Journal of Hyperstructures 9 (2) (2020), 1-33.
ISSN: 2322-1666 print/2251-8436 online

GENERALIZATIONS OF PRIME FUZZY IDEALS
OF A LATTICE

SHRIRAM KHANDERAO NIMBHORKAR AND YOGITA SUBHASH PATIL

ABSTRACT. As a generalization of the concepts of a fuzzy prime
ideal and a prime fuzzy ideal, the concepts of a fuzzy 2-absorbing
ideal and a 2-absorbing fuzzy ideal of a lattice are introduced. Some
results on such fuzzy ideals are proved. It is shown that the radical
of a fuzzy ideal of L is a 2-absorbing fuzzy ideal if and only if it is a
2-absorbing primary fuzzy ideal of L. We also introduce and study
these concepts in a product of lattices.
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1. INTRODUCTION

Zadeh [11] developed the concept of a fuzzy set. Gugan [13] general-
ized this concept by taking the evaluation set as a lattice. Ajmal and
Thomas [3] defined a fuzzy lattice and a fuzzy sublattice as a fuzzy al-
gebra. Attallah [7], Koguep et.al. [1] and Davvaz and Kazanci [3] have
studied fuzzy sublattices, fuzzy ideals, fuzzy prime ideals in lattices.

The notion of a 2-absorbing ideal of a commutative ring was intro-
duced by Badawi [1]. A proper ideal I of a commutative ring R is said
to be a 2-absorbing, if whenever a,b,c € R,abc € I then either ab € I
or ac € I or bc € I. This concept was generalized by Anderson and
Badawi [0], Payrovi and Babaei [15], Badawi and Darani [2], Chaudhary
[12], Yuand and Wu [5] and Wasadikar and Gaikwad [10, 9] in other
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mathematical structures such as semirings, semigroups, submodules and
lattices.

In this paper, we introduce the concepts of a fuzzy 2-absorbing ideal
and a 2-absorbing fuzzy ideal of a lattice L. This is a generalization
of the concepts of a fuzzy prime ideal and a prime fuzzy ideal of L
introduced by Koguep et. al. [1]. Also we define a primary fuzzy ideal
and the radical of a fuzzy ideal of L. Some properties of these fuzzy
ideals are proved. We also introduce and study these concepts in a
product of lattices.

2. PRELIMINARIES
Throughout in this paper, L = (L, A, V) denotes a lattice with 0. We
recall some concepts and results.
Definition 2.1. A fuzzy subset p of L is a function p: L — [0, 1].

Definition 2.2. [5] A fuzzy subset p of L is called proper if it is a
non-constant function.

Definition 2.3. [1] For any « € [0, 1] the set uo, = {x € L/u(z) > a}
is called the a—cut of p or a-level set and p,+ = {x € L/u(x) > a} is
called the strong a—cut of pu.

Definition 2.4. [1] A fuzzy subset u of L is called a fuzzy sublattice of
Lif p(z ANy) A p(xVy) > min{p(x),u(y)} for all z,y € L.

Definition 2.5. [1] A fuzzy sublattice p of L is called a fuzzy ideal of
L if p(x Vy) = pu(x) A p(y) for all x,y € L.

Definition 2.6. [3] For fuzzy subsets p, n of L, i C nmeans p(z) < n(x)
for all x € L.

The following result is from [7].
Lemma 2.7. Let o be a fuzzy sublattice of L. Then p is a fuzzy ideal
of L if and only if u(x) < u(y) whenever, x >y for all x,y € L.

3. Fuzzy PRIME IDEALS AND PRIME FUZZY IDEALS OF A LATTICE

The following concept is well-known in lattice theory, see Gréatzer [11].

Definition 3.1. A nonempty subset I of a lattice L is called an ideal,
if for a,b € L, the following conditions hold.

(i) Ifa,be I, thenaVvbel and (ii) if a < band b € I, then a € I.

A proper ideal I (i.e. I # L) is called a prime ideal, if a A b € I implies
that eithera € T or b € I.
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Koguep et. al. [1], have defined a fuzzy prime ideal and a prime fuzzy
ideal as follows.

Definition 3.2. A proper fuzzy ideal u of a lattice L is called a fuzzy
prime ideal, if for all a,b € L, p(a Ab) < p(a) Vv u(b).

In fact, a proper fuzzy ideal u of L is fuzzy prime if and only if for all
a,b€ L, p(a Ab) = pla) V p(b).

Definition 3.3. A fuzzy ideal u of L is called a prime fuzzy ideal of L
if for any two fuzzy ideals o and 0 of lattice L if o A 0 C u imply that
either 0 C p or 0 C p.

We have the following theorem.

Theorem 3.4. Let I be an ideal of L and x1 denote the characteristic
function of I.

(i) I is a prime ideal of L if and only if x1 is a fuzzy prime ideal of L.
(i) I is a prime ideal of L if and only if x1 is a prime fuzzy ideal of L.

Proof. Clearly, xr is a fuzzy ideal of L.
(i): Suppose that [ is a prime ideal of L.
Let a,b € L. We need to show that

xr(aAb) = xr(a) Vv xr(b).

If a,b € I, then a Ab € I and we have
xr(anb)=1=1V1=xs(a)V xr(b).

If a,b ¢ I, then as I is a prime ideal, a A b ¢ I and we have
x1(aAb)=0=0V0=xs(a)V xi(b).

If only one of @ or b isin I, say a € I. Then a Ab € I. We have

xr(a) = xr(aAb) =1 and x;(b) = 0. Thus
xr(aAb)=1=1V0=xz(a)Vxi(b).

Thus x7 is a fuzzy prime ideal of L.
Conversely, suppose that x; is a fuzzy prime ideal of L.
Let anb e I. Then

(3.1) xr(aANb) =1= xr(a)V xr(b).

If both a,b ¢ I, then x(a) = x7(b) = 0 implies that x;(a)Vxr(b) =0,
which contradicts (3.1).
Hence I must be a prime ideal of L.
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(ii): Suppose that I is a prime ideal of L.
Let 0,60 be fuzzy ideals of L. Suppose that c N8 C x.
If o & xr1, 0 € X1, then there exist a,b € L such that
x1(a) < o(a) and x;(b) < 6(b).
By the definition of x;, we conclude that a,b ¢ I. For, if say a € I, then
x1(a) =1 leads to 1 < o(a), which is not possible.
Since [ is a prime ideal of L, we get a Ab ¢ I. Hence xr(a Ab) = 0.
Since o, 0 are fuzzy ideals of L, we have
o(a) <o(anbd)and §(b) < 0(aNb).
As the image of any element under a fuzzy set is a nonnegative number,
from the above, we get

xr(anb) =0

< xi(a) A (b)
< o(a)NE(b)
<ao(aNb)ANB(aNDb)
=(cnNb)(anbd) <xr(aAb)
=0.

Thus we get 0 < 0 which is not possible.

Hence either o C xy or 8 C x7.

Conversely, suppose that x7 is a prime fuzzy ideal of L.

Suppose that for some a,b € L, a Ab € I but a,b ¢ I.
Define fuzzy ideals ¢ and 0 of L as follows.

o(z) = { 1, if; z € (a;

0 otherwise

_ [ 1, ifyr e (B];
0(x) = { 0 otherwise.

Then o N @ C x5 but neither o C x7 nor § C xy, a contradiction.
Hence I is a prime ideal of L. [l

The following example shows that the condition of “primeness”in The-
orem 3.4 is necessary.

