
Journal of Hyperstructures 8 (1) (2019), 81-93.

ISSN: 2251-8436 print/2322-1666 online

f-DERIVATIONS ON RESIDUATED MULTILATTICES

LINE NZODA MAFFEU, CELESTIN LELE, ETIENNE ALOMO TEMGOUA AND STEFAN

SCHMIDT

Abstract. In this paper, we introduce as a generalization of the concept of

derivation, the notion of f -derivation on residuated multilattices and investigate

several of its properties. Then, we study good ideal f -derivations and make the

connection with the complemented elements. Moreover, special sub-classes like

the set of f -fixed points, the Kernel are found to have nice substructures.
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1. Introduction and preliminaries

Residuated multilattices have been introduced by Cabrera et al in [4] as a gener-

alization of residuated lattices. It is an algebraic hyperstructure where a residuated

operation is combining with a multilattice structure.

The concept of derivation have been introduced on commutative rings [3, 9],

lattices [5, 11, 13], hyperlattices [12], BCI-algebras [14] and most recently on resid-

uated lattices [6, 10]. Furthermore, the notion of derivation have been generalized

to f -derivation [1, 2, 15].

In this work, we extend the concept of f -derivation to residuated multilattices,

formulate the definitions and study its first properties. We show that the set of

good ideal f -derivations is a boolean algebra and we characterize every good ideal

f -derivation. Moreover, we prove that the set of f -fixed points of a good ideal

f -derivation is a full sub-multilattice.

The paper is organizing as follows: In section 2, we define multiplicative ideal

f -derivation, study its properties and illustrate each property with examples. In
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section 3, we study good ideal f -derivation and show the connection with the com-

plemented elements of the residuated multilattice. We also prove that the set of

f -fixed points of a good ideal f -derivation has the structure of multilattice.

We start by briefly recalling the basic definitions needed in the paper.

Definition 1.1. [4]

A pocrim is a quadruple A := (A,>,�,→) consisting of a poset A := (A,≤)

with a greatest element > and two binary operations � and → on A such that

(A,>,�) is a commutative monoid satisfying a� c ≤ b if and only if c ≤ a→ b for

all a, b, c ∈ A.

A pocrim is said to be bounded if it has a least element.

The following properties hold in any pocrim A.

For all a, b, c ∈ A, we have:

P1 a� b ≤ a, a� b ≤ b;

P2 a� (a→ b) ≤ a ≤ b→ (a� b) and b� (a→ b) ≤ b ≤ a→ (a� b);

P3 If a ≤ b, then a� c ≤ b� c, c→ a ≤ c→ b, and b→ c ≤ a→ c;

P4 a→ (b→ c) = b→ (a→ c);

P5 (a→ b)� (b→ c) ≤ a→ c;

P6 a→ b ≤ (a� c)→ (b� c);

P7 a→ b ≤ (c→ a)→ (c→ b) and a→ b ≤ (b→ c)→ (a→ c).

Let M := (M,≤M) be a poset. For X ⊆ M , UMX and LMX are upper bounds

and lower bounds of X in M.

A multi-supremum (resp. multi-infimum) of X is a minimal (resp. maximal)

element of UMX (resp. LMX). The set of multi-suprema (resp. multi-infima) of X

is denoted by Multisup(X) (resp. Multinf(X)).

For simplicity, we write x t y,( resp. x u y) for Multisup({x, y}), Multinf({x, y})
in this order for x, y ∈M .

When x t y (resp. x u y) is singleton {a} (resp. {b}), we write x ∨ y = a (resp.

x ∧ y = b). Note that for every x, y ∈M , x ≤ y if and only if x ∧ y = x if and only

if x ∨ y = y. We denote the set of natural numbers by N and we set x0 = > and

xn = xn−1 � x, for n ≥ 1 and x ∈M .

For a bounded pocrimM := (M,>,�,→) with M := (M,≤) and a least element

⊥, we set x∗ = x → ⊥ for every x ∈ M and let X∗ = {x∗, x ∈ X} for every

X ⊆ M . For a ∈ M , ↓M a = {x ∈ M,x ≤ a} and ↑M a = {x ∈ M,a ≤ x}. For

X ⊆ M , the upper closure of X is ↑M X =
⋃

x∈X
↑M x and the lower closure of X is

↓M X =
⋃

x∈X
↓M x.

