hyperideals
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in multiplicative hypersemiring [1]. In recent years, the theory of hy-
perstructures is further developed by many researchers (see [2, 3, 14]).
The notion of ternary algebraic system was introduced by D. H. Lehmer
[9]. In 2003, Dutta and Kar introduced the notion of ternary semiring
[5], which is a generalization of the ternary ring introduced by Lister
[8]. The class of multiplicative ternary hyperring was introduced by Md
Salim, T.K. Dutta and T. Chandra [13] in 2015. After that, in 2018, N.
Tamang and M. Mandal [16] defined and studied ternary hypersemir-
ing, which is a generalization of the concept of multiplicative ternary
hyperring and ternary semiring as well.

The objective of this paper is to introduce and study radical of hy-
perideals and primary hyperideals in ternary hypersemiring. In Section
2, we recall some essential preliminaries so as to use them in the sequel.
In Section 3, we introduce the notions of C-ternary hyperideal, radical
hyperideals and primary hyperideal and study some of their properties.
Next, we prove the prime avoidance theorem (cf. Theorem 3.33) for
ternary hypersemiring. Lastly, using the technique of efficient covering
we prove the primary avoidance theorem (cf. Theorem 3.36) and an
extended version of primary avoidance theorem (cf. Theorem 3.37) for
ternary hypersemiring.

2. Preliminaries

In this section, we review some definitions and results which will be
used later.

Definition 2.1. [4] Ternary hyperoperation on a set A is a map ◦ :
A×A×A→ P ∗(A), where P ∗(A) is the collection of all subsets of A.

Definition 2.2. [16] A ternary hypersemiring (S,+, ◦) is an additive
commutative semigroup (S,+), endowed with a ternary hyperoperation
‘◦’ such that the following conditions hold:

(i) (a ◦ b ◦ c) ◦ d ◦ e = a ◦ (b ◦ c ◦ d) ◦ e = a ◦ b ◦ (c ◦ d ◦ e);
(ii) (a+ b) ◦ c ◦ d ⊆ a ◦ c ◦ d+ b ◦ c ◦ d;
(iii) a ◦ (b+ c) ◦ d ⊆ a ◦ b ◦ d+ a ◦ c ◦ d;
(iv) a ◦ b ◦ (c+ d) ⊆ a ◦ b ◦ c+ a ◦ b ◦ d; for all a, b, c, d ∈ S.

A ternary hypersemiring (S,+, ◦) is said to be commutative if for all
a1, a2, a3 ∈ S, a1 ◦a2 ◦a3 = aσ(1) ◦aσ(2) ◦aσ(3), where σ is a permutation
of {1, 2, 3}. If the inclusions in the Definition 2.2(ii), (iii) and (iv) are
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replaced by equalities, then the ternary hypersemiring is called a strongly
distributive ternary hypersemiring.

Definition 2.3. [16] Let (S,+, ◦) be a ternary hypersemiring. An ele-
ment 0 ∈ S is called a zero element or absorbing zero or simply zero of
S if 0 ∈ 0 ◦x ◦ y = x ◦ 0 ◦ y = x ◦ y ◦ 0 for all x, y ∈ S (strongly absorbing
zero if 0 ◦ x ◦ y = x ◦ 0 ◦ y = x ◦ y ◦ 0 = {0}).

Definition 2.4. [16] An additive subsemigroup T of a ternary hyper-
semiring (S,+, ◦) is called a ternary subhypersemiring if t1 ◦ t2 ◦ t3 ⊆ T
for all t1, t2, t3 ∈ T.

Definition 2.5. [16] Let (S,+, ◦) be a ternary hypersemiring. A finite
subset ε = {(ei; fi); i = 1, 2....n} of S×S is called a left (lateral or right)
identity set of S if for any a ∈ S, a ∈ Σn

i=1ei ◦ fi ◦ a (a ∈ Σn
i=1ei ◦ a ◦ fi

or a ∈ Σn
i=1a ◦ ei ◦ fi ).

A finite subset ε = {(ei; fi); i = 1, 2....n} of S×S, where S is a ternary
hypersemiring, is called an identity set if it is a left, a lateral and a right
identity set of S.

An element e ∈ S is called a hyperidentity or unital element of S if
a ∈ (e ◦ e ◦ a) ∩ (e ◦ a ◦ e) ∩ (a ◦ e ◦ e) for all a ∈ S.

Definition 2.6. [16] Let (S,+, ◦) be a ternary hypersemiring. An ad-
ditive subsemigroup I of S is called
(i) a left hyperideal of S if s1 ◦ s2 ◦ i ⊆ I for all s1; s2 ∈ S and i ∈ I.
(ii) a right hyperideal of S if i ◦ s1 ◦ s2 ⊆ I for all s1; s2 ∈ S and i ∈ I.
(iii) a lateral hyperideal of S if s1 ◦ i ◦ s2 ⊆ I for all s1; s2 ∈ S and i ∈ I.
(iv) a two sided hyperideal of S if I is both a left and a right hyperideal
of S.
(v) a hyperideal of S if I is a left, a right and a lateral ideal of S.

Definition 2.7. [16] Let (S,+, ◦) be a ternary hypersemiring. If A, B
and C are non empty subsets of S, then A◦B◦C = ∪{

∑
finite ai◦bi◦ci :

ai ∈ A, bi ∈ B, ci ∈ C}.

Throughout this paper, we denote A ◦B ◦ C by ABC.

Theorem 2.8. [12] If A, B and C are respectively right, lateral and left
hyperideals of a ternary hypersemiring S, then ABC ⊆ A ∩B ∩ C.
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3. Radical and Primary Hyperideals

Throughout the paper, unless otherwise stated S stands for a ternary
hypersemiring (S,+, ◦) with zero. Z−0 and Z+

0 denote set of all negative
integers with zero and set of all positive integers with zero respectively.