Example 3.5. Consider the lattice L shown in Figure 1. We note that
the ideal I = (0] is not a prime ideal of L, as a Ab = 0 € I but neither
a€l,norbel.

(i): We have xr(a Ab) =1 and xr(a) = x7(b) = 0.
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Thus xr(a Ab) £ x1(a) V x1(b) = 0.
Hence x7 is not a fuzzy prime ideal of L.

1

0

L
Figure 1

(ii): Define fuzzy ideals o and 6 of L as follows.
0(0)=1,0(1)=0(b) =0, o(a) =1/2.
0(0)=1,6(1) =60(a) =0, 6(b) =1/3.

Then o N @ C x5 but neither o C x7 nor 4§ C y;y.
Thus x7 is not a prime fuzzy ideal of L.

Koguep et. al. [1], have given an example of a fuzzy prime ideal of
a lattice, which is not a prime fuzzy ideal. But no example of a prime
fuzzy ideal of a lattice is given by them. We pose the following question.

Question: Let L be a lattice with 0 (least element) and 1(greatest
element). Whether a prime fuzzy ideal, other than the characteristic
function of a prime ideal of L exists?

The following example indicates nonexistence of a prime fuzzy ideal
(other than the characteristic function of a prime ideal) of a lattice.

Ezample 3.6. Consider the lattice L, shown in Figure 1. Any fuzzy ideal
of L is of the form (or similar form with appropriate changes).

1(0) =1, p(1) =0, p(a) =0, p(b) = 5.

Consider the fuzzy ideals o, 0 of L defined by

0(0)=1,0(1)=0,0(a) =0, o(b) =B+, where 0 < v < 1.
0(0)=1,6(1)=0,0(a) =a+, 6(b) =0.

Then 0 NG C u but neither ¢ C p nor 6 C p.

4. Fuzzy 2-ABSORBING IDEALS

The following definition is from Wasadikar and Gaikwad [10].
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Definition 4.1. Let L be a lattice with 0. An ideal I of L is called
a 2-absorbing ideal, if for a,b,c € L, a A b A c € I implies that either
aNbelorbANcelorcNhacl.

We extend the concept of a 2-absorbing ideal, in the context of a fuzzy
ideal of a lattice and prove some properties of fuzzy 2-absorbing ideals
of a lattice. We denote the set of all fuzzy ideals of L by FI(L).

Definition 4.2. A proper fuzzy ideal p of a lattice L is called a fuzzy
2-absorbing ideal of L if for all a,b,c € L,

wlaANbAc) <max{u(a Ab),u(bAc),ulcha)}.

Since p(a A b), (b A ¢), u(c A a) are nonnegative real numbers, the
definition of a fuzzy 2-absorbing ideal is equivalent to
w is a fuzzy 2-absorbing ideal iff for all a,b,c € L,

wlaNbAe) < ulaANb)V ulbAc)VulcAa).
In fact, p is a fuzzy 2-absorbing ideal iff for all a,b,c € L,

planbAce)=puland)VubAc)VulcNa).
Lemma 4.3. Let I be an ideal of L. Then I is a 2-absorbing ideal of L
if and only if x1 is a fuzzy 2-absorbing ideal of L.
Proof. Suppose that I is a 2-absorbing ideal of L. Let a,b,c € L.
IfanbAcel, then as I is 2-absorbing, either

aANbelorbANcelorchacl.
Thus in this case,
xr(aAbAe) <xr(anb)Vxr(bAc)V xi(cAa).

IfaANbAcé¢I, then clearly, aNb¢ I, bAc¢ T andcha ¢ 1.
Thus in this case also,

xr(aAbAe) < xr(anb)Vxr(bAce)V xi(cAa).

Hence x7 is a fuzzy 2-absorbing ideal of L.
Conversely, suppose that x7 is a fuzzy 2-absorbing ideal of L.
Let a,b,c € L be such that aAbAc e I, but aAb& I, bAc ¢ I and
chaé¢l.
This implies that

xr(aAbAc)=1and xr(aNb)=xr(bAc)=xi(cNa)=0.

Then xr(a AbAc) £ xi(anb)V xi(bAc)V xi(eAa), a contradiction,
as xy is fuzzy 2-absorbing. O
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The following lemma shows that any level set of a fuzzy 2-absorbing
ideal of L is a 2-absorbing ideal of L.

Lemma 4.4. A fuzzy ideal p of L is a fuzzy 2-absorbing ideal if and

only if for each t € Image(u), the level ideal py is a 2-absorbing ideal of
L.

Proof. (i): Let u be a fuzzy 2-absorbing ideal of L. Let t € Image(pu).
Let a,b,c € L be such that a AbAc € py. Then t < p(a AbAc).
Since p is a fuzzy 2-absorbing ideal,

(4.1) t<planbAc)<planb)VulbAc)Vulea).

Since ¢, u(a A b), u(b A ¢), u(c A a) are nonnegative real numbers, if
planbd) <t, p(bAe) <tand plcAa)<t,

then

(4.2) plaNbAe) <plaAb)VulbAc)Vulcha)<t.

Thus (4.1) and (4.2) lead to ¢t < ¢, which is not possible.
Hence

t<ulanb)ort<pubAc)ort<pulcAa).
Thus either
aAborbAcorcAa €

i.e. u is a 2-absorbing ideal of L.

(ii): Let u; be a 2-absorbing ideal of L for each ¢t € I'mage(u).
Let a,b,c € L and u(a AbAc) =t.

Then a Ab A c € . Since uy is a 2-absorbing ideal of L, either

aANborbAcorcha€ .
This implies that
t<uplanbAce) <pulanb)VubAc)Vulcha).
Thus p is a fuzzy 2-absorbing ideal of L. O

Now we show that every fuzzy prime ideal of L is a fuzzy 2-absorbing
ideal.

Lemma 4.5. Let p be a fuzzy prime ideal of L. Then u is a fuzzy
2-absorbing ideal of L.
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Proof. Let u be a fuzzy prime ideal of L. Then for all a,b € L,
u(a Ab) < pfa) V p(b).

Hence for all a, b, c € L, we have

plaANbAc) < p(aAd)V p(c),

wlaNbAe) < ulbAc)V ula),

wlaNbAc) <ulcha)V u).
Hence
(4.3) wlanbAc) <puland)Vule)VubAc)Vu(a)VulcAa)V ub).

By the definition of a fuzzy ideal, it follows that for any z,y € L,
w(@) < p(z Ay).
Hence (4.3) reduces to
pwlanbAe) <puland)VubAc)VuleNa).
Thus p is a fuzzy 2-absorbing ideal of L. O

The following example shows that the converse of Lemma 4.5 does
not hold.

FEzample 4.6. Consider the lattice L shown in Figure 1. Let p be the
fuzzy set defined by p(0) =1, u(a) = 0, u(b) = 1/2, u(1) = 0.

Then p is a fuzzy 2-absorbing ideal of L.

However, u is not a fuzzy prime ideal as

1=p(0) =planb) #0V1/2=pla)V ub).
Lemma 4.7. The intersection of any two distinct fuzzy prime ideals of
L is a fuzzy 2-absorbing ideal of L.