Definition 1.2. [4] A poset, (M,≤), is a multilattice if and only if it satisfies

that, for all a, b, c ∈M , a ≤ c and b ≤ c implies that there exists x ∈ at b such that

x ≤ c and its dual version for a u b.

A multilattice M is said to be full if a u b 6= ∅ and a t b 6= ∅ for all a, b ∈M .
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An example of a bounded (full) multilattice which is not a lattice is the multilat-

tice with the following Hasse diagram:

>

c d

a b

⊥
ML6

It is usually denoted by ML6.

A residuated multilattice M := (M,>,�,→) (RML for short) is a pocrim

whose underlying poset is a multilattice.

A RML is called bounded if it has a lower bound ⊥.

For convenience and to increase the readability, we summarize the main properties

of residuated multilattices needed throughout the paper. These can be either found

or derived from some properties in [4].

Proposition 1.3. [4] The following conditions hold in a RML M.

For all x, y, z ∈M

M1 x� y, x� (x→ y) ∈ ↓M (x u y);

M2 (x� y) t (x� z) ⊆ x� (y t z);

M3 (x u y)→ z ⊆↑M [(x→ z) t (y → z)];

M4 (x t y)→ z ⊆↓M [(x→ z) u (y → z)];

M5 (x→ z) u (y → z) ⊆ (x t y)→ z;

M6 x→ y = max{(x t y)→ y} = max{x→ (x u y)};
M7 x ≤ x∗∗, x∗ = x∗∗∗, x∗∗ → y∗∗ = y∗ → x∗, (x� y)∗ = x→ y∗;

M8 (x u y)∗ ⊆↑M (x∗ t y∗);

M9 (x t y)∗ ⊆↓M (x∗ u y∗);

M10 (x∗ u y∗) ⊆ (x t y)∗.

Definition 1.4. [4] Given a RML M, a non-empty subset F of M is called:

1) deductive system (ds, for short) if (ds-1) > ∈ F and (ds-2) for all x, y ∈ A,

if x, x → y ∈ F , then y ∈ F , or equivalently (i) for all x, y ∈ F , x � y ∈ F

and (ii) for all x, y ∈ A, if x ≤ y and x ∈ F , then y ∈ F .

3) m-filter if

(i) x, y ∈ F implies ∅ 6= x u y ⊆ F ;

(ii) x ∈ F implies x t a ⊆ F for all a ∈M ;

(iii) for all a, b ∈M , if (a t b) ∩ F 6= ∅ then a t b ⊆ F .

2) Filter if F is a ds satisfying: for all x, y ∈ M , if x → y ∈ F , then x t y →
y ⊆ F and x→ x u y ⊆ F .

Definition 1.5. [8] Let M be a multilattice and X be a non-empty subset of M .

(SML-1) X is called a full sub-multilattice (f -Sub-multilattice) of M if for all
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x, y ∈ X, x t y ⊆ X and x u y ⊆ X;

(SML-2) X is called a restricted sub-multilattice (r-Sub-multilattice) of M if

for all x, y ∈ X, (x t y) ∩X 6= ∅ and (x u y) ∩X 6= ∅.

Definition 1.6. [4] Let h : M → M ′ be a map between residuated multilattices,

h is said to be a homomorphism if h satisfies h(x t y) ⊆ h(x) t h(y), h(x u y) ⊆
h(x) u h(y), h(x� y) = h(x)� h(y) and h(x→ y) = h(x)→ h(y) for all x, y ∈M .

For all homomorphism h between residuated multilattices, one can observe that

h(>) = > and h is isotone.

Definition 1.7. [7] Let M be a RML and X a subset of M . X is a full sub

residuated multilattice (or f -Sub-RML for short) if the following conditions

hold.

S1. > ∈ X;

S2. for every x, y ∈ X, x� y ∈ X, x→ y ∈ X;

S3. X is an f -Sub-multilattice.

