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f-DERIVATIONS ON RESIDUATED MULTILATTICES

LINE NZODA MAFFEU, CELESTIN LELE, ETIENNE ALOMO TEMGOUA AND STEFAN
SCHMIDT

ABSTRACT. In this paper, we introduce as a generalization of the concept of
derivation, the notion of f-derivation on residuated multilattices and investigate
several of its properties. Then, we study good ideal f-derivations and make the
connection with the complemented elements. Moreover, special sub-classes like
the set of f-fixed points, the Kernel are found to have nice substructures.
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1. INTRODUCTION AND PRELIMINARIES

Residuated multilattices have been introduced by Cabrera et al in [1] as a gener-
alization of residuated lattices. It is an algebraic hyperstructure where a residuated
operation is combining with a multilattice structure.

The concept of derivation have been introduced on commutative rings [3, 9],

lattices [, 11, 13], hyperlattices [12], BCI-algebras [11] and most recently on resid-
uated lattices [0, 10]. Furthermore, the notion of derivation have been generalized
to f-derivation [, 2, 15].

In this work, we extend the concept of f-derivation to residuated multilattices,
formulate the definitions and study its first properties. We show that the set of
good ideal f-derivations is a boolean algebra and we characterize every good ideal
f-derivation. Moreover, we prove that the set of f-fixed points of a good ideal
f-derivation is a full sub-multilattice.

The paper is organizing as follows: In section 2, we define multiplicative ideal
f-derivation, study its properties and illustrate each property with examples. In
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section 3, we study good ideal f-derivation and show the connection with the com-
plemented elements of the residuated multilattice. We also prove that the set of
f-fixed points of a good ideal f-derivation has the structure of multilattice.

We start by briefly recalling the basic definitions needed in the paper.

Definition 1.1. [/]

A pocrim is a quadruple A := (A, T,®,—) consisting of a poset A := (A4, <)
with a greatest element T and two binary operations ©® and — on A such that
(A, T,®) is a commutative monoid satisfying a ® ¢ < b if and only if ¢ < a — b for
all a,b,c € A.

A pocrim is said to be bounded if it has a least element.

The following properties hold in any pocrim A.
For all a,b,c € A, we have:

Plaob<a, a®b<ib

P2a0(a—=b)<a<b—(a®b)andb® (a > b) <b<a— (a®b);
P3Ifa<b thena®c<bOc,c—a<c—bandb—c<a—c
Piada—(b—c)=b— (a—c);

P5 (a—=bob—c)<a—cg

P6a—b<(a®c)— (bOc);
PTa—-b<(c—a)—=(c—=banda—b<(b—c)— (a—c).

Let M := (M, <y) be a poset. For X C M, UyX and Ly X are upper bounds
and lower bounds of X in M.

A multi-supremum (resp. multi-infimum) of X is a minimal (resp. maximal)
element of Uy X (resp. Ly X). The set of multi-suprema (resp. multi-infima) of X
is denoted by Multisup(X) (resp. Multinf(X)).

For simplicity, we write L y,( resp.  My) for Multisup({z, y}), Multinf({z, y})
in this order for x,y € M.

When z Uy (resp. xMy) is singleton {a} (resp. {b}), we write x Vy = a (resp.
x Ay =b). Note that for every x,y € M, x <y if and only if z Ay = z if and only
if zVy = y. We denote the set of natural numbers by N and we set z° = T and
" =a" 1oz forn>1and z € M.

For a bounded pocrim M := (M, T, ®, —) with M := (M, <) and a least element
1, we set * = x — L for every x € M and let X* = {z*, x € X} for every
XCM. Forae M, {ya={xe Mzx<a}and tya={x e Ma<z}. For
X C M, the upper closure of X is Ty X = |J Twm = and the lower closure of X is

zeX
X = U Jm=
zeX

Definition 1.2. [1] A poset, (M, <), is a multilattice if and only if it satisfies
that, for all a,b,c € M, a < c and b < c implies that there exists x € a b such that
x < ¢ and its dual version for a M1 b.