Proof. Let u,0 be two distinct fuzzy prime ideals of L.
We know that for any a € L, (uN0)(a) = u(a) A 6(a).
Let a,b,c € L. We have

(4.4) (uné@)anbAc)=pulaNbAc) NO(aNbAc)
Since every fuzzy prime ideal is fuzzy 2-absorbing, from (4.4), we get
(uN@)aNnbAc)
(4.5) < [ulaAND)V u(bAc)V ulcAa)l

AN[B(aNb)VODAC)VO(cAa)l.
Since p and 6 are fuzzy prime ideals, we can write

pla Ab)V (b Ac) V(e Aa) < pla) V u(b) V u(c)
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and

Oanb)VObAC)VEOcAa)<O(a)VODb)Voc).
We note that all the terms on the right hand side of (4.5) belong to the
distributive lattice [0, 1]. Hence we can write

(11 0)(a N DA E) < (@) V u(b) V ()] A [0(a) V O(B) v O(c)
= [u(a) Ab(a)] V [p(a) A OD)] V [p(a
V [u(b) A O(a)] V [u(b) A O(B)] V [M
V [ule) Ab(a)] V [u(c) A O(b) v
For any fuzzy ideal o, we have o(x Yy
Hence pu(x) < p(x Ay) and 0(y) <
This implies
(@) NO(y) < p(z Ay) AB(z Ay) = (pNO)(z Ay).
Applying this to the R. H. S. of (4.6), we get
(1N0)(aAbAC) < (1NB)(a) V (1N 0)(a AB)V (N O)(bAC)
V (N6) (e Aa)V (1N B)(b) V (11 6)(0).
Since p N O is a fuzzy ideal, for all z,y € L, we have
(LNo)(z) < (wNO)(z Ay).
Applying this to the R. H. S. of (4.7), we get
(unB)(anbAc) < (uN@)(anb)V(uNO)bAc)V (LNb)(cAa).

Thus p N @ is a fuzzy 2-absorbing ideal of L. O

(4.6)

) <o(zAy), forallx,yEL.
O(x Ay) for all x,y € L.

(4.7)

The following example shows that the condition of “primeness”in
Lemma 4.7 is necessary. This example also shows that in general the in-
tersection of two fuzzy 2-absorbing ideals need not be a fuzzy 2-absorbing
ideal.
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FEzample 4.8. Consider the lattice shown in Figure 2.

Figl(l)re 2
Define v : L — [0,1] and 6 : L — [0, 1] as follows.
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We note that p and 6 are fuzzy 2-absorbing ideals of L.

For

p(dAen f)=p(c) and p(dAe) = ple A f) = u(f Ad) = p(c).
p(gARAi) = p(c) =1/2and p(gAh) = p(d) = 1/2, p(hAi) = p(f) =0,
(i A g) = p(e) = 0.

Similarly for other elements.

OdNneNf)=06(c)and O(dNe)=0(eN f)=0(fNd)=06(c).
O(gNANhANi)=0(c)=1/3and (g ANh) =6(d) =0, 0(hANi)=0(f) =0,
O(iNg)=20(e) =1/3.

Similarly for other elements.

We have
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(1N 0)(0) = min{p(0),0(0)} = min{3/4,3/4} = 3/4.
(kN 0)(a) = min{u(a),6(a)} = min{2/3,1/3} = 1/3.
(kN 0)(b) = min{u(b),0(b)} = min{2/3,1/3} =1/3.
(11 0)(c) = minpu(c), B(c)} = min{1/2.1/3} = 1/3.
(11 0)(d) = min{u(d), 6(d)} = min{1/2,0} = 0.
(11 0)(e) = mindpu(e), 0(e)} = min{0,1/3} = 0.
(11 0)(f) = mindpu(/), 6(f)} = min{0,0} = 0.

(11 0)(g) = min{u(g), 6(g)} = min{0, 0} = 0.

(111 0)(h) = min{p(h), 6(h)} = min{0,0} = 0.

(11 0)(i) = min{u(i), 0(i)} = min{0,0} = 0.

(11 0)(1) = min{u(1), 6(1)} = min{0, 0} = 0.

(1N 0)g AR AT = (1N0)(C) = 1/3.
(LNO)(gNAh)=(un6)(d)=0.

(1 0)(h AT) = (11 6)(f) = 0.

(N10)i )= (1000 =0

Thus

(LN O)(g AhAd) £ max{(pNO)(gAh), (LN O)(hAD), (LN O)(iAg)}.
Hence p N @ is not a fuzzy 2-absorbing ideal of L.

5. 2-ABSORBING Fuzzy IDEALS

Now we introduce the concept of a 2-absorbing fuzzy ideal on the lines
of a prime fuzzy ideal.

Definition 5.1. A proper fuzzy ideal p of L is called a 2-absorbing
fuzzy ideal of L if whenever 0NnNv C p for 0,n,v € FI(L), then either
ONnCupuornNuvCuorfdnNuvC pu.

The following example shows that the concept of a “fuzzy 2-absorbing
ideal”is different from that of a “2-absorbing fuzzy ideal”.

Ezample 5.2. Consider the following fuzzy ideals of the lattice L shown
in Figure 1.
n= {(07 7/8)7 (a7 1/3)7 (b7 3/4) (1 1/3)}7
= {(07 1)7 (a7 1/4)7 (b7 4/5) (1 1/4)}
= {(07 1)7 (a7 3/4)7 (b7 2/3) ( 2/3)}
Y= {(0, 4/5)7 (a, 3/4), (b7 4/5) (17 3/4)}a
We note that (i) p is a fuzzy 2-absorbing ideal and (ii) n Nv Ny C p.

But nNv g p,nNy ¢ pandyNv ¢ pu.
Thus p is not a 2-absorbing fuzzy ideal.

Lemma 5.3. Let I be an ideal of L. If x1 is a 2-absorbing fuzzy ideal
of L, then I is a 2-absorbing ideal of L.
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Proof. Suppose that x; is a 2-absorbing fuzzy ideal of L.

Let aAbAc e I for some a,b,c € L. Suppose that aAb ¢ I, bAc ¢ I
and cAa ¢ 1.

Then clearly, a,b,c ¢ I.

Define fuzzy ideals

1, ifz e (a,
0 otherwise.

6(x) — {1, if x € (b],

0 otherwise.
1, ifz e (d,
0 otherwise.

‘We note that

1, ifze(aNbAd],
0 otherwise.

(umemm@:)—{

Then pNONnC xrbut puNZ xr,0Nn & xrand pNn & xy.
This contradicts the assumption that x; is a 2-absorbing fuzzy ideal. [

Remark 5.4. However, we are unable to prove or disprove that if [ is a
2-absorbing ideal of L, then x; is a 2-absorbing fuzzy ideal of L.

Lemma 5.5. Fvery prime fuzzy ideal of a lattice L is a 2-absorbing
fuzzy ideal of L.

Proof. Let pu be a prime fuzzy ideal of L. Suppose that 0,n,v € FI(L)
and 0NnNv C u. As pis a prime fuzzy ideal of L we have either
(énNnnCporv Cpu,or(2)0Nv CpuornCp,or (3) nNv C por
0 C pu.

Without loss of generality, suppose that 6 N1 C p or v C pu.

If # Ny C p then the proof is obvious and if v C p then § N C p and
nNv C pu. Thus p is a 2-absorbing fuzzy ideal of a lattice L. O

We are unable to give an example to show that the converse of Lemma
5.5 does not hold.