Definition 3.1. Let C = {Π2n+1
i=1 ai : ai ∈ S, n ∈ Z+

0 } be the class
of all finite ternary products of elements of a ternary hypersemiring
(S,+, ◦). A hyperideal I is called complete ternary hyperideal or C-
ternary hyperideal if for any A ∈ C, I ∩A 6= φ implies A ⊆ I.

Example 3.2. Consider the ternary hypersemiring (Z−0 ,+, ◦), where ”+”
is the standard addition of integers and hyperoperation ‘◦’ is defined by
a ◦ b ◦ c = {abc + kn : n ∈ Z−0 }, k being a fixed positive integer. Then
every hyperideal of the form mZ+

0 ,m ∈ Z
−
0 is a C-ternary hyperideal.

Example 3.3. Consider the ternary hypersemiring ([0, 1],+, ◦), where
binary operation ‘+’ and ternary hyperoperation ‘◦’ on S are defined
by a + b = max{a, b} and a ◦ b ◦ c = [0, x] respectively, where x =
min{a, b, c}. In this ternary hypersemiring, the hyperideal [0, 1

2 ] is a
C-ternary hyperideal.

Example 3.4. Corresponding the set X = {2, 3}, (Z−0 ,+, ◦) forms a
ternary hypersemiring, where ternary hyperoperation ‘◦’ is defined by
a◦b◦c = {x.a.b.c : x ∈ X}. In this ternary hypersemiring, the hyperideal
18Z−0 is not a C-ternary hyperideal. Because −18 ∈ {(−1)◦(−1)◦(−1)◦
(−1)◦(−1)◦(−1)◦(−1)}, hence {(−1)◦(−1)◦(−1)◦(−1)◦(−1)◦(−1)◦
(−1)}∩ 18Z−0 6= ∅. But −27 ∈ {(−1) ◦ (−1) ◦ (−1)◦ (−1) ◦ (−1) ◦ (−1) ◦
(−1)}, so {(−1) ◦ (−1) ◦ (−1) ◦ (−1) ◦ (−1) ◦ (−1) ◦ (−1)} * 18Z−0 .

Proposition 3.5. Intersection of arbitrary collection of C-ternary hy-
perideals {Ii : i ∈ Λ} of ternary hypersemiring (S,+, ◦) is also a C-
ternary hyperideal.

Proof. Let A ∈ C such that A ∩ (
⋂
i∈Λ

Ii) 6= φ, so A ∩ Ii 6= φ for all i ∈ Λ.

Since {Ii : i ∈ Λ} are C-ternary hyperideals of S, A ⊆ Ii for all i ∈ Λ.
So A ⊆ (

⋂
i∈Λ

Ii). Hence (
⋂
i∈Λ

Ii) is a C-ternary hyperideal. �

Definition 3.6. Let (R,+, ◦) and (S,+, ◦) be ternary hypersemirings.
A mapping f : R→ S is said to be a homomorphism if f(a+b) = f(a)+
f(b) and f(a ◦ b ◦ c) ⊆ f(a) ◦ f(b) ◦ f(c). In particular, a homomorphism
is called a good homomorphism if f(a ◦ b ◦ c) = f(a) ◦ f(b) ◦ f(c).
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Definition 3.7. Let (S,+, ◦) be a ternary hypersemiring. Then a hy-
perideal I of S, is said to be a k-hyperideal if x+ y ∈ I, x ∈ S and y ∈ I
implies x ∈ I.

Proposition 3.8. Let f be a good homomorphism from a ternary hy-
persemiring S to a ternary hypersemiring T and I, J be k-hyperideals
of S and T respectively. Then the following hold.

(i) If I is a C-ternary hyperideal of S containing the set {x ∈ S : there
exist a, b ∈ S1 such that x = a + b and f(a) = f(b)} and f is an onto
homomorphism, then f(I) is a C-ternary hyperideal of T .

(ii) If J is a C-ternary hyperideal of T , then f−1(J) is a C-ternary
hyperideal of S.

Proof. (i) Let
∏2n+1
i=1 ai∩f(I) 6= φ for some a1, a2, ..., a2n+1 ∈ T. So there

exist si ∈ S such that f(si) = ai, 1 ≤ i ≤ 2n+ 1. Then Π2n+1
i=1 f(si) ∩

f(I) = f(Π2n+1
i=1 si) ∩ f(I) 6= φ, because f is a good homomorphism. So

there exists r ∈ Π2n+1
i=1 si such that f(r) ∈ f(I). Thus f(r) = f(i) for

some i ∈ I, that implies r + i ∈ I. Since I is a k-hyperideal, r ∈ I. So
Π2n+1
i=1 si ∩ I 6= φ. Thus Π2n+1

i=1 si ⊆ I, since I is a C-ternary hyperideal of

S. Hence Π2n+1
i=1 ai = Π2n+1

i=1 f(si) = f(Π2n+1
i=1 si) ⊆ f(I).

(ii) Let Π2n+1
i=1 si ∩ f−1(J) 6= φ for some s1, s2, ..., s2n+1 ∈ S. Suppose

t ∈ Π2n+1
i=1 si ∩ f−1(J), then f(t) ∈ f(Π2n+1

i=1 si) ∩ J . It follows that

Π2n+1
i=1 f(si)∩J 6= φ. Since J is a C-ternary hyperideal of T , f(Π2n+1

i=1 si) =

Π2n+1
i=1 f(si) ⊆ J which implies Π2n+1

i=1 si ⊆ f−1(J). So f−1(J) is a C-
ternary hyperideal of S. �

Definition 3.9. A proper hyperideal P of a ternary hypersemiring S is
called a prime hyperideal of S if for any hyperideals A,B and C of S,
A ◦B ◦ C ⊆ P , then A ⊆ P or B ⊆ P or C ⊆ P .