A multilattice M is said to be full if aMb # ) and aUb # O for all a,b € M.
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An example of a bounded (full) multilattice which is not a lattice is the multilat-
tice with the following Hasse diagram:

/ T\
>
a\ /b
L
M Lg
It is usually denoted by M Lg.
A residuated multilattice M := (M, T,®,—) (RML for short) is a pocrim
whose underlying poset is a multilattice.
A RMUL is called bounded if it has a lower bound L.
For convenience and to increase the readability, we summarize the main properties

of residuated multilattices needed throughout the paper. These can be either found
or derived from some properties in [1].

Proposition 1.3. [1] The following conditions hold in a RML M.
For all x,y,z € M

M1 z0y,20 (x—y) € bu (zMy);
M2 (z0y)U(zez2) Cxo(yUz);
M3 (zMy) =z Ctu [(z = 2) U (y — 2)];
M4 (zUy) — 2z Cly [(z — 2) N (y = 2)];
M5 (z— 2)M(y — 2) C (xUy) — 2;
M6 = — y=max{(zUy) — y} =max{zx — (zMNy)};
M7 z < a*, 2* =2, o™ s y* =y =¥, (20y) =z =y
M8 (zMy)* Chy (a* Uy*);
M9 (zUy)* Cly (% Ny*);
M10 (z*My*) C (zUy)"

Definition 1.4. [1] Given a RML M, a non-empty subset F' of M is called:

1) deductive system (ds, for short) if (ds-1) T € F and (ds-2) for all z,y € A,
if z,x >y € F, then y € F, or equivalently (i) for all z,y € F, 2 ©y € F
and (ii) for all z,y € A, if x <y and z € F, then y € F.

3) m-filter if

(i) z,y € F implies ) # x My C F;
(ii) = € F implies x Ua C F for all a € M;
(iii) for all a,b € M, if (aUb)NF # () then aUb C F.

2) Filter if F is a ds satisfying: for all x,y € M, if x — y € F, then x Uy —
yCFandx —aMNyCF.

Definition 1.5. [%] Let M be a multilattice and X be a non-empty subset of M.
(SML-1) X is called a full sub-multilattice (f-Sub-multilattice) of M if for all
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z,ye X, xUyC X and zMy C X,
(SML-2) X is called a restricted sub-multilattice (r-Sub-multilattice) of M if
forall z,y € X, (zUy)NX £ 0 and (zMNy) N X # (.

Definition 1.6. [1] Let h : M — M’ be a map between residuated multilattices,
h is said to be a homomorphism if h satisfies h(z Uy) C h(z) U h(y), h(xzMy) C
h(z) M h(y), h(z ©y) = h(xz) © h(y) and h(z — y) = h(z) — h(y) for all x,y € M.

For all homomorphism h between residuated multilattices, one can observe that
h(T) =T and h is isotone.

Definition 1.7. [7] Let M be a RML and X a subset of M. X is a full sub
residuated multilattice (or f-Sub-RMJL for short) if the following conditions
hold.

S1. T € X;
S2. forevery z,y e X, z0ye X,z —>y € X;
S3. X is an f-Sub-multilattice.

If we replace S3 in the definition above by X is a restricted sub-multilattice, we
obtain the definition of restricted sub residuated multilattice (or r-Sub-RML for
short).

In [7], the author proved that the set of complemented elements of a bounded
residuated multilattice is a Boolean algebra. Here we summarize all the results
on the set of complemented elements needed throughout this work. Let M be a
bounded residuated multilattice. An element ¢ € M is called complemented if
there is an element ¢’ such that T € cU¢ and L € ¢M ¢ (or equivalently eV =T
and ¢ A = 1). We call ¢ complement of ¢ in M. We denote by C'(M) the set
of all complemented elements of M.