Proposition 5.6. The intersection of two prime fuzzy ideals of L is a
2-absorbing fuzzy ideal of L.
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Proof. Let p and § be two distinct prime fuzzy ideals of L. Assume that
0,n,v are fuzzy ideals of L such that
onnNvCpundbut 0NnZ pund, 0Nv g pndand nNv € pNé.
Clearly, onnNv Cpand 6Nnnv CJ.

Since p and  are prime fuzzy ideals, we have
(i)dnNnCporvCpand (ii) #NnCéorv .

We have the following cases:

Case(1): If 0nn C pand 6 Ny C §, then we have 6 N C pNd, a
contradiction.

Case(2): If v C pand v C 4, then we get #Nv C pN4, a contradiction.
Case(3): Let 0Ny C pand v C 6. As u is a prime fuzzy ideal, we get
either 8 C p or n C p. Hence either 6Ny CuNdornNev C uNnd, a
contradiction in either case.

Case(4): Let v C pand Ny CJ. As 0 is a prime fuzzy ideal, we get
either 8 C § or n C §. Hence either 6Nv C uNdornnNev C uNnd, a
contradiction in either case.

Hence at least one of N7y or 0 Nv or n N v must be a subset of ©NJ.
Therefore © N ¢ is a 2-absorbing fuzzy ideal. O

6. FUzZzy PRIMARY IDEALS

The following definition is from Wasadikar and Gaikwad [10].

Definition 6.1. Let L be a lattice with 0. An ideal I of L is called
a primary ideal, if for a,b € L, a Ab € I implies that either a € I or
b € VI, where /T denotes the radical of I (i.e. the intersection of all
prime ideals containing I).

If there does not exist a prime ideal containing an ideal [ in a lattice L
then we define v/T = L.

We define the radical of a fuzzy ideal. Since there are two concepts of
primeness (namely, a fuzzy prime ideal and a prime fuzzy ideal), we can
introduce two concepts of the radical and primariness. For the radical of
a fuzzy set, we use the notation \/u. The context will decide the radical
(i.e. whether fuzzy prime radical or prime fuzzy radical).

Definition 6.2. Let p be a fuzzy ideal of a lattice L. We define the
fuzzy prime (respectively, prime fuzzy) radical of p as the intersection
of all fuzzy prime (respectively, prime fuzzy) ideals containing p and we

denote it by /u.

We note that for a fuzzy ideal p of L always u C \/p.
It can be shown that for an ideal I of L, \/X1 = Xx,/7-
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Wasadikar and Gaikwad, [10, 9] have introduced and studied the con-
cepts of a primary ideal and a 2-absorbing primary ideal in a lattice.
We introduce the concept of a fuzzy primary ideal of a lattice.

Definition 6.3. A proper fuzzy ideal p of a lattice L is called a fuzzy
primary ideal of L, if for a,b € L,

ula Ab) < pla) v y/i(b).

Lemma 6.4. Let I be a proper ideal of L. Then I is a primary ideal of
L if and only if x1 is a fuzzy primary ideal of L.

Proof. Suppose that I is a primary ideal of L. Let a,b € L.
(i) If a Ab € I, then as I is a primary ideal of L, either a € I or b € /1.
Hence

xr(aAb) < x@)V/x1(b).

(ii)) If a Ab ¢ I, then clearly a ¢ I and b ¢ I. In this case also
xr(a Ab) < x(a)V /xi(b).

Thus x7 is a fuzzy primary ideal of L.

Conversely, suppose that xr is a fuzzy primary ideal of L.
Let aAbe I. Then

xr(aAb) < xea)V/xi(b),
implies that either y;(a) =1 or /x7(b) = 1.
Thus either a € I or b € /1. O

Now we give a relationship between a fuzzy prime ideal and a fuzzy
primary ideal.

Lemma 6.5. If u is a fuzzy prime ideal of L, then u is a fuzzy primary
ideal of L.

Proof. Let pu be a fuzzy prime ideal of L. For all a,b € L,
planb) < p(a) V p(d).
Since p C /i, we get the result. O

The following example shows that the converse of Lemma 6.5 does
not hold.

Example 6.6. Consider the ideal I = (a] of the lattice shown in Figure
3. We note that J = (d] is the only prime ideal of L containing I. Hence
VT = J. We know that for any ideal A of L, \/xa = XA
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Hence /X1 = x,/7 = xJ- Since J is a prime ideal, x; is a fuzzy prime
ideal and so x7 is a fuzzy primary ideal.

We have x7(bAc) =1 but x7(b) V xr(c) =0 as b,c ¢ I. Thus x; is not
fuzzy prime.

.0
Figure 3

Theorem 6.7. Let p be a fuzzy ideal of L. Then p is fuzzy primary if
and only if the level set py, t € Image(p) is a primary ideal of L.

Proof. Suppose that p is a fuzzy primary ideal of L.
Let a,b € L be such that a Ab € p; and a & g, b & /11y
Then we have

t<p(anb),t <pla),t < \/ub).
Since p is fuzzy primary, we have
ula Ab) < () V \/j(h).
Thus we get t < t, which is not possible.
Hence p; is a primary ideal of L.

Conversely, suppose that pu; is a primary ideal of L.
Let a,b € L be such that

ula Ab) £ ) v \/i(h).
Let p(a Ab) =t. Then p(a) <t and \/u(b) < t.
Since p; is a primary ideal, a A b € p; implies that either a € y; or
b€/, ie. either u(a) >t or \/u(b) > t, a contradiction. O

Definition 6.8. A proper fuzzy ideal u of a lattice L is called a fuzzy
2-absorbing primary ideal of L, if for a,b,c € L,

plaNbAc) < plaNb)V/ubAc)V/plcAa).

Lemma 6.9. A proper ideal I of L is a 2-absorbing primary ideal, if
and only if x1 s a fuzzy 2-absorbing primary ideal of L.
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Proof. Suppose that I is a 2-absorbing primary ideal of L. Let a, b, c € L.
Consider xr(a AbAc).

IfanbAcel, then xaAbAc)=1.

As I is 2-absorbing primary, we have either

aNbelorbAcevVIorcehac VI

Hence either

xr(anb) =1 or x 7(bAc) = /x1(bAc) =1 or x 7(cAa) = /Xx1(cha) = 1.
Thus
xr(anbAce) <xr(anb)Vvx,z0Ac)Vxz(cnha).
IfanbAegl, then xyqaANbAc)=0. Clearly, a A b ¢ I.
Hence
xr(aANbAe) <xr(anb)Vx 7(0Ac)Vx flcAa).
Thus x7 is a fuzzy 2-absorbing primary ideal.
Conversely, suppose that x; is a fuzzy 2-absorbing primary ideal.
Let anbAce . Then xr(aANbAc)=1.
Suppose that a Ab¢ I, bAc¢ I and cAa ¢ VI
Since x7 is a fuzzy 2-absorbing primary ideal, we have
L=xr(aNbAc) <xi(and)Vx 7(bAc)Vx7(cAa)

Since each of xr(a A b), x,/7(b A c), X 7(c A a) belongs to [0,1], at least
one of these numbers must be 1.
This implies that either

aNbelTorbAceVIorchae VI
Thus [ is a 2-absorbing primary ideal. |

Lemma 6.10. If p is a fuzzy primary ideal of L, then u is a fuzzy
2-absorbing primary ideal of L.