Definition 3.10. A hyperideal P of a ternary hypersemiring S is called
completely prime if for the elements a, b and c of S, abc ⊆ P , then either
a ∈ P or b ∈ P or c ∈ P .

In a commutative ternary hypersemiring, the notions of prime hyper-
ideal and completely prime hyperideal are the same.

Definition 3.11. A hyperideal M in a ternary hypersemiring S is called
maximal if M 6= S and for any hyperideal N ⊇ M , either N = M or
N = S.
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Definition 3.12. A non-empty subset A of a ternary hypersemiring
(S,+, ◦) is called an m-system whenever for any a, b, c ∈ A, aSbSc∩A 6=
∅ or aSSbSSc ∩A 6= ∅ or aSSbScS ∩A 6= ∅ or SaSbSSc ∩A 6= ∅.

Theorem 3.13. Let I be an m-system of a ternary hypersemiring (S,+, ◦)
and N be a hyperideal of S such that N∩I = ∅. Then there exists a max-
imal hyperideal M of S containing N such that M ∩ I = ∅. Moreover,
M is also a prime hyperideal of S.

Proof. Consider the collection of hyperideals ℵ = {A : A ⊇ N, A is a
hyperideal of S such that A ∩ I = ∅}. Clearly ℵ is non-empty, since
N ∈ ℵ. Under set inclusion relation, ℵ forms a partially order set and
any chain of elements in ℵ has an upper bound which is their union. So
by Zorn’s Lemma, ℵ contains a maximal element M. Therefore from the
consideration of ℵ, M is the required maximal hyperideal of S containing
N such that M ∩ I = ∅.

If possible, let M be not a prime hyperideal of S. So there exist
hyperideals J,K,L of S such that JKL ⊆ M but J * M , K * M
and L * M. Now M ( M + J , M ( M + K, M ( M + L. So
by the given condition and maximality of M, (M + J) ∩ I 6= ∅, (M +
K) ∩ I 6= ∅ and (M + L) ∩ I 6= ∅. Then there exist i1, i2, i3 ∈ I such
that i1 = n1 + j, i2 = n2 + k i3 = n3 + l for some n1, n2, n3 ∈ M ,
j ∈ J, k ∈ K, l ∈ L. Now i1s1s2i2s3s4i3 = (n1 + j)s1s2(n2 + k)s3s4(n3 +
l) ⊆ n1s1s2n2s3s4n3 + js1s2n2s3s4n3 + n1s1s2ks3s4n3 + js1s2ks3s4n3 +
n1s1s2n2s3s4l + js1s2n2s3s4l + n1s1s2ks3s4l + js1s2ks3s4l ⊆ M for all
s1, s2, s3, s4 ∈ S. This implies i1SSi2SSi3 ∩ I ⊆ M ∩ I = φ, which is a
contradiction. Thus in any case, we get a contradiction that M ∩ I = φ.
Hence M is a prime hyperideal of S. �

Definition 3.14. Let A be a hyperideal of a ternary hypersemiring
(S,+, ◦). The intersection of all prime hyperideals of S containing A is
called prime radical or simply radical of A, denoted by Rad(A). If the
ternary hypersemiring S does not have any prime hyperideal containing
A, define Rad(A) = S.

Example 3.15. Consider the ternary hypersemiring (Z−0 ,+, ◦), where ‘◦’
is defined by a ◦ b ◦ c = (abc)Z+

0 . The radicals of the hyperideals 7Z−0
and 4Z−0 are 7Z−0 and 2Z−0 respectively.

Example 3.16. For the set X = {10, 20}, the radicals of the hyperide-
als 5Z−0 and 6Z−0 in the ternary hypersemiring (Z−0 ,+, ◦), where ‘◦’ is
defined by a ◦ b ◦ c = {x.a.b.c : x ∈ X}, are Z−0 , 3Z−0 respectively.
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Notation 3.17. For any hyperideal A of S, <(A) = {a ∈ S : a2n+1 ⊆ A,
for some integer n ≥ 0}.

Theorem 3.18. Let A be a hyperideal of a commutative ternary hyper-
semiring (S,+, ◦). Then <(A) is a hyperideal of S containing A and
<(A) ⊆ Rad(A).

Proof. Let a, b ∈ <(A) be arbitrary. Then there exist m,n ∈ Z+
0 such

that a2m+1 ⊆ A and b2n+1 ⊆ A. If m = n = 0, then {a + b} ⊆ A, so
a + b ∈ <(A). If either m > 0 or n > 0, then 2m + 2n + 1 ≥ 3. Now

(a+ b)2m+2n+1 ⊆
2m+2n+1∑

r=0

(
2m+2n+1

r=0

)
a2m+2n+1−rbr. If 2m+ 2n+ 1− r <

2m + 1, then r ≥ 2n + 1. Otherwise 2m + 2n + 1 − r ≥ 2m + 1. So in
each case, either a2m+2n+1−r ⊆ A or br ⊆ A. Thus (a+ b)2m+2n+1 ⊆ A.
Consequently a + b ∈ <(A). Again, for any x, y ∈ S and a ∈ <(A),
there exists n ∈ Z+

0 such that a2n+1 ⊆ A. Now for any t ∈ x ◦ y ◦ a,
t2n+1 ⊆ (x ◦ y ◦ a)2n+1 = x2n+1 ◦ y2n+1 ◦ a2n+1 ⊆ A, which implies
t ∈ <(A). So x◦y ◦a ⊆ <(A). Therefore <(A) is a hyperideal of S. Also
for any a, a ∈ A⇒ a1 = {a} ⊆ A⇒ a ∈ <(A). Hence A ⊆ <(A).