If we replace S3 in the definition above by X is a restricted sub-multilattice, we

obtain the definition of restricted sub residuated multilattice (or r-Sub-RML for

short).

In [7], the author proved that the set of complemented elements of a bounded

residuated multilattice is a Boolean algebra. Here we summarize all the results

on the set of complemented elements needed throughout this work. Let M be a

bounded residuated multilattice. An element c ∈ M is called complemented if

there is an element c′ such that > ∈ ct c′ and ⊥ ∈ cu c′ (or equivalently c∨ c′ = >
and c ∧ c′ = ⊥). We call c′ complement of c in M. We denote by C(M) the set

of all complemented elements of M.

Proposition 1.8. [7] Let M be a RML and c ∈ C(M) an element which has a

complement c′ ∈M .

(i) If c′′ is another complement of c then c′ = c′′;

(ii) c = c′∗, c′ = c∗ and c = c∗∗;

(iii) c� c = c;

(iv) e ∈ C(M) and x ∈ M , e � x ∈ e u x, in particular e ∧ x exists in M and

e ∧ x = e� x;

(v) for every e, f ∈ C(M), e ∧ f, e ∨ f exist and belong to C(M). Moreover,

e ∧ f = e� f ∈ C(M), and e ∨ f = e∗ → f ;

(vi) for every e ∈M , e ∈ C(M) if and only if e ∨ e∗ = >.
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2. f-derivations on residuated multilattices

Definition 2.1. Let M be a RML and d : M → M be a map. We call d an

f-multiplicative derivation (or simply f -derivation) on M , if there exists a ho-

momorphism f : M →M such that the following condition is satisfied:

d(x� y) ∈ (d(x)� f(y)) t (f(x)� d(y)) for all x, y ∈M.

It is worth noting that the notion of f -derivation on residuated multilattices

generalizes that of derivation on residuated lattices given in [6] and derivation on

residuated multilattices given in [7].

Example 2.2. LetM be a bounded RML. We define d⊥, f>, did, d, f mappings from

M to M by: d⊥(x) = ⊥, f>(x) = > and did(x) = x for all x ∈ M . d⊥ and did are

f>-derivations on M which shall be called respectively least element f>-derivation,

identity f>-derivation and d is an f -identity f -derivations on M .

If f is an homomorphism, then f is an f -derivation on M .

Example 2.3. Let M be the multilattice depicted in the following Hasse Diagram:

>

a6

a5

a3 a4

a1 a2

⊥
We define the operations � and → as follows:

x�y =


⊥ if x, y ∈M \ {>}
x if y = >
y if x = >

x→ y =


> if x ≤ y

y if x = >
a6 otherwise .

Then, M is a RML. We define functions d and f on M by:

d(x) =

{
⊥ if x ∈M \ {>}
a2 if x = > f(x) =

{
⊥, if x ∈M \ {a6,>}
>, otherwise

Then, it can be easily verified that d is an f -derivation on M .

Example 2.4. Let f : M → M be a homomorphism of the RML M and t ∈ M .

We define the map ft : M → M by: ft(x) = f(x)� t for each x ∈ M . It is easy to

prove that ft is an f -derivation on M which will be called principal f -derivation on

M generated by t.

Proposition 2.5. LetM be a bounded residuated multilattice and d an f -derivation

on M . Then, for all x, y ∈M ,



86 Line. N. Maffeu, Celestin Lele, Etienne A. Temgoua and Stefan E. Schmidt

(i) d(⊥) ≤ f(⊥), moreover if f(⊥) = ⊥, then d(⊥) = ⊥;

(ii) d(x) ≥ f(x)� d(>);

(iii) for n ≥ 2, d(xn) = d(x)� f(xn−1);

(iv) If d(⊥) = ⊥ and x ≤ y∗, then d(y) ≤ (f(x))∗ and d(x) ≤ (f(y))∗;

(v) If d(⊥) = ⊥ then d(x∗) ≤ (f(x))∗ and d(x) ≤ (f(x∗))∗.

(vi) If f(⊥) = ⊥ then d(x) ≤ (f(x))∗∗.