Proof. Let pu be a fuzzy primary fuzzy ideal of L. Let a,b,c € L.
As p is a fuzzy primary ideal, we have
wlanbAce)=pulanNbAbAc)
< plaAb)V/u(bAc)
< plaANb)V /b Ac)V/u(eAa).
Thus p is a fuzzy 2-absorbing primary ideal. O

The following example shows that a fuzzy 2-absorbing primary ideal
of L need not be a fuzzy primary ideal.
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Ezample 6.11. Consider the ideal I = (0] of the lattice shown in the
Figure 4.

We note that the ideals (h] = {0, a, b, c, e, f,g,h} and (i]| = {0,b,¢,d, g,i}
are the only prime ideals of L.

Hence VI = (k] N (i] = (g].

We note that I is a 2-absorbing primary ideal as for any x,y,z € L,
x Ay Az € I implies that either c Ay € ToryAz e VIor zAz eI
Hence by Lemma 6.9, s is a fuzzy 2-absorbing primary ideal of L.

We note that x;(h Ad) =1 but xr(h) =0 as well as x (i) = 0.

Thus x7(h A1) £ x1(h) V x 7(7).

Hence x7 is not a fuzzy primary ideal of L.

&

Figl(l)re 4

Lemma 6.12. If u is a fuzzy 2-absorbing ideal of L, then p is a fuzzy
2-absorbing primary ideal of L.

Proof. Let u be a fuzzy 2-absorbing ideal of L.
Let a,b,c € L. Since p is a fuzzy 2-absorbing ideal, we get

planbAe) < pland)VubAc)Vulena).
Since p C /i1, we get the result. O

The following example shows that a fuzzy 2-absorbing primary ideal
of L need not be a fuzzy 2-absorbing ideal.

Example 6.13. Consider the lattice shown in Figure 5. Consider the
ideal I = (0]. The only prime ideals of L are (j], (k], (I].

We have VT = (5] N (k] N (1] = (d).

Also /X1 = x,/7 = XJ, where J = (d].

We note that I is a 2-absorbing primary ideal of L. Hence by Lemma
6.9, x1 is a fuzzy 2-absorbing primary ideal of L.
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We note that I is not a 2-absorbing ideal of L, as dAeA f =0 € I, but
dheg¢ I, eNfgTanddAf¢l.
We have

xr(dNeNf)=1%xr(dNne)VxrleNf)Vxi(dA f)=0.

Thus x7 is not a fuzzy 2-absorbing ideal of L.

1
J E >l
g x\ h i
A /
a b c
0
Figure 5

Lemma 6.14. Let p be a fuzzy ideal of L. If \/ju is a fuzzy prime ideal,
then u is a fuzzy 2-absorbing primary ideal.

Proof. Let p be a fuzzy ideal of L. Suppose that /i is a fuzzy prime
ideal. If p is not a fuzzy 2-absorbing primary ideal, then there exist
a,b,c € L such that

(6.1) plaNbAce) £ u(and)V/ubAe)Vplane).
This implies that
plaAb)V /b Ae)V/ulance) < plaNbAc).

Since \/u is fuzzy prime, we have

ViaNbAe) = /ubAe)V/p(a) =/planc)V/ub).
Hence
V(A Vy/(ane) = /u(bAe)Vy/p(a)V/p(e) = i(aNbAe)V/u(c).
Thus from (6.1),
pla Ab)V/mlaNbAc)V/u(c) < plaNbAc).
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This implies that
Vi(aANbAce) < plaNbAc),

which is not possible. Hence u is fuzzy 2-absorbing primary. O

The following example shows that the converse of Lemma 6.14 does
not hold.

Ezample 6.15. Consider the lattice shown in Figure 6.

Figure 6

The only prime ideals of L containing the ideal I = (c] are (h] and (i].
Hence T = (k] N (i] = (f].
For any z,y,z € I, x Ay A z € I implies that either

zsAyeloryhzeVIiorzAze VI

Hence I is a 2-absorbing primary ideal and so by Lemma 6.9, xs is a
fuzzy 2-absorbing primary ideal

We note that d A e = a € VT but d ¢ VT and e ¢ VI. Thus VT is not
a prime ideal of L. Hence by Theorem 3.4, \/x1 = x,/7 Is not a fuzzy
prime ideal of L.

We omit the easy proof of the following lemma.

Lemma 6.16. Let p be a fuzzy ideal of L. Then /i = \/ /1.

Theorem 6.17. Let u be a fuzzy ideal of L. Then /i is fuzzy prime if
and only if \/p is fuzzy primary.

Proof. It follows from Lemma 6.5, that if |/p is fuzzy prime, then /1 is
fuzzy primary.
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The converse follows form the definition of a fuzzy primary ideal and by
Lemma 6.16. U

The proof of the following theorem follows from the definition of a
fuzzy 2-absorbing ideal, a fuzzy 2-absorbing primary ideal and Lemma
6.16.

Theorem 6.18. Let p be a fuzzy ideal of L. Then (/i is fuzzy 2-
absorbing if and only if \/p is fuzzy 2-absorbing primary.

7. PRIMARY Fuzzy IDEALS

In the previous section we have defined the prime fuzzy radical of a
fuzzy ideal (Definition 6.2). Using this, we define, a primary fuzzy ideal
and prove some results.

We note that for a fuzzy ideal p of L always u C /.

Definition 7.1. A proper fuzzy ideal u of a lattice L is called a primary
fuzzy ideal of L if for 0,0 € FI(L), 0 N0 C p implies that either o C

or 6 C \/p.

Now we give a relationship between a prime fuzzy ideal and a primary
fuzzy ideal.

Lemma 7.2. If p is a prime fuzzy ideal of L, then p is a primary fuzzy
ideal of L.

Proof. Let p be a prime fuzzy ideal of L. Let § N n C u for some
0,n € FI(L). Since p is a prime fuzzy ideal, either § C u or n C pu.
Since p C /i, we get the result. 0

The following result gives the existence of primary fuzzy ideals which
are not prime fuzzy.

Theorem 7.3. Let I be a primary ideal of L, I # L. The fuzzy subset
u of L defined by

1, ifxel,
plx) = .
a ifrel—1.

18 a fuzzy primary ideal of L.

Proof. Clearly, p is a fuzzy ideal of L.
Since p C /i1, we have p(z) < \/u(z) for all x € L.
Hence if 2 € I, then (/iu(x) = 1 and if ¢ I, then \/u(z) =t > o
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Let o, 0 be fuzzy ideals of L such that c N6 C p.

Suppose that o € pand 0 € \/p.

Let x € L be such that o(x) > p(z). This implies that « ¢ I, for
otherwise, o(z) > 1, which is not possible.

Let o(x) = k1 > a = p(z).

Let y € L be such that 0(y) > \/fi(y). Clearly, y ¢ VI, otherwise,

O(y) > /i(y) > p(y) = 1, which is not possible.

Let 0(y) = ky. Then ky > a.

Since I is primary, z Ay ¢ I. Hence pu(z Ay) = a.

We have

(J N 0)(.212‘ A y) 2 min{a(x)a Q(y)} = min{kl? kQ} >a= M(.’L’ N y)?
which is not possible. Thus p is a primary fuzzy ideal of L. O
Theorem 7.4. If i is a primary fuzzy ideal of L, then the level set g,
t € Image(p) is a primary ideal of L.