Let a ∈ <(A), then a2n+1 ⊆ A for some n ∈ Z+
0 . Therefore for any

prime hyperideal P of S containing A, a2n+1 ⊆ P implies a ∈ P . So
a ∈ Rad(A) and hence <(A) ⊆ Rad(A). �

Theorem 3.19. Let A be a complete ternary k-hyperideal of a commu-
tative ternary hypersemiring (S,+, ◦). Then Rad(A) ⊆ <(A) = {a ∈
S : a2n+1 ⊆ A for some integers n ∈ Z+

0 }.

Proof. Let p /∈ <(A). Then p2n+1 * A for any n ∈ Z+
0 . Since A

is complete ternary k-hyperideal, p2n+1 ∩ A = φ for all n ∈ Z+
0 . Now

consider D = ∪{p2n+1+A, for any n ∈ Z+
0 }. Let a, b, c ∈ D be arbitrary.

Then a◦b◦c ⊆ p2m1+1◦p2m2+1◦p2m3+1+A ⊆ p2(m1+m2+m3+1)+1+A ⊆ D.
Since S contains hyperidentity, D is an m-system. Here D∩A = φ. Let
if possible t ∈ D ∩ A, then t = x + y, where x ∈ p2n+1 and y ∈ A.
Thus t ∈ A and y ∈ A implies x ∈ A (since A is a k-hyperideal), which
contradicts the fact that p2n+1 ∩ A = φ for any n ∈ Z+

0 . Hence by
Theorem 3.13, there is a prime hyperideal P containing A and disjoint
from D. So p2n+1 ∩ P = φ for any n ∈ Z+

0 . Thus p /∈ P ⇒ p /∈ Rad(A),
consequently Rad(A) ⊆ <(A). �

Proposition 3.20. Let A be a C-ternary hyperideal of a ternary hyper-
semiring (S,+, ◦). Then Rad(A) is a C-ternary hyperideal of the ternary
hypersemiring S.
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Proof. Let a1◦a2◦a3◦....◦a2n+1∩Rad(A) 6= φ for some a1, a2, a3..., a2n+1 ∈
S and integers n ∈ Z+

0 . Then there exists x ∈ a1 ◦ a2 ◦ a3 ◦ .... ◦ a2n+1

such that x2m+1 ⊆ A, where m ∈ Z+
0 . Also x2m+1 ⊆ (a1 ◦ a2 ◦ a3 ◦ .... ◦

a2n+1)2m+1 implies (a1 ◦ a2 ◦ a3 ◦ .... ◦ a2n+1)2m+1 ∩ A 6= φ. Since A is
a C-ternary hyperideal of S, (a1 ◦ a2 ◦ a3 ◦ .... ◦ a2n+1)2m+1 ⊆ A. Now
for any y ∈ a1 ◦ a2 ◦ a3 ◦ .... ◦ a2n+1, y2m+1 ⊆ A, whence y ∈ Rad(A),
i.e., a1 ◦ a2 ◦ a3 ◦ .... ◦ a2n+1 ⊆ Rad(A). Thus Rad(A) is a C-ternary
hyperideal of S. �

Proposition 3.21. Let A,B and C are hyperideals of a ternary hyper-
semiring S. Then

(1) A ⊆ Rad(A).
(2) A ⊆ B ⇒ Rad(A) ⊆ Rad(B).
(3) Rad(Rad(A)) = Rad(A).
(4) Rad(A) = Rad(A2n+1) for any n ∈ Z+

0 .
(5) Rad(A+B) = Rad(Rad(A) +Rad(B)).
(6) If S is commutative and A,B,C are complete ternary k-hyperideals

of S, then Rad(ABC) = Rad(A∩B ∩C) = Rad(A)∩Rad(B)∩
Rad(C).

Proof. (1) Follows immediately from the Definition 3.14.
(2) Suppose A ⊆ B. Then any prime hyperideal P containing B

also contains A. Therefore Rad(A) ⊆ Rad(B).
(3) By (1) and (2), A ⊆ Rad(A) ⇒ Rad(A) ⊆ Rad(Rad(A)). Now

let x ∈ Rad(Rad(A)) and {Pi}i∈I be the collection of all prime
hyperideals containing A. Then Rad(A) ⊆ Pi for all i ∈ I.
So x ∈ Rad(Rad(A)) ⊆ Pi for all i ∈ I. Hence x ∈ Rad(A).
Therefore Rad(Rad(A)) = Rad(A).

(4) Since A is a hyperideal of S, A2n+1 ⊆ A for all n ∈ Z+
0 . By (2),

Rad(A) ⊇ Rad(A2n+1). Let x ∈ Rad(A). So x is in the set of all
prime hyperideals containing A. If possible, let x /∈ Rad(A2n+1).
Then there exists a prime hyperideal P containing A2n+1 and
x /∈ P. Here A2n+1 ⊆ P implies A ⊆ P , because P is a prime
hyperideal, which contradicts the fact that x in the set of all
prime hyperideals containing A. Hence Rad(A) = Rad(A2n+1)
for any n ∈ Z+

0 .
(5) We have A ⊆ Rad(A) and B ⊆ Rad(B). So A+B ⊆ Rad(A) +

Rad(B) and thus by (2), Rad(A+B) ⊆ Rad(Rad(A)+Rad(B)).
Again A ⊆ A + B and B ⊆ A + B, which implies Rad(A) ⊆
Rad(A + B) and Rad(B) ⊆ Rad(A + B). Hence Rad(A) +
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Rad(B) ⊆ Rad(A + B). Thus by (2) and (3), Rad(Rad(A) +
Rad(B)) ⊆ Rad(Rad(A+B)) = Rad(A+B). Therefore Rad(A+
B) = Rad(Rad(A) +Rad(B)).