Proof. (i) d(⊥) = d(⊥ � ⊥) ∈ (d(⊥) � f(⊥)) t (f(⊥) � d(⊥)) = d(⊥) � f(⊥).

Then, d(⊥�⊥) = d(⊥)� f(⊥) and d(⊥) ≤ f(⊥).

(ii) Let x ∈ M , since > is the neutral element, we have d(x) = d(x � >) ∈
(d(x)� f(>)) t (f(x)� d(>)). Hence, d(x) ≥ f(x)� d(>).

(iii) Straightforward by induction

(iv) Given x, y ∈ M , it follows from the inequality x ≤ y∗ that x � y = ⊥.

Applying the definition of the derivation, ⊥ = d(⊥) = d(x � y) ∈ (d(x) �
f(y)) t (f(x) � d(y)). We obtain d(x) � f(y) = f(x) � d(y) = ⊥ and

d(y) ≤ (f(x))∗, d(x) ≤ (f(y))∗.

(v) and (vi) Follow from (iv).

�

Definition 2.6. LetM be a RML and d an f -derivation on M . We say that d is:

(i) isotone if x ≤ y implies d(x) ≤ d(y) for all x, y ∈M ;

(ii) f-contractive if d(x) ≤ f(x) for all x ∈M ;

(iii) an ideal f-derivation if d is both isotone and f -contractive.

Example 2.7. LetM be the residuated multilattice depicted in Example 2.3. Then,

it is easy to verify that d is an ideal f -derivation on M . We can also observe that

every homomorphism f of M f : M → M is an ideal f -identity (f(x) = x for all

x ∈M) f -derivation on M .

Proposition 2.8. Let M be a RML and d an isotone derivation on M , we have:

(i) if z ≤ x → y, then f(z) ≤ d(x) → d(y) and f(x) ≤ d(z) → d(y) for all

x, y, z ∈M ;

(ii) f(x→ y) ≤ d(x)→ d(y), d(x→ y) ≤ f(x)→ d(y) for all x, y, z ∈M .

Proof. (i) Let x, y, z ∈ M , z ≤ x → y implies x � z ≤ y by the isotonicity of

d, we have d(x � z) ≤ d(y) since d(x � z) ∈ (d(x) � f(z)) t (f(x) � d(z)),

we obtain that d(x) � f(z), f(x) � d(z) ≤ d(x � z) ≤ d(y). Hence, by the

adjointness conditions, f(z) ≤ d(x)→ d(y) and f(x) ≤ d(z)→ d(y);

(ii) It is similar to the proof of (i) using the inequality x� (x→ y) ≤ y.

�

Proposition 2.9. Let M be a RML and d an f -contractive derivation on M . We

have the following properties:

(i) for all x, y ∈M , d(x)� d(y) ≤ d(x� y);
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(ii) let x, y ∈M , for all b ∈ d(x)t d(y), there exists a ∈ (d(x)� f(y))t (f(x)�
d(y)) such that a ≤ b;

(iii) if d is isotone, then d(x→ y) ≤ d(x)→ d(y) ≤ d(x)→ f(y) for all x, y ∈M ;

(iv) if d(>) = >, then d is an f -identity f -derivation on M ;

(v) if for every x ∈M , f(x)� d(>) = d(>), then d(x) ≥ d(>).

Proof. (i) Since d is an f -contractive derivation and � is monotone in both

arguments, we obtain d(x)�d(y) ≤ d(x)�f(y) and d(x)�d(y) ≤ f(x)�d(y)

for all x, y ∈ M . Therefore, d(x) � d(y) ≤ a, for any a ∈ (d(x) � f(y)) t
(f(x)� d(y)). Hence, d(x)� d(y) ≤ d(x� y).

(ii) Let b ∈ d(x) t d(y). Since d(x)� f(y) ≤ d(x) and f(x)� d(y) ≤ d(y), there

exists a ∈ (d(x)� f(y)) t (f(x)� d(y)) such that a ≤ b.