Proof. Let a,b € L be such that a Ab € py and a & p.
Define fuzzy ideals ¢ and 6 of L as follows.

(z) t, if x <a,
o(z) =
0 ifzda

and

if z <
0(z) = t, ?m_b,
0 ifzLb.

Then o NG C p.

Also 0 € p as a ¢ p; implies p(a) <t = o(a).

Since p is a primary fuzzy ideal, we have 0 C |/u.

Hence t = 0(b) < ,/1(b) and so b € /1.

Thus p; is a primary ideal of L. O

The following example shows that the converse of Theorem 7.4 does
not hold.

Ezample 7.5. We note that set N of natural numbers with divisibility as
the partial order is a lattice. Let p be any prime number. Let ¢; € (0, 1),
0 < i< m besuch that to > t1 > ... > t,,.
Consider the fuzzy ideal p of N defined by
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HE) = t; ifze (™ —(pmtl]i=1,2,...,m.

to, if z € (p),
We have \//7(33) = {tm if x € N— (p)].

Define fuzzy ideals ¢ and 6 of N by

a, if z € (p™], wherety < a <1
o(x) = :
0 otherwise.

and 0(x) = tg, for all x € N.

Then
to, ifze (pm],
0  otherwise.

(0N 0)(x) = {

Then o N0 C p C \/pand o € p.
We note that if x € N — (p], then \/uu(z) = t,, < to = 0(x).

Hence 0 Z /L.

Thus g is not primary fuzzy. However, each level ideal p; of p is primary,
1=0,...,m.

Definition 7.6. A proper fuzzy ideal u of a lattice L is called a
2-absorbing primary fuzzy ideal of L, if whenever, 6 "nNv C p for
0,n,v € FI(L), then either

0NnCpuornnuv C/uorfnvC./u.
It known that /X1 = x /7

Lemma 7.7. Let I be an ideal of L. If x1 is a 2-absorbing primary
fuzzy ideal of L, then I is a 2-absorbing ideal of L.

Proof. Suppose that x is a 2-absorbing primary fuzzy ideal of L.
Let anbAc eI for some a,b,c € L. Suppose that

anbg I, bAcg¢ VIand cha ¢ VI

Then clearly, a ¢ I and b,c ¢ /1.
Define fuzzy ideals

u(z) = {1, if z € (al,

0 otherwise.
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(e) = {1, if z € (b],

0 otherwise.

() = {1, if x € (],

0 otherwise.

We note that

1, ifze(aNbAd],
0 otherwise.

(uﬁ%n)(l’):{

Then pNONnC xybut pNO L xr, 0Ny L xy7and pNn L x 7
This contradicts the assumption that x7 is a 2-absorbing primary fuzzy
ideal. O

Remark 7.8. However, we are unable to prove or disprove that if I is a
2-absorbing ideal of L, then x; a is a 2-absorbing fuzzy ideal of L.

Lemma 7.9. If p is a primary fuzzy ideal of L, then p is a 2-absorbing
primary fuzzy ideal of L.

Proof. Let p be a primary fuzzy ideal of L. Let 6 NnNv C p for some
0,n,v € FI(L). Since p is a primary fuzzy ideal of L, either
(HonnCporvC/uor(2)0 Cpornnu C . /uor
B)oC JpornNuvCpuor(4)nCpuordnuvC . /pu
These possibilities imply that either
(i) dNn C por (i) nNv Cy/por (iti) 0Nv C /L.
Hence p is a 2-absorbing primary fuzzy ideal of L. O

Lemma 7.10. If i is a 2-absorbing fuzzy ideal of L, then p is a
2-absorbing primary fuzzy ideal of L.

Proof. Let p be a 2-absorbing fuzzy ideal of L. Let 6,n,v € FI(L) be

such that 0 NnNv C pu.

Since p is a 2-absorbing fuzzy ideal of L, either
NnCpordnNvCpuornnu C u.

Since p C /i, we get the result. 0

Definition 7.11. Let u be a fuzzy ideal of L. If ¢ is the only prime

fuzzy ideal containing u, then we say that u is a - primary fuzzy ideal
of L.
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Theorem 7.12. Let pq, po be fuzzy ideals and 81, d2 be prime fuzzy ideals
of L. Suppose that py is a 61- primary fuzzy ideal and ps is a d2- primary
fuzzy ideal. Then py N e is a 2-absorbing primary fuzzy ideal of L.

Proof. Since pi1 is a d1-primary fuzzy ideal, we get /1 = d1.

As g is a dg-primary fuzzy ideal, we get /2 = d2.

Let p = p1 N po. Then /g = 61 N 2.

Now suppose that 6 N pN v C p for some 6,n,v € FI(L).

Assume that 6N n & \/wand nNv € /.

Then 0,n,v ¢ VI =61 M 2.

By Proposition 3.1, /i = 01 N d2 is a 2-absorbing fuzzy ideal of L.
Since 0 Ny & \/m,nNv € /it we have 0 Nv C /.

We show that § Nv C p.

Since 0 Nv C /i C 41, we assume that § C d;.

As 0 ¢ \/iwand 0 Nv C /i C &2, we conclude that § € 6 and v C ds.
Since v C & and v € (/i we have v ¢ 0;.

If 0 C 1 and v C o, then 6 N C u and we are done.

We may assume that 0 ¢ p.

Since p; is a d1-primary fuzzy ideal and 6 ¢ iy, we have n N v C ;.
Since v C d2 and n N v C ,/u which is a contradiction.

Thus, 8 C .

Since pg is a do—primary fuzzy ideal of L and v & ug, we get 0 N1 C do.
Since 6 C 01 and N7 C d2, we have 0Nn C |/u which is a contradiction.
Thus, v C ps.

Hence 6 Nv C p. U

Theorem 7.13. Suppose that u is a non-constant fuzzy ideal of L such
that \/p is a prime fuzzy ideal. Then p is a 2-absorbing primary fuzzy
ideal.

Proof. Suppose that for some 0,7, € FI(L),0NnNv C pand 0Ny ¢ p.
(1): We note that 6 N"nNv C p C /i Hence, if 0Ny € /11, then as /i
is prime fuzzy we get v C \/p and so n N v C \/p.

(ii): If 6Nn C /i, then as \/p is prime fuzzy, either § C |/ or n C \/p.
Hence either 0 Nv C \/por vNn C \/p.

Thus, p is a 2-absorbing primary fuzzy ideal of L. O

Now we give a characterization for /i to be a prime fuzzy ideal.

Theorem 7.14. Let pu be a non-constant fuzzy ideal of a lattice L. Then
VI is a prime fuzzy ideal of L if and only if \/j1 is a primary fuzzy ideal
of L.
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Proof. Let /i be a prime fuzzy ideal of L. Let 6,7 € FI(L) be such
that 0 Ny C \/p. As (/i is a prime fuzzy ideal of L, either § C /i or
n € /u. Since /i = \/ﬁ we conclude that |/u is a primary fuzzy
ideal of L.

Conversely, suppose that /i is a primary fuzzy ideal of L.

Let 0,m € FI(L) be such that 6Ny C \/u. As \/pu is primary fuzzy ideal,

either 0 C \/uor n C /\/p = /p. Hence (/i is a prime fuzzy ideal of
L. O

Now we prove the following characterization.

Theorem 7.15. Let p be a non-constant fuzzy ideal of a lattice L. Then
VI is a 2-absorbing fuzzy ideal of L if and only if \/u is a 2-absorbing
primary fuzzy ideal of L.