Proposition 1.8. [7] Let M be a RML and ¢ € C(M) an element which has a
complement ¢ € M.

(i) If ¢ is another complement of ¢ then ¢ = ¢

(iii) cOc=c¢;

(iv) e€ C(M) and z € M, e ®x € ez, in particular e A\ x exists in M and
eNr=eQOuwx;

(v) for every e, f € C(M), e f,eV f exist and belong to C(M). Moreover,
eNf=eo feC(M),andeV f=e"— f;

(vi) for everye e M, e € C(M) if and only ifeVe* =T.

)

(ii) e=*, ¢ =¢* and c = **
)
)
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2. f—DERIVATIONS ON RESIDUATED MULTILATTICES

Definition 2.1. Let M be a RML and d : M — M be a map. We call d an
f-multiplicative derivation (or simply f-derivation) on M, if there exists a ho-
momorphism f: M — M such that the following condition is satisfied:

dz ®y) € (d(z) ® f(y)) U (f(z) ©®d(y)) for all z,y € M.

It is worth noting that the notion of f-derivation on residuated multilattices
generalizes that of derivation on residuated lattices given in [0] and derivation on
residuated multilattices given in [7].

Example 2.2. Let M be a bounded RML. We define d , f1,d;q,d, f mappings from
M to M by: d)(x) = L, fr(z) = T and dig(z) = « for all x € M. d, and d;q are
fr-derivations on M which shall be called respectively least element fr-derivation,
identity ft-derivation and d is an f-identity f-derivations on M.

If f is an homomorphism, then f is an f-derivation on M.

Ezxample 2.3. Let M be the multilattice depicted in the following Hasse Diagram:

-
X
/a5\
as a4
| >]
al a9
NS
1
We define the operations ® and — as follows:
1 ifz,ye M\{T} T ifx<y
TOY = z ify=T T—y= y ifax=T
y ifx=T ag otherwise
Then, M is a RML. We define functions d and f on M by:
4L ifee M\{T} 4 ifee M\ {as, T}
d(@) = { az ife=T )= T, otherwise

Then, it can be easily verified that d is an f-derivation on M.

Ezample 2.4. Let f : M — M be a homomorphism of the RML M and t € M.
We define the map f; : M — M by: fi(x) = f(x) ®t for each x € M. It is easy to
prove that f; is an f-derivation on M which will be called principal f-derivation on
M generated by t.

Proposition 2.5. Let M be a bounded residuated multilattice and d an f-derivation
on M. Then, for all x,y € M,
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1)

(L) < f(L), moreover if f(L) =L, thend(L)= 1;
(z) >
>

f(L
f(x) ©d(T);
2, d(z") = d(z) © f(z");
1 and x < y*, then d(y) < (f(x))* and d(z) < (f(y))*;

)
) = L then d(z*) < (f(x))" and d(z) < (f(z"))".
If f(L) =L then d(z) < (f(x))**.

Proof. (i) d(L)y=d(Lol)edl)o f(L)U(f(L)od(L)=dL)o f(L).
Then, d(L ® L) =d(1) ® f(L) and d(L) < f(L).
(ii) Let € M, since T is the neutral element, we have d(z) = d(z ® T) €
(d(z) © f(T)) U (f(z) ©d(T)). Hence, d(z) = f(x) © d(T).
(iii) Straightforward by induction

n

e
Ifd(L

d(
d(
i

(iv) Given z,y € M, it follows from the inequality z < y* that z ©y = L.
Applying the definition of the derivation, L = d(L1) = d(x ©y) € (d(z) ®
) U (f(x) ® d(y)). We obtain d(x) © f(y) = f(z) © d(y) = L and
dy) < (f(x))*, d(z) < (f(y))"
(v) and (vi) Follow from (iv).
]

Definition 2.6. Let M be a RML and d an f-derivation on M. We say that d is:
(i) isotone if x < y implies d(z) < d(y) for all z,y € M;
(ii) f-contractive if d(z) < f(x) for all z € M,
(iii) an ideal f-derivation if d is both isotone and f-contractive.