(6) Clearly ABC ⊆ A∩B∩C. Then by (2), Rad(ABC) ⊆ Rad(A∩
B ∩ C). Let x ∈ Rad(A ∩ B ∩ C). So there exists m ∈ Z+

0 such
that x2m+1 ⊆ A∩B∩C. Then x6m+3 = x2m+1◦x2m+1◦x2m+1 ⊆
ABC, which implies x ∈ Rad(ABC). Hence Rad(ABC) =
Rad(A ∩B ∩ C).

For the second equality, let x ∈ Rad(A ∩B ∩ C). Then there
exists n ∈ Z+

0 such that x2m+1 ⊆ (A∩B∩C). Therefore x2m+1 ⊆
A, x2m+1 ⊆ B and x2m+1 ⊆ C. This implies x ∈ Rad(A), x ∈
Rad(B) and x ∈ Rad(C). So x ∈ Rad(A) ∩ Rad(B) ∩ Rad(C).
Conversely, let x ∈ Rad(A) ∩ Rad(B) ∩ Rad(C). Then there
exist r, s, t ∈ Z+

0 such that x2r+1 ⊆ A, x2s+1 ⊆ B x2t+1 ⊆ C. So

x(2r+1)(2s+1)(2t+1) ⊆ A∩B∩C, which implies x ∈ Rad(A∩B∩C).
Consequently, Rad(A) ∩ Rad(B) ∩ Rad(C) ⊆ Rad(A ∩ B ∩ C).
Hence Rad(A ∩B ∩ C) = Rad(A) ∩Rad(B) ∩Rad(C).

�

Proposition 3.22. Let I be a hyperideal in a commutative ternary hy-
persemiring S. Then Rad(I) = Rad(<(I)).

Proof. Since I ⊆ <(I), Proposition 3.21(2) implies the inclusionRad(I) ⊆
Rad(<(I)). Now for reverse inclusion, let P be any prime hyperideal
containing I. Then it is sufficient to show that <(I) ⊆ P . Consider
x ∈ <(I). Then x2n+1 ⊆ I ⊆ P for some integer n ∈ Z+

0 . So x ∈ P ,
that implies <(I) ⊆ P . Thus Rad(I) = Rad(<(I)). �

Theorem 3.23. Let S1 and S2 be commutative ternary hypersemirings,
f : S1 → S2 be a good homomorphism and I be a k-hyperideal of S2.
Then f−1(Rad(I)) = Rad(f−1(I)).

Proof. Let x ∈ f−1(Rad(I)). Then f(x) ∈ Rad(I). So there exists
an integer n ∈ Z+

0 such that f2n+1(x) = f(x2n+1) ⊆ I, which implies
x2n+1 ⊆ f−1(I). Hence x ∈ Rad (f−1(I)).

Conversely, let x ∈ Rad(f−1(I)). Then there exists an integer n ∈
Z+

0 such that x2n+1 ∈ (f−1(I)). Thus f2n+1(x) = f(x2n+1) ⊆ I. So
f(x) ∈ Rad(I), which implies x ∈ f−1(Rad (I)). Thus Rad(f−1(I)) ⊆
f−1(Rad(I)). Therefore f−1(Rad (I))=Rad (f−1(I)). �

Theorem 3.24. Let S1 and S2 be commutative ternary hypersemirings,
f : S1 → S2 be a good epimorphism and I be a k-hyperideal of S1 such
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that {x ∈ S1 : there exist a, b ∈ S1 such that x = a + b and f(a) =
f(b)} ⊆ I. Then f(Rad (I))=Rad (f(I)).

Proof. Let x ∈ f(Rad(I)). Then there exists a ∈ Rad(I) such that
f(a) = x. So there exists m ∈ Z+

0 such that a2m+1 ⊆ I. Now x2m+1 =
(f(a))2m+1 = f(a2m+1) ⊆ f(I), since a2m+1 ⊆ I. Thus x ∈ Rad(f(I)).
Hence f(Rad(I)) ⊆ Rad(f(I)).

For the converse part, let x ∈ Rad(f(I)). So x2n+1 ⊆ f(I) for some
n ∈ Z+

0 . Also there exists an element a ∈ S such that f(a) = x. Now
f(a2n+1) = (f(a))2n+1 = x2n+1 ⊆ f(I). Thus for any element p ∈ a2n+1,
there is an element i ∈ I such that f(p) = f(i). By the given condition,
p + i ∈ I and hence p ∈ I. So a2n+1 ⊆ I, which implies a ∈ Rad(I).
Thus x = f(a) ∈ f(Rad(I)). �

Definition 3.25. A hyperideal A of a ternary hypersemiring S is called
primary hyperideal of S if for any a, b, c ∈ S, abc ⊆ A and a /∈ A, b /∈ A,
implies there exists an integer n ∈ Z+

0 such that c2n+1 ⊆ A.
Theorem 3.26. Let A be a primary C-ternary hyperideal of a commuta-
tive ternary hypersemiring (S,+, ◦), then Rad(A) is a prime hyperideal
of S.