(iii) Let x, y ∈ M . Then, by P2 and the fact that d is isotone, we obtain

d(x�(x→ y)) ≤ d(y). It follows from (i) that d(x)�d(x→ y) ≤ d(x�(x→
y)). Therefore, d(x → y) ≤ d(x) → d(y). Moreover, combining the fact

that d is contractive and P3, we have d(x) → d(y) ≤ d(x) → f(y) and

d(x→ y) ≤ d(x)→ d(y) ≤ d(x)→ f(y).

(iv) It follows from Proposition 2.5 (ii).

(v) Since d(x) = d(x � >) ∈ (d(x) � f(>)) t d(>) = d(x) t d(>), we obtain

d(>) ≤ d(x).

�

Proposition 2.10. Let M be a RML and d an f -contractive f -derivation on M .

We have the following properties:

(i) For x, y ∈ M . If y ≤ x, d(x) = f(x) and there exists u ∈ M such that

x� u = y then d(y) = f(y);

(ii) Fixd(M) = {x ∈M,d(x) = f(x)} is closed under �;

(iii) if d(>) = > and f(⊥) = ⊥, then Fixd(C(M)) = {x ∈ C(M), d(x) = f(x)}
is a full sub residuated multilattice of M ;

(iv) d(>) = > if and only if Fixd(M) = M .

Proof. (i) Let x, y ∈M and y ≤ x with u ∈M such that x�u = y. Assume that

d(x) = f(x). By definition d(y) = d(x�u) ∈ (d(x)�f(u))t (f(x)�d(u)) =

(f(x) � f(u)) t (d(x) � d(u)) = f(x) � f(u) since d(x) = f(x) and d is

f -contractive. We obtain d(y) = f(x� u) = f(y).

(ii) Let x, y ∈ Fixd(M), d(x�y) ∈ (d(x)�f(y))t (f(x)�d(y)) = f(x)�f(y) =

f(x� y).

(iii) It is obvious that > ∈ Fixd(C(M)). Proposition 1.8 assure that � and ∧
coincide and by (ii), Fixd(C(M)) is closed under ∧. Let x, y ∈ C(M), we

have xty = x∨y = x∗∗∨y∗∗ = (x∗∧y∗)∗ ∈ Fixd(C(M)) by (iii). Moreover,

by Proposition 1.8 (iv) and (v) x → y = x∗ ∨ y = (x ∧ y∗)∗ = (x � y∗)∗

which implies that (x � y∗)∗ ∈ Fixd(C(M)). Therefore, d((x � y∗)∗) =

f((x � y∗)∗) = f(x∗ ∨ y) = f(x∗) ∨ f(y) = f(x)∗ ∨ f(y) = f(x) → f(y) =

d(x)→ d(y). Hence, Fixd(C(M)) is a full sub residuated multilattice of M .
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(v) Straightforward.

�

Proposition 2.11. Let M be a bounded RML and d an f -derivation on C(M).

We have the following properties:

(i) d(x) = d(x)� f(x), for all x ∈ C(M);

(ii) if f(⊥) = ⊥ and d(>) = >, then the f -derivation in the set of all comple-

mented elements of a residuated multilatticeM coincide with the f -derivation

in lattice.

Proof. (i) It follows from Proposition 2.5 (iii).

(ii) Firstly, we will prove that f(C(M)) ⊆ C(M). From Proposition 1.8 (vi), we

need only to prove that f(x)t f(x)∗ = > for all x ∈ C(M) and it is obvious

since f(x) t f(x)∗ ⊇ f(x t x∗) = f(>) = >. Secondly by Definition 2.1

d(x) ∈ d(x) t f(x) and f(x) ≤ d(x). Moreover, because d(x) = d(x)� f(x),

we have d(x) ≤ f(x). Hence, d(x) = f(x) ∈ C(M). d(x�y) ∈ (d(x)�f(y))t
(f(x)�d(y)) = (d(x)∧f(y))t (f(x)∧d(y)) = (d(x)∧f(y))∨ (f(x)∧d(y)) =

d(x ∧ y).

�

3. Principal, ideal and good ideal f-derivations

In this section, we study the importance of complemented elements in the study

of principal, ideal and good ideal f -derivations of a residuated multilattice.