Ezxample 2.7. Let M be the residuated multilattice depicted in Example 2.3. Then,
it is easy to verify that d is an ideal f-derivation on M. We can also observe that
every homomorphism f of M f: M — M is an ideal f-identity (f(z) = x for all
x € M) f-derivation on M.

Proposition 2.8. Let M be a RML and d an isotone derivation on M, we have:
(i) if z <z — y, then f(2) < d(x) — d(y) and f(x) < d(z) — d(y) for all
T,Y,2 € M;
(ii) flz —y) <d(z) = d(y), d(z —y) < f(z) = d(y) for all z,y,z € M.

Proof. (i) Let z,y,z € M, 2 < z — y implies x ® z < y by the isotonicity of
d, we have d(z ® z) < d(y) since d(z © z) € (d(x) ® f(2)) U (f(x) © d(2)),
we obtain that d(z) ® f(2), f(z) ®d(z) < d(z ® z) < d(y). Hence, by the
adjointness conditions, f(z) < d(x) — d(y) and f(x) < d(z) — d(y);

(ii) It is similar to the proof of (i) using the inequality z ® (z — y) < y.
O

Proposition 2.9. Let M be a RML and d an f-contractive derivation on M. We
have the following properties:

(i) for all z,y € M, d(z) ©® d(y) < d(z ©y);
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(i) let z,y € M, for all b € d(x) U d(y), there exists a € (d(x) ® f(y)) U (f(z)®
d(y)) such that a < b;

(iii) if d is isotone, then d(x — y) < d(z) — d(y) < d(x) — f(y) for allz,y € M;

(iv) if d(T) =T, then d is an f-identity f-derivation on M;

(v) if for every x € M, f(x)©d(T)=4d(T), then d(z) > d(T).

Proof. (i) Since d is an f-contractive derivation and ® is monotone in both
arguments, we obtain d(z) ®d(y) < d(z)® f(y) and d(x) ©d(y) < f(x)©d(y)
for all x,y € M. Therefore, d(x) ® d(y) < a, for any a € (d(z) ® f(y)) U
(f() ® d(y)). Hence, d(x) ® d(y) < d(z ©y).
(ii) Let b € d(x) Ud(y). Since d(z) © f(y) < d(x) and f(x) ® d(y) < d(y), there
exists a € (d(z) © f(y)) U (f(xz) ®d(y)) such that a < b.
(iii) Let z,y € M. Then, by P2 and the fact that d is isotone, we obtain
dlz®(x —y)) < d(y). It follows from (i) that d(z) ©d(z — y) < d(z®(x —
y)). Therefore, d(x — y) < d(x) — d(y). Moreover, combining the fact
that d is contractive and P3, we have d(z) — d(y) < d(z) — f(y) and
d(z —y) < d(z) = d(y) < d(z) = f(y).
(iv) It follows from Proposition 2.5 (ii).
(v) Since d(z) = d(z ® T) € (d(zx) ® f(T))Ud(T) = d(x) Ud(T), we obtain
d(T) < d(z).
U

Proposition 2.10. Let M be a RML and d an f-contractive f-derivation on M.
We have the following properties:
(i) For z,y € M. Ify < z, d(z) = f(x) and there exists u € M such that
rOu=y then d(y) = f(y);
(ii) Fixg(M) = {z € M,d(x) = f(x)} is closed under ®;
(i) 4f d(T) =T and f(L) = L, then Fixg(C(M)) = {x € C(M),d(z) = f(z)}
1s a full sub residuated multilattice of M ;
(iv) d(T) =T if and only if Fixg(M) = M.