Proof. Let /i be a 2-absorbing fuzzy ideal of L. Let 6,7n,v € FI(L) be
such that 6 "nNv C \/u. Since (/i is a 2-absorbing fuzzy ideal of L,
either

O0NnC/pornnuv C/porfdnNvC/u.

Using /i = \/+/Ht, we conclude that /i is a 2-absorbing primary fuzzy
ideal of L.

Conversely, suppose that |/u is a 2-absorbing primary fuzzy ideal of
L.
Let 6,n,v € FI(L) be such that 0 NnNv C /.
As /i is a 2-absorbing primary fuzzy ideal of L, either

ONnC/uornNv Cy/v/pu=/pordNvC //u=/p.
Hence /i is a 2-absorbing fuzzy ideal of L. O

8. Fuzzy IDEALS IN A DIRECT PRODUCT OF LATTICES

In this section, we consider fuzzy ideals in a direct product of lattices.
It is known that if Lq,..., L are lattices, then their Cartesian product
L =1L x Lo x...x L is a lattice under componentwise operations of
meet and join and if a = (a1,...,ax), b = (b1,...,bg) then a < b iff
a; <bfori=1,... k.

Definition 8.1. Let L = Ly X Ly X ... X L be a direct product of
lattices L1, ..., L. A mapping p: L — [0, 1] is called a fuzzy set of L.

We note the following.
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Theorem 8.2. Let L = Ly X Lo X ... X Ly be a direct product of lattices
Li,...,Lg. If ui, 1 < i < k are fuzzy ideals of L; respectively, then
w: L —[0,1] defined by

plar, ... a;) = pi(ar) A ... A pg(ag) is a fuzzy ideal of L.

Proof. The proof follows from the definition of the lattice operations in
a direct product of lattices and that of u. O

Notation: We call the fuzzy set p in Theorem 8.2 as a product of the
fuzzy sets pi, 1 <i <k and write p = pp X ... X pg.

Theorem 8.3. Let L = Ly X Lo be a direct product of lattices L1, Lo. If
w: L —1[0,1] is a fuzzy ideal of L, then there exist fuzzy ideals u1, po of
L1 and Lo respectively, such that = p1 X po. Moreover, if p is fuzzy
prime, then so are py and pa.

Proof. Define y; : Ly — [0,1] by p1(z) = p(z,0) and pa(y) = w(0,y).
Let z,y € L1. We have
(2, 0) A (y,0)] = plz Ay, 0) = pa(z Ay)
and
pl(z,0) vV (y,0)] = p(z Vy,0) = pm(z Vy).
Hence
pa(z Ay) A pa(eVy) = pl(,0) A (y, 0)] A pl(z,0) v (y,0)].
As p is a fuzzy ideal, we get
pr(z Ay) A pa(eVy) = pl(z,0) A(y, 0)] A pl(z,0) v (y,0)]
> (@, 0) A p(y, 0)
= p1 () A pa(y).
Also

p(z Vy) = pl(x,0) V (y,0)] = pu(x,0) A p(y,0) = pa(z) A pa(y).

Thus pq is a fuzzy ideal of L.

Similarly, we can show that us is a fuzzy ideal of Lo.

The second part follows from the definition of a fuzzy prime ideal.
We have

w(@,y) = p(x,0) V p(0,y) = p(z,0) A p(0,y) = () A pa(y).
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Ezample 8.4. Let L = L1 X Lo be a direct product of lattices L1, Lo. Let
11, o be fuzzy prime ideals of L1 and Lo respectively. Then p = py X po
need not be a fuzzy prime ideal of L.

1 1
a b l
0 0
Ly Lo
Figure 6

Consider the lattices L1 and Lo as shown in Figure 6.
Define p: L1 — [0,1] and 6 : Ly — [0, 1] as follows
w(0) =1, pla) =1/2, u(b) =1, u(1) =0 and 0(0) =1, (1) = 0.
We note that p is a fuzzy prime ideal of L; and 6 that of Ls.
We consider n : Ly x Ly — [0,1] defined by n(z,y) = u(z) A 0(y), ie.

n=pux6.

We have
1(0,0) = u(0) A6(0) =1
n(a,0) = () A 0(0) = 1/
n(b,0) = pu(b) A6(0) =1
n(1,0) = (1) AB(0) =0
0(0,1) = 4(0) AB(1) =0
n(a,1) = p(a) AO(1) =0
0B, 1) = u(b) A O(1) =0
n(1,1) = p(1) A8(1) =0

We have 77[(07 1) A (11 0)] = 77(07 O) =1, 77(07 1) =0, 77[(17 0) = 0.

Thus 7[(0, 1) A (1,0)] £ n(0,1) v n(L,0).
Hence 7 is not a fuzzy prime ideal of L.

A

Remark 8.5. From Example 8.4, we conclude that in general,

Vi x 0 # /ux Vo
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In Example 8.4, we have shown that a product of two fuzzy prime
ideals need not be a fuzzy prime ideal. However we have the following
theorem.

Theorem 8.6. Let L = L1 X Ly be a direct product of lattices Ly, Lo.
Let 1 be a fuzzy ideal of L1. Then p X xr, 15 a fuzzy prime ideal of L,
iff pis a fuzzy prime ideal of L.

Proof. Suppose that p is a fuzzy prime ideal of L.
We have
[ X XLo][(21,91) A (2, 92)] = [ X XLo] (21 A @2, 51 A y2)
= p(r1 Aw2) A XLy (Y1 Ay2)
= p(x1 A x2), as xr,(y1 Ay2) = 1.
Since p is fuzzy prime,
p(@1 A we) = p(1) V p(xz).
Thus
[ X XLo] (1 A w2 y1 Ay) = [(@1) A XL, ()] V [1(z2) A XL.] (32)]
= [ X X1, 1) V [ X XL, (1, 92)-

Hence u x xr, is a fuzzy prime ideal of L.
The converse can be similarly proved. O

Theorem 8.7. Let L = L1 X Lo be a direct product of lattices L1, Lo. Let
w1, o be fuzzy ideals of Ly and Lo respectively. Suppose that pq(01) =
u2(02) = 1, where 01 is the least element of L1 and Og that of Lo. If
W= p1 X po is a fuzzy 2-absorbing ideal of L, then pi is a fuzzy 2-
absorbing ideal of L1 and po that of Lo.

Proof. Let a,b,c € L. Since p is a fuzzy 2-absorbing ideal of L, we have
(8.1) wlaNbAe,02) < pu(aNb02)Vu(bAc02)VulaAc02).

By the definition of y, we can write (8.1) as
ui(a AbAc)A ua(02)
< [pa(a AD) A p2(02)] V [ (b A €) A pa(02)] V [pa(a A e) A pa(02).
By using u2(02) = 1, we get
pi(a ANbAc) <pr(aANb)Vpi(bAe)V pi(aAc).
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Thus py is a fuzzy 2-absorbing ideal of L.
Similarly, we can prove that us is a fuzzy 2-absorbing ideal of Ls.  [J

By using similar steps, we can prove the following theorem.

Theorem 8.8. Let L = Ly X Lo X ... X Ly, be a direct product of lattices
Li,...,Lg. Let p;, 1 < i <k be fuzzy ideals of L; respectively. Suppose
that for each i = 1,...,k, pu;(0;) = 1, where 0; is the least element of
Li. If p = p1 X ... X pg s a fuzzy 2-absorbing ideal of L, then p;, is a
fuzzy 2-absorbing ideal of L;, i =1,... k.