We denote by MM the set of all maps from M to M . We define a binary relation

≤ by f ≤ g ⇔ f(x) ≤ g(x) for every x ∈ M . It is easy to see that (MM ,≤) is

a poset. We define the hyperoperations t and u by f t g, f t g : M → 2M by

(f t g)(x) = f(x) t g(x) and (f u g)(x) = f(x) u g(x), for every f, g ∈ MM . It is

clear that (MM ,t,u) is a multilattice.

Definition 3.1. An ideal f -derivation d is said to be good if d(>) ∈ C(M).

Example 3.2. Let 2 be the two-element Boolean algebra and M be the residuated

multilattice depicted in the following figure:

>

a5

a3 a4

a1 a2

⊥
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Consider the subsets: C = {a2, a3, a4, a5}. The operations � and → are defined

as follows:

x� y =


a2 if x, y ∈ C

x if y = >
y if x = >
⊥ otherwise

x→ y =


> if x ≤ y

a1 if x ∈ C and y ∈ {⊥, a1}
y if x = >
a5 otherwise

The direct product M × 2 of M and 2 is a RML. Note that if one sets x0 =

(⊥, 0), xi = (ai, 0)(1 ≤ i ≤ 5), x6 = (>, 0), y0 = (⊥, 1), yi = (ai, 1)(1 ≤ i ≤ 5), y6 =

(>, 1), then the multilattice structure of M × 2 is described in the following Hasse

diagram.

y6

x6 y5

x5 y3 y4

x3 x4 y1 y2

x1 x2 y0

x0

Multiplication by x6, i.e., dx6(x) = x6 � f(x) yields a principal f -derivation on

M × 2.

We denote by PDf (MM ) and GIDf (MM ) respectively the set of all principal

f -derivations from M to M and the set of all good ideal f -derivations from M to

M .

Remark 3.3. Let M be a bounded RML and f : M → M a homomorphism. We

can notice that every principal f -derivation is isotone and the homomorphism f is

the greatest element in PDf (MM ).

Proposition 3.4. Let f : M →M be a map. Then:

(i) GIDf (MM ) is an f -Sub-multilattice of MM ;

(ii) (GIDf (C(M)C(M)),�, 7→,t,u, d⊥, f) is a bounded residuated multilattice

where, d⊥(x) = ⊥, (d1 7→ d2)(x) = d1(x) → d2(x) and (d1 � d2)(x) =

d1(x)� d2(x) for all x ∈ C(M).

Proof. (i) Let d1, d2 be two good ideal f -derivations on M and x ∈M . By the

definition of f -derivation and Theorem 1.8 (iv) we have,

(d1 u d2)(x) = d1(x) u d2(x) = (f(x)� d1(>)) u (f(x)� d2(>))

= (f(x) ∧ d1(>)) u (f(x) ∧ d2(>)).
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Using Theorem 1.8 (iv) f(x)� (d1 u d2)(>) = f(x)� ((d1(>) u d2(>)) =

f(x)� ((d1(>)∧ d2(>)) = f(x)∧ ((d1(>)∧ d2(>)) = f(x)∧ f(x)∧ ((d1(>)∧
d2(>)) = (f(x)∧d2(>))∧ (f(x)∧d1(>)) = (f(x)∧d2(>))u (f(x)∧d1(>)) =

(d1 u d2)(x).

Hence, d1 u d2 is a good ideal f -derivation on M .

In addition,

(d1 t d2)(x) = d1(x) t d2(x) = (f(x)� d1(>)) t (f(x)� d2(>))

⊆ f(x)� (d1(>) t d2(>)) = f(x)� (d1(>) ∨ d2(>))

= f(x)� (d1 t d2)(>) By M2 Proposition 1.3 .

We have d1 t d2 is a good ideal f -derivation on M and we conclude that

GIDf (MM ) is an f -Sub-multilattice of MM .

(ii) From (i) (GIDf (C(M)C(M)),t,u) is a multilattice. It is easy to prove that

(GIDf (C(M)C(M),�, f) is a commutative monoid with the neutral element

f and (�,→) is an adjoint pair.