Proof. (i) Let z,y € M and y < = with u € M such that xOu = y. Assume that
d(z) = f(z). By definition d(y) = d(z ©®u) € (d(z)® f(u)) U (f(z)©d(u)) =
(f(z) © f(u) U (d(z) ® d(u)) = f(z) ® f(u) since d(xz) = f(z) and d is
f-contractive. We obtain d(y) = f(z ©®u) = f(y).

(i) Let 2,y € Fixg(M), d(z ©y) € (d(z)© (1) U (f(2) ©dy)) = f()® f(y) =
flzoy).

(iii) It is obvious that T € Fix4(C(M)). Proposition 1.8 assure that ® and A
coincide and by (ii), Fixd( (M)) is closed under A. Let z,y € C(M), we
have x Uy = aVy = 2™ Vy*™* = (2* Ay*)* € Fixq(C(M)) by (iii). Moreover,
by Proposition 1.8 (iv) and (v) z -y =2 Vy = (x Ay*)* = (z © y*)*
which implies that (z ® y*)* € Fixg(C(M)). Therefore, d((x ® y*)*) =
fwoy)) = fla*Vy) = f(a*)V fly) = @)V fly) = f(z) = fly) =
d(x) — d(y). Hence, Fixy(C(M)) is a full sub residuated multilattice of M.
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(v) Straightforward.
U

Proposition 2.11. Let M be a bounded RML and d an f-derivation on C(M).
We have the following properties:

(i) d(z) =d(x) ® f(z), for all z € C(M);

(ii) of f(L) = L and d(T) = T, then the f-derivation in the set of all comple-
mented elements of a residuated multilattice M coincide with the f-derivation
in lattice.

Proof. (i) It follows from Proposition 2.5 (iii).
(ii) Firstly, we will prove that f(C(M)) C C(M). From Proposition 1.8 (vi), we
need only to prove that f(x)U f(z)* = T for all x € C(M) and it is obvious
since f(z)U f(z)* D f(xUx*) = f(T) = T. Secondly by Definition 2.1
d(z) € d(z) U f(x) and f(z) < d(z). Moreover, because d(z) = d(z) ® f(z

< )=

);
f(z) € CM). d(zOy) € (d(z)Of(y))U

we have d(z) < f(z). Hence, d(z
(f(x)©d(y)) = (dx) A f(y)U(f(2) Ad(y)) = (dz) A fy)) v (f(x) Adly)) =
d(x Ny).

O

3. PRINCIPAL, IDEAL AND GOOD IDEAL f—DERIVATIONS

In this section, we study the importance of complemented elements in the study
of principal, ideal and good ideal f-derivations of a residuated multilattice.

We denote by M™ the set of all maps from M to M. We define a binary relation
<by f<g<& flx) < g(x) for every x € M. It is easy to see that (MM, <) is
a poset. We define the hyperoperations Ll and M by fUg, flUg: M — 2M by
(fUg)(x) = f(z) Ugla) and (£ g)(x) = f() Mg(a), for every f,g € MM. It is
clear that (M™,1J,M) is a multilattice.

Definition 3.1. An ideal f-derivation d is said to be good if d(T) € C(M).

Ezxample 3.2. Let 2 be the two-element Boolean algebra and M be the residuated
multilattice depicted in the following figure:
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Consider the subsets: C' = {ag, a3, a4, as}. The operations ® and — are defined
as follows:

as ifz,yeC T ifx<y
x ify=T ay ifreCand ye{l,a}
= — =
TOY Y ifx=T Ty Y ifx=T
1L otherwise as otherwise

The direct product M x 2 of M and 2 is a RML. Note that if one sets zg =
(J_,O),lti = (al70)(1 <1< 5)7'%'6 = (T>0),y0 = (J—al)7yi = (aial)(l <1< 5)73/6 =
(T, 1), then the multilattice structure of M x 2 is described in the following Hasse
diagram.

Multiplication by g, i.e., dgs(z) = z6 ® f(z) yields a principal f-derivation on
M x 2.