Proof. Let a ◦ b ◦ c ⊆ Rad(A) and a /∈ Rad(A), b /∈ Rad(A). Now for
any element x ∈ a ◦ b ◦ c, there exists an integer n ∈ Z+

0 such that
x2n+1 ⊆ A. This implies x2n+1 ⊆ (a ◦ b ◦ c)2n+1 = a2n+1 ◦ b2n+1 ◦ c2n+1.
So a2n+1 ◦ b2n+1 ◦ c2n+1 ∩ A 6= φ. Because A is C-ternary hyperideal,
a2n+1 ◦ b2n+1 ◦ c2n+1 ⊆ A. Now a /∈ Rad(A) and b /∈ Rad(A) implies
a2n+1 ∩ A = φ and b2n+1 ∩ A = φ respectively. For any p ∈ a2n+1,
q ∈ b2n+1, r ∈ c2n+1, we have p /∈ A and q /∈ A. Here p ◦ q ◦ r ⊆
a2n+1 ◦ b2n+1 ◦ c2n+1 ⊆ A. Since A is a primary hyperideal, there exists
an integer m ∈ Z+

0 such that r2m+1 ⊆ A. Also r2m+1 ⊆ (c2n+1)2m+1.
Hence (c2n+1)2m+1 ∩ A 6= φ, which implies (c2n+1)2m+1 ⊆ A and hence
c ∈ Rad(A). So Rad(A) is a prime hyperideal of S. �

Theorem 3.27. Let I be a proper hyperideal of a ternary hypersemiring
(S,+, ◦). Then Rad(I) = {s ∈ S: every m-system in S which contains
s has a non-empty intersection with I}
Proof. Consider Ω = {s ∈ S: every m-system in S which contains s has
a non-empty intersection with I}. Let x ∈ Rad(I) and {Pλ : λ ∈ Λ} be
the collection of all prime hyperideals of S containing I. Then x ∈ Pλ for
all λ ∈ Λ. If possible, let there exists an m-system A which contains x
and has empty intersection with I. Then by Theorem 3.13, there exists
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a prime hyperideal Pλ such that A∩Pλ = φ. Since x ∈ Pλ, we arrive at
a contradiction. So Rad(I) ⊆ Ω.

Conversely, let x ∈ Ω and {Pλ : λ ∈ Λ} be the collection of all prime
hyperideals of S containing I. If possible, let x /∈ Rad(I). Then there
exists λ ∈ Λ such that x /∈ Pλ. By Theorem 3.13, P cλ is an m-system
of S, which contains x and has empty intersection with I, which is a
contradiction. Therefore Ω ⊆ Rad(I). �

Definition 3.28. Let A be a primary complete ternary k-hyperideal. A
is called P -primary complete ternary k-hyperideal, whenever Rad(A) =
P is a prime hyperideal of a commutative ternary hypersemiring S.

Example 3.29. In the ternary hypersemiring (Z−0 ,+, ◦), where hyperop-
eration ‘◦’ is defined by a ◦ b ◦ c = {n(abc) : n ∈ Z−0 }, P = 2Z−0 is a
prime hyperideal. Here the primary complete ternary k-hyperideal 8Z−0
is a P -primary complete ternary k-hyperideal, because Rad(8Z−0 ) = P .

Proposition 3.30. If A is a complete ternary k-hyperideal and P be a
hyperideal of a commutative ternary hypersemiring (S,+, ◦), then A is
a P-primary complete ternary k-hyperideal of S if and only if

(1) A ⊆ P ⊆ Rad(A) and
(2) a ◦ b ◦ c ⊆ A and a, b /∈ A implies c ∈ P.

Proof. If A is a P-primary complete ternary k-hyperideal, then the con-
ditions (1), (2) are clearly true. For the converse part, let a ◦ b ◦ c ⊆ A
and a, b /∈ A. Then by the given conditions, c ∈ P ⊆ Rad(A), which
implies c2n+1 ⊆ A for some integer n ∈ Z+

0 . So A is a primary hy-
perideal. To show that Rad(A) = P , let x ∈ Rad(A). Then there
exists a least positive integer m such that x2m+1 ⊆ A. If m = 0,
then by (1), x ∈ P . If m ≥ 1, then x2m−1 * A. Since A is a C-
ternary hyperideal, x2m−1 ∩ A = φ. Now let y, z ∈ x2m−1. Then
y ◦ z ◦ x ⊆ x2m−1 ◦ x2m−1 ◦ x ⊆ A. So by (2), x ∈ P . Hence by
(1), P = Rad(A), thus A is a P-primary complete ternary k-hyperideal
of S. �

Proposition 3.31. Let A be a proper hyperideal of ternary hypersemir-
ing S. Then A is a primary hyperideal of S if and only if for any hy-
perideals I, J,K of S, if IJK ⊆ A, I * A and J * A, then K ⊆ <(A).

Proof. Let A be a primary hyperideal such that IJK ⊆ A, I * A, J *
A. Then there exist i ∈ I, j ∈ J such that i /∈ A and j /∈ A. Take
k ∈ K. Since ijk ⊆ IJK ⊆ A, there exists an integer n ∈ Z+

0 such that
k2n+1 ⊆ A i.e., k ∈ <(A). Therefore K ⊆ <(A).
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Conversely, let a ◦ b ◦ c ⊆ A, a /∈ A, b /∈ A. Since 〈a〉 ◦ 〈b〉 ◦ 〈c〉 ⊆
〈a ◦ b ◦ c〉 ⊆ A, 〈a〉 * A, and 〈b〉 * A, we have 〈c〉 ⊆ <(A). Thus
c2n+1 ⊆ A. So A is primary. �

Proposition 3.32. Let f be a good homomorphism from a ternary hy-
persemiring S to a ternary hypersemiring T and I, J be k-hyperideals
of S and T respectively. Then

(i) If I is a primary hyperideal of S such that {x ∈ S1 : there ex-
ist a, b ∈ S1 such that x = a + b and f(a) = f(b)} ⊆ I and f is an
epimorphism, then f(I) is a primary hyperideal of T .