The following example shows that the converse of Theorem 8.7 need
not hold.

Ezample 8.9. Consider the lattices L1, Ly and L = L1 X L9 as shown in
Figure 4.
Define p: L1 — [0,1] and 6 : Ly — [0, 1] as follows

W0 =1 [0(0)=1
u(a) = 176 | (1) = 0
u(b) = 1/4
u(1) = 1/4

We note that p is a fuzzy 2-absorbing ideal of L; and 6 that of Ls.
We consider n : Ly X Ly — [0, 1] defined by n(z,y) = pu(x) A 0(y).
We have

1(0,0) = pu(0) A6(0) =1
1(0,0) = pla) A 000) = 1/6
1(6,0) = (0) 7.0(0) = 1/1
I(1L,0) = (1) A B(0) = 1/3
5(0,1) = u(0) A (1) =0
n(a,1) = p(a) ANO(1) =0
n(b,1) = p(b) AO(1) =0
a0 1) = u(1) AB(1) = 0
We have
77[(@7 1) A (L1,0) A (b, 1)] =n(0,0) =
Tl[(@a DAL, 0)] = n(a,0) =1/6.
77[(170) A( 71)] =n(b,0) = 1/4'
77[(@7 1) A (b7 1)] = 77(a b, 1) = 77(07 1) =0
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Thus

nl(a, )AL, 0)A (b, 1)] £ nl(a, 1)A(L,0)]Va[(1,0)A(b, 1)]Va[(a, 1)A(b, 1)].
Hence 7 is not a fuzzy 2-absorbing ideal of L.

Theorem 8.10. Let L = Ly X Lo be a direct product of lattices L1, Ls.
Let py, po be fuzzy ideals of L1 and Lo respectively. Suppose that (i)
p1(01) = p2(02) = 1, where 01 is the least element of Ly and Oz that of
Lo and (ii) p1(11) = pa(le) = 0, where 11 is the greatest element of Ly
and 1g that of Lo. If u = p1 X uo is a fuzzy 2-absorbing ideal of L, then
w1 is a fuzzy prime ideal of L1 and us that of Lo.

Proof. Suppose that pp is not a fuzzy prime ideal of L.
Then there exist a,b € L; such that

p(aAb) £ p(a) v u(b).
Consider the elements =z = (a, 1), y = (1,0), z = (b,1) from L.
We note the following.
pEAyAz) = plaAb,0)=pi(anb)Apu(0)=pi(anb).
prAy) = pa,0) = p(a) A pz(0) = p(a).
plyNz) = pu(b,0) = pi(b) A p2(0) = pi(b).
plzAz) = (a/\b,1) = p1(a A b) A pa(1) = 0.
Since p is a fuzzy 2-absorbing ideal, we have
pEAyAz) < plezAy)Vuly Az)Vu(zAz).
ie.
pi(aAb) < pa(a) vV pn(b) VO = pi(a) V pa(b),
a contradiction.

Hence py is a fuzzy prime ideal.
Similarly, we can show that us is a fuzzy prime ideal. O

Theorem 8.11. Let L = Ly X Lo be a direct product of lattices L1, Lo.
Let p1, po be fuzzy prime ideals of L1 and Lo respectively. If i = 1 X pa,
then p is a fuzzy 2-absorbing ideal of L.

Proof. Let (a,x),(b,y), (c,z) € L. To show that p is fuzzy 2-absorbing,
we need to show that

ul(a, ) A (b, y)A(es 2)] < pllas ) A, )] Vial(b, ) Ale, 2)Val(a, 2)Ale, 2))
i.e. to show that

(8.2) planbAc,zAyAz) < planb,z Ay)V u(bAc,yNz)Vulane, zAz).
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We have
wlaNbAc,x AyAz)=p(aNbAc)Ap(x Ay A z).
As p1, po are fuzzy prime ideals, we can write

pi(aANbAc) = pa(a)V pi(b) V pa(c)
and
p2(z Ay A z) = pa(x) V pa(y) V pe(z).
Also we have
wlaANbyz Ay)V ubAe,y ANz)VulaNe,xAz)
(8.3) = [p1(a A D) A pa(z Ay)] V [pa (b A e) A pa(y A 2)]
Vpi(aAe) A pa(x A z).

Since 1, p2 are fuzzy prime ideals, we can write the R. H. S. of (8.2)
as

{lpa(a) vV i (D)) A [pa(x) V p2(y)]}
(8.4) VAl (0) V pa ()] Alpa(y) V pa(2)]}

VAlpa(a) V pa ()] A fpa(z) V pa(2)]}-
By applying distributivity, (8.4) can be written as

(8.5) [pa(a) vV pa(0) V pa ()] A [pa(x) V pa(y) V pa(2)].
Thus (8.2) holds and p is fuzzy 2-absorbing. O
Theorem 8.12. Let L = Ly X Lo be a direct product of lattices L1, Lo.

Let p;,0; be fuzzy ideals of L1 and Lo respectively. Let o;; = p; x 6.
Then Noj j = Ny X ﬂ@j.

Proof. Let (x,y) € L. We have
Noij(x,y) = Nij(pi x 05)(x,y)
= Nijj(pi(z) A 05 (y))
= Nipti(z) A N;O5(y)
= (Nipi X Nj05) (. y).
Thus ﬁgi,j =N X ﬂ@j. O
Theorem 8.13. Let L = Ly X Lo be a direct product of lattices L1, Ls.

(i) Let p be a fuzzy ideal of Ly. Then /it X X1, = /It X XL,-
(i) Let 6 be a fuzzy ideal of Lo. Then /X1, x 0 = x1, X V8.



32 Shriram K. Nimbhorkar and Yogita S. Patil

Proof. (i): Let n be a fuzzy prime ideal of L such that p x xr, C P.
By Theorem 8.3, n = 6 x o for some fuzzy prime ideal 8 of L; and o of
Lo.

Then ¢ C 6 and xr, C o. It follows that o = xr,. Thus n C 0 x xr,.

This shows that \/u X X1, = /It X XL,-
(ii) Can be similarly proved. O

Theorem 8.14. Let L = Ly X Lo be a direct product of lattices L1, Ls.
Let 1y be a fuzzy ideal of Ly. Then pux XL, 1S a 2-absorbing fuzzy primary
ideal of L, if and only if p is a 2-absorbing fuzzy primary ideal of L.

Proof. Suppose that p x xr, is a 2-absorbing fuzzy primary ideal of L.
Let 61,605,035 € FI(L1) be such that

01 NbNO3 C p.
Consider 6; x xr,. Then
(01 M02M05) x XL, € p X XL,
This implies that
(01 X XLy) N (02 X xLy) N (03 X XLy) C 0 X XLy-
Since p X xr, is a 2-absorbing fuzzy primary ideal of L, we get either
(01 X XxL,) N (02 X XL,) € 1 X XLy
or

(02 XXLQ)H(HE) XXLQ) g X XL
or
)

(01 X XLo) N (03 X XLy) € /1t X XLo-

Thus either

01N Cp
or

92093§\/ﬁ
or

91003g\/ﬁ.

Hence p is a 2-absorbing fuzzy primary ideal of L;. The converse follows
by retracing similar steps. ([l
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