We denote by PD;(M™) and GID;(M™) respectively the set of all principal
f-derivations from M to M and the set of all good ideal f-derivations from M to
M.

Remark 3.3. Let M be a bounded RML and f: M — M a homomorphism. We
can notice that every principal f-derivation is isotone and the homomorphism f is
the greatest element in PD;(M™M).

Proposition 3.4. Let f : M — M be a map. Then:
(i) GID§(M™M) is an f-Sub-multilattice of M™;
(i) (GID(C(M)CM)Y) @, 1,1, dy, f) is a bounded residuated multilattice
where, di(z) = L, (di — da)(z) = di(x) — da(z) and (d1 © da)(z) =
di(z) © da(x) for all x € C(M).

Proof. (i) Let d1,ds be two good ideal f-derivations on M and x € M. By the
definition of f-derivation and Theorem 1.8 (iv) we have,

(diMdo)(z) = di(x) Nda(z) = (f(z) ©di(T))N(f(x) ©da(T))
= (f(@)Adi(T)) N (f(x) Ada(T)).
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Using Theorem 1.8 (iv) f(z) ® (dqy Md2)(T) = f(z) © ((d1(T) Mde(T))
f@)© ((di(T) Ada(T)) = fz) A((do(T) Ada(T)) = fz) A f(@) A((do(T)
d2(T)) = (f(@)Ada(T))A(f (@) Adr(T)) = (f (@) Ad2(T))M(f (2) Adr(T))
(dlﬂdz)(l‘).

Hence, dy Mds is a good ideal f-derivation on M.

In addition,

(diUdy)(z) = di(x)Udy(z) = (f(x) ©di(T)) U (f(z) ©da(T))
C f@)©(di(T)Udz(T)) = f(z) © (di(T) V d2(T))
f(z) ® (di Ud2)(T) By M2 Proposition 1.3 .

We have d; Ll dy is a good ideal f-derivation on M and we conclude that
GID§(MM) is an f-Sub-multilattice of M.

(ii) From (i) (GID;(C(M)CM)) 11, M) is a multilattice. Tt is easy to prove that
(GID(C(M)*M) @, f) is a commutative monoid with the neutral element
f and (®,—) is an adjoint pair.

||>||

O

Theorem 3.5. Let M be a RML and d an f-contractive derivation on M with
d(z) € C(M) for all x € M. The following propositions are equivalent:

(i) d is an isotone f-derivation;
(ii) for all z,y € M, d(z © y) = d(z) © d(y) = d(z) © f(y).

Proof. (i)=(ii) Let z,y € M; by the hypothesis d(z ® y) < d(x),d(y). Then,
there exists a € d(z) Md(y) such that d(x ©® y) < a. As d(z),d(y) € C(M), we
obtain by Proposition 1.8 (iv) that d(x) Md(y) = d(z) A d(y) = d(z) ® d(y) and
dlx ®y) < d(z) ® d(y). Furthermore, by Proposition 2.9 we have d(z ©® y) =
d(z)®d(y). Hence, d(z) ®d(y) = d(z®y) € (d(z) ® f(y))U(f(z) ®d(y)). Therefore

d(z) ® f(y), f(x) ©d(y) < d(z) ®d(y). By the fact that d is f-contractive and ®
monotone, we obtain, d(z)® f(y), f(x)©d(y) < d(x)od(y) < d(z)Of(y), f(x)od(y).
Hence, d(z ® y) = d(z) ® f(y) for all x,y € M.

(ii)=(i) Let z,y € M and a € x My, by the hypothesis d(a) = d(T) ® f(a) €
d(T) ® (f(x) N £(3)). Furthermore, d(T) ® (f(z) N f(y)) Clr [(d(T) © f(z))
d(T)® f(y)] =M [d(x) Md(y)]. So, there exists z € d(x) M d(y) such that d(a) =
d(T) ® f(a) < z. In particular, for z < y we have d(z) = d(T) ® f(x) < z where
z € d(z) Md(y). Hence, d(z) < d(y).