(ii) If J is a primary hyperideal of T , then f−1(J) is a primary hy-
perideal of S.

Proof. (i) Let a ◦ b ◦ c ⊆ f(I), where a, b, c ∈ T and a /∈ f(I), b /∈
f(I). As f is an onto homomorphism, f(a1) = a, f(b1) = b, f(c1) = c
for some a1, b1, c1 ∈ S, where a1 /∈ I, b1 /∈ I. Here f(a1 ◦ b1 ◦ c1) =
f(a1)f(b1)f(c1) ⊆ f(I). So for any x ∈ a1 ◦ b1 ◦ c1, there exists i ∈ I
such that f(x) = f(i). Thus x + i ∈ I and hence x ∈ I. Therefore
a1 ◦ b1 ◦ c1 ⊆ I and a1 /∈ I, b1 /∈ I, which implies c2n+1

1 ⊆ I for some

n ∈ Z+
0 . So c2n+1 = f(c2n+1

1 ) ⊆ f(I). Hence f(I) is a primary hyperideal
of T .

(ii) Suppose J is a primary hyperideal of T . Let a ◦ b ◦ c ⊆ f−1(J) for
some a, b, c ∈ S and a /∈ f−1(J), b /∈ f−1(J). Now f(a) ◦ f(b) ◦ f(c) =
f(a ◦ b ◦ c) ⊆ J and f(a) /∈ J, f(b) /∈ J . As J is a primary hyperideal
of T , f(c2n+1) = f(c)2n+1 ⊆ J for some n ∈ Z+

0 . So c2n+1 ⊆ f−1(J).
Consequently f−1(J) is a primary hyperideal of S. �

Theorem 3.33 (The Prime Avoidance Theorem). Let I be an arbitrary
hyperideal in a ternary hypersemiring (S,+, ◦) and P1, P2, ..., Pn be k-
hyperideals of S such that at least n−2 of which are C-ternary hyperideals
as well as completely prime hyperideals. If I ⊆ P1 ∪ P2 ∪ ... ∪ Pn, then
I ⊆ Pi, for some i.

Proof. The proof is by induction on n ≥ 2. For n = 2 suppose I ⊆
P1 ∪ P2. If I * P1, then there exists x ∈ I such that x /∈ P1. Since
I ⊆ P1 ∪ P2, so x ∈ P2. Take y ∈ I ∩ P1. Then x + y ∈ I ⊆ P1 ∪
P2. If x + y ∈ P1, then x ∈ P1(since P1 is a k-hyperideal),which is a
contradiction. Thus x + y ∈ P2, which implies y ∈ P2. So I ∩ P1 ⊆ P2.
Now I = (I ∩ P1) ∪ (I ∩ P2) ⊆ P2. So either I ⊆ P1 or I ⊆ P2.

Assume the result is true for n− 1, n ≥ 3. Let I ⊆ P1 ∪ P2 ∪ ... ∪ Pn,
where at least n − 2 of the Pi are completely prime. Suppose that
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I * P1 ∪ P2 ∪ ..Pi−1 ∪ Pi+1.. ∪ Pn for all i. Then there exists xi ∈ I
such that xi /∈ Pj for all i 6= j. So we must have xi ∈ Pi. Since n ≥ 3,
at least one of the Pi is completely prime hyperideal. Without loss
of generality, let us assume that P1 is a completely prime hyperideal.
Consider the set X = {x1}+ xn+1

2 ◦ x3 ◦ ... ◦ xn ⊆ I ⊆ P1 ∪P2 ∪ ...∪Pn.

Here xn+1
2 ◦ x3 ◦ ... ◦ xn ⊆ Pi, where i 6= 1(since Pi is a hyperideal and

xi ∈ Pi). Now for each y ∈ xn+1
2 ◦ x3 ◦ ... ◦ xn, x1 + y ∈ Pi for some i.

If for i ≥ 2, x1 + y ∈ Pi, then x1 ∈ Pi, which is a contradiction. Thus
x1 + y ∈ P1 and hence y ∈ P1. So (xn+1

2 ◦ x3 ◦ ... ◦ xn) ∩ P1 6= φ, which

implies (xn+1
2 ◦ x3 ◦ ... ◦ xn) ⊆ P1. Hence xk ∈ P1 for some k = 2, 3, .., n,

which is also a contradiction. Therefore I ⊆ P1∪P2∪ ..Pi−1∪Pi+1..∪Pn
for some i. By induction assumption, I ⊆ Pi for some i. �

Definition 3.34. Let I, I1, I2, ..., In be hyperideals of a ternary hyper-
semiring S. The collection {I1, I2, ..., In} is said to be a cover of I if
I ⊆ I1 ∪ I2 ∪ ... ∪ In. We call such a cover of I efficient, if I is not
contained in the union of any n− 1 of the hyperideals I1, I2, ..., In.

Proposition 3.35. Let (S,+, ◦) be a commutative ternary hypersemir-
ing and let {Q1, Q2, ...., Qn} be an efficient covering of the hyperideal I,
where Q1, Q2, ...., Qn are k-hyperideals of S. If Rad(Qi) * Rad(Qj) for
each i 6= j, then no Qk is a primary hyperideal of S.