�

Theorem 3.5. Let M be a RML and d an f -contractive derivation on M with

d(x) ∈ C(M) for all x ∈M . The following propositions are equivalent:

(i) d is an isotone f -derivation;

(ii) for all x, y ∈M , d(x� y) = d(x)� d(y) = d(x)� f(y).

Proof. (i)⇒(ii) Let x, y ∈ M ; by the hypothesis d(x � y) ≤ d(x), d(y). Then,

there exists a ∈ d(x) u d(y) such that d(x � y) ≤ a. As d(x), d(y) ∈ C(M), we

obtain by Proposition 1.8 (iv) that d(x) u d(y) = d(x) ∧ d(y) = d(x) � d(y) and

d(x � y) ≤ d(x) � d(y). Furthermore, by Proposition 2.9 we have d(x � y) =

d(x)�d(y). Hence, d(x)�d(y) = d(x�y) ∈ (d(x)�f(y))t (f(x)�d(y)). Therefore

d(x) � f(y), f(x) � d(y) ≤ d(x) � d(y). By the fact that d is f -contractive and �
monotone, we obtain, d(x)�f(y), f(x)�d(y) ≤ d(x)�d(y) ≤ d(x)�f(y), f(x)�d(y).

Hence, d(x� y) = d(x)� f(y) for all x, y ∈M .

(ii)⇒(i) Let x, y ∈ M and a ∈ x u y, by the hypothesis d(a) = d(>) � f(a) ∈
d(>) � (f(x) u f(y)). Furthermore, d(>) � (f(x) u f(y)) ⊆↓M [(d(>) � f(x)) u
(d(>)� f(y))] =↓M [d(x) u d(y)]. So, there exists z ∈ d(x) u d(y) such that d(a) =

d(>) � f(a) ≤ z. In particular, for x ≤ y we have d(x) = d(>) � f(x) ≤ z where

z ∈ d(x) u d(y). Hence, d(x) ≤ d(y).

�

Theorem 3.6. Let M be a RML and d an f -contractive derivation on M which

satisfies d(>) ∈ C(M) for all x ∈M . Then, the following are equivalent:

(i) d is an ideal f -derivation;

(ii) d(x) ≤ d(>) for all x ∈M ;

(iii) for all x ∈M , d(x) = f(x)� d(>);
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(iv) for all x, y ∈ M , if a ∈ x u y then there exists z ∈ d(x) u d(y) such that

d(a) ≤ z;

(v) for all x, y ∈M , d(x t y) ⊆ d(>)� (f(x) t f(y));

(vi) d(x� y) = d(x)� d(y) for all x, y ∈M .

Proof. (i)⇒(ii) straightforward.

(ii)⇒(iii) Let x ∈ M , d(x) ≤ d(>) implies d(x) = d(x) ∧ d(>) = d(x) �
d(>) ≤ d(>) � f(x). Proposition 2.5 (ii) yields, d(>) � f(x) ≤ d(x); so

d(x) = d(>)� f(x).

(iii)⇒(i) Follow from the fact that � is increasing in both arguments and f

is isotone.

(iii)⇒(iv) Let x, y ∈M and a ∈ xu y, from (ii) we have d(a) = d(>)� f(a).

Furthermore, d(>) � f(a) ∈ d(>) � (f(x) u f(y)) ⊆↓M [(d(>) � f(x)) u
(d(>)� f(y))] =↓M [d(x) u d(y)]. So, there exists z ∈ d(x) u d(y) such that

d(a) = d(>)� a ≤ z.

(iv)⇒(i) Let x, y ∈ M such that x ≤ y, thus x ∈ x u y. Using hypothesis,

there exists z ∈ d(x) u d(y) such that d(x) ≤ z. Hence, d(x) ≤ d(y).

(iii)⇒(v) By the definition of d and the hypothesis, d(xt y) = d(>)� f(xt
y) ⊆ d(>)� (f(x) t f(y))

(v)⇒(i) Let x ≤ y, then x t y = y. By hypothesis d(y) = d(x t y) ⊆
d(>)� (f(x) t f(y)) which implies that there exists a ∈ (f(x) t f(y)) such

that d(y) = d(>)� a ≥ d(>)� f(x) = d(x). Hence, d(x) ≤ d(y).

(iii)⇒(vi) Let x, y ∈M d(x� y) = d(>)� f(x� y) = d(>)� d(>)� f(x)�
f(y) = (d(>)� f(x))� (d(>)� f(y)) = d(x)� d(y).

(vi)⇒(ii) Let x ∈ M , we have d(x) = d(x � >) = d(x) � d(>), hence

d(x) ≤ d(>).

�

The next result shows that good ideal f -derivations on a RML are in one-to-one

correspondence with the complemented elements of the RML.

Proposition 3.7. A f -derivation d on M is a good ideal f -derivation if and only

if there exists a unique a ∈ C(M) such that d = da

Proof. Let d be a good ideal f -derivation on M . By Theorem 3.6 (iii) d(x) =

f(x) � d(>). It is obvious that a = d(>) is unique. Conversely, assume that there

exists a unique a ∈ C(M) such that d = da. By definition we have da(x) = a� f(x)

which is an f -contractive and an isotone f -derivation. We can conclude that d = da
is a good ideal f -derivation on M due to a ∈ C(M).

�

Let GIDf (MM ) denotes the set of all good ideal f -derivations on M . Then by the

preceding Proposition, GIDf (MM ) = {dx : x ∈ C(M)}. In addition, define �,⊗,�
on GIDf (MM ) by dx � dx′ if x ≤ x′, dx⊗ dx′ = dx�x′ and dx � dx′ = dx→x′ . Then
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it is straightforward to see that (GIDf (MM ),�,⊗,�, d⊥, d>) is a Boolean algebra

that is naturally isomorphic to the Boolean algebra C(M).

In the remaining section, we show that the set of f -fixed points of an ideal f -

derivation is a multilattice.

Proposition 3.8. Let M be a RML and d a good ideal f -derivation on M . Then,

Fixd(M) is closed under the product. Moreover, Fixd(M) is a full sub-multilattice.

Proof. Let x, y ∈ Fixd(M). Since d is f -contractive, d(x � y) ≤ x � y. It follows

from Proposition 2.9 that f(x� y) = f(x)� f(y) = d(x)� d(y) ≤ d(x� y). Hence

x� y ∈ Fixd(M).

Let x, y ∈ Fixd(M), d(x t y) = d(>) � f(x t y) ⊆ d(>) � (f(x) t f(y)) =

d(>)� (d(x) t d(y)) = d(>) ∧ (d(x) t d(y)) = d(x) t d(y). Furthermore, f(x t y) ⊆
f(x) t f(y) = d(x) t d(y). Using the fact that d is a contractive f -derivation, we

have d(a) ≤ f(a) with d(a), f(a) ∈ d(x) t d(y) and d(a) = f(a) for all a ∈ x t y.

Therefore, x t y ⊆ Fixd(M).

For all x, y ∈M , d(xuy) = d(>)�f(xuy) ⊆ d(>)�(f(x)uf(y)) = d(>)�(d(x)u
d(y)). For every a ∈ d(x)ud(y), a ≤ d(x), d(y) ≤ d(>) and d(>)�a = d(>)∧a = a.

This implies that d(>) � (d(x) u d(y)) = d(x) u d(y) and d(x u y) ⊆ d(x) u d(y).

But, f(x u y) ⊆ f(x) u f(y) = d(x) u d(y). Using the fact that d is f -contractive,

we obtain d(x u y) = f(x u y). �

4. Conclusion and Final Remarks

The notion of derivation is a powerful tool for studying structural properties

of different algebras. We initiated the study of f -derivations on residuated mul-

tilattices as a natural generalization of derivations on residuated multilattices and

residuated lattices by introducing definitions with clear examples. The set of all

complemented elements of a residuated multilattices enabled us to characterize good

ideal f -derivations by using the image of the top element as a generator, which of-

fers us a complete description of good ideal f -derivations. Various sets related to

derivations were investigated and found to carry nice substructures.
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