Proof. We first prove that for efficient covering {Q1, Q2, ...., Qn} of I,
∩i 6=kQi = ∩ni=1Qi for all k. Let x ∈ ∩i 6=kQi. Since the cover is efficient,
there exists xk ∈ Qk ∩ I such that xk /∈ ∪i 6=kQi. Now consider the
element x + xk in I. If x + xk ∈ Qi for i 6= k, then xk ∈ Qi for
all i 6= k, which is a contradiction. Thus x + xk ∈ Qk and hence
x ∈ Qk. So ∩i 6=kQi = ∩ni=1Qi. Now if possible, let Qk be a primary

hyperideal of S. Here I ◦ I ◦Qn+1
1 ◦Q2 ◦ .. ◦Qk−1 ◦Qk+1 ◦ .. ◦Qn ⊆ Qi

for all i 6= k. Since I ∩ (∩ni=1Qi) = I ∩ (∩i 6=kQi) ⊆ I ∩ Qk ⊆ Qk,

we get I ◦ I ◦ Qn+1
1 ◦ Q2 ◦ .. ◦ Qk−1 ◦ Qk+1 ◦ .. ◦ Qn ⊆ Qk. As I *

Qk, by Proposition 3.31, Qi ⊆ <(Qk). Therefore by Proposition 3.22,
Rad(Qi) ⊆ Rad(<(Qk)) = Rad(Qk), which contradicts the hypothesis.
Hence the result. �

Using Proposition 3.35, we obtain the following Theorem.

Theorem 3.36 (The Primary Avoidance Theorem). Let I be an arbi-
trary hyperideal in a commutative ternary hypersemiring (S,+, ◦) and
Q1, Q2, ..., Qn be k-hyperideals of S such that at least n− 2 of which are
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primary hyperideals. If I ⊆ Q1 ∪Q2 ∪ ... ∪Qn and Rad(Qi) * Rad(Qj)
for each i 6= j, then I ⊆ Qi for some i.

Proof. Without loss of generality, assume that the cover is efficient. By
Proposition 3.35, n 6 2. For n = 2, I ⊆ Q1 ∪Q2 implies either I ⊆ Q1

or I ⊆ Q2, which contradicts the fact that the cover is efficient. Hence
n = 1. �

In the next Theorem, we extend the Primary Avoidance Theorem for
class of complete ternary hyperideals in a ternary hypersemiring S.

Theorem 3.37 (Extended Version of Primary Avoidance Theorem).
Let S be a commutative ternary hypersemiring and P1, P2,....,Pn be C-
ternary primary k-hyperideals of S, such that Rad(Pi) * Rad(Pj) for all
i 6= j. Let T be a hyperideal of S such that aSS+T * ∪ni=1Pi, for some
a ∈ S. Then there exists a subset T1 of T such that a+ T1 * ∪ni=1Pi.

Proof. Assume that a lies in all of P1, P2,....,Pk but none of Pk+1,....,Pn.
If k = 0, then a + 0 /∈ ∪ni=1Pi. So consider k ≥ 1. Now T * ∪ki=1Pi.

If T ⊆ ∪ki=1Pi, by Theorem 3.36, T ⊆ Pi for some 1 ≤ i ≤ k. Thus
aSS + T ⊆ Pi ⊆ ∪ni=1Pi, which is a contradiction. So there exists an
element p ∈ T such that p /∈ ∪ki=1Pi. Also Pk+1 ∩ .... ∩ Pn * P1 ∪
P2 ∪ ... ∪ Pk. If Pk+1 ∩ .... ∩ Pn ⊆ P1 ∪ P2 ∪ ... ∪ Pk, then by Theorem
3.36, Pk+1 ∩ .... ∩ Pn ⊆ Pj for some 1 6 j 6 k. Thus Rad(Pk+1) ∩ ... ∩
Rad(Pn) = Rad(Pk+1 ∩ .... ∩ Pn) ⊆ Rad(P j) by Proposition 3.21. Since

(Rad(Pk+1))n−kRad(Pk+2)...Rad(Pn) ⊆ Rad(Pk+1∩....∩Pn) ⊆ Rad(P j)
and Rad(P j) is prime hyperideal, by Theorem 3.26, Rad(P l) ⊆ Rad(P j)
for k + 1 6 l 6 n, which contradicts the hypothesis. Thus there exists
c ∈ Pk+1 ∩ .... ∩ Pn such that c /∈ P1 ∪ P2 ∪ ... ∪ Pk. Now p ◦ c ◦ c ⊆ T
and p ◦ c ◦ c ⊆ Pk+1 ∩ .... ∩ Pn but p ◦ c ◦ c * P1 ∪ P2 ∪ ... ∪ Pn. If
p ◦ c ◦ c ⊆ P1 ∪ P2 ∪ ... ∪ Pk, then p ◦ c ◦ c ⊆ Pi for some 1 6 i 6 k.
This implies either p ∈ Rad(Pi) or c ∈ Pi, which is also a contradiction.
Consider T1 = p ◦ c ◦ c, then a + T1 * ∪ni=1Pi. Since each Pi is a C-
ternary primary k-hyperideal of S and a ∈ ∪ki=1Pi −∪nj=k+1Pj , we have

T1 ⊆ ∪nj=k+1Pj − ∪ki=1Pi. �

4. Conclusion

In this paper, radical of hyperideals and primary hyperideals of a
ternary hypersemiring have been introduced and studied. The prime and
primary avoidance theorems for C-hyperideals in ternary hypersemiring,
have been generalized. There is a huge scope of further study on ternary
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hypersemirings, in terms of prime and primary hyperideals. Moreover,
the results obtained in this article, can be extended to some other alge-
braic systems like gamma-semirings, partially ordered ternary semirings
etc. and also to fuzzy and intuitionistic fuzzy settings.
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