([l

Theorem 3.6. Let M be a RML and d an f-contractive derivation on M which
satisfies d(T) € C(M) for all z € M. Then, the following are equivalent:
(i) d is an ideal f-derivation;
(ii) d(x) < d(T) for allx € M;
(iii) for allz € M, d(z) = f(z) ©d(T);
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(iv) for all x,y € M, if a € x My then there exists z € d(z) M d(y) such that
d(a) < z;

(v) forallz,y € M, d(zUy) Cd(T) o (f(z) U f(y)):

(vi) d(zx ©y) =d(z) ©d(y) for all x,y € M.

Proof. (i)=(ii) straightforward.

(il)=(iii) Let z € M, d(x) < d(T) implies d(z) = d(z) ANd(T) = d(z) ®
d(T) < d(T)® f(z). Proposition 2.5 (ii) yields, d(T) ® f(z) < d(z); so
d(z) =d(T)® f(x).
(iii)=(i) Follow from the fact that © is increasing in both arguments and f
is isotone.
(iii)=(iv) Let z,y € M and a € My, from (ii) we have d(a) = d(T) ® f(a).
Furthermore, d(T) ® f(a) € d(T) ® (f(z) 1 f(y)) Slm [(d(T) © f(x)) N
(d(T)® f(y)] =dm [d(z) M d(y)]. So, there exists z € d(x) Md(y) such that
dla)=d(T)®a < z.
(iv)=() Let z,y € M such that z < y, thus x € x My. Using hypothesis,
there exists z € d(z) Md(y) such that d(x) < z. Hence, d(z) < d(y).
(iii)=-(v) By the definition of d and the hypothesis, d(zUy) =d(T)® f(zU
y) Cd(T) © (f(x) U f(3))
(v)=(i) Let = < y, then z Uy = y. By hypothesis d(y) = d(z Uy) C
d(T)® (f(x) U f(y)) which implies that there exists a € (f(z) U f(y)) such
that d(y) =d(T)©®a >d(T)® f(x) = d(x). Hence, d(z) < d(y).
(ii)=(vi) Let z,y e M d(z©y) =d(T) O f(z0y) =d(T)0d(T) O f(x)®
fly) = (d(T) © f(x) © (d(T) © f(y)) = d(z) © ( )-
(vi)=(ii) Let x € M, we have d(z) = d(z ©® T) = d(z) ® d(T), hence
d(x) <d(T).

([

The next result shows that good ideal f-derivations on a RMJL are in one-to-one
correspondence with the complemented elements of the RML.

Proposition 3.7. A f-derivation d on M is a good ideal f-derivation if and only
if there exists a unique a € C(M) such that d = d,

Proof. Let d be a good ideal f-derivation on M. By Theorem 3.6 (iii) d(z) =
f(z) ©®d(T). It is obvious that a = d(T) is unique. Conversely, assume that there
exists a unique a € C'(M) such that d = d,. By definition we have d,(z) = a ® f(x)
which is an f-contractive and an isotone f-derivation. We can conclude that d = d,
is a good ideal f-derivation on M due to a € C(M).

O

Let GID(M™) denotes the set of all good ideal f-derivations on M. Then by the
preceding Proposition, GID§(MM) = {d, : x € C(M)}. In addition, define <, ®, —»
on GIDf(MM) by d:,; = dx/ if x < x’, Clm ®dx/ = dm@x’ and dx —» dx/ = dx—m:’- Then
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it is straightforward to see that (GID(M™), <, ®,—,d, ,dT) is a Boolean algebra
that is naturally isomorphic to the Boolean algebra C'(M).

In the remaining section, we show that the set of f-fixed points of an ideal f-
derivation is a multilattice.

Proposition 3.8. Let M be a RML and d a good ideal f-derivation on M. Then,
Fix4(M) is closed under the product. Moreover, Fixq(M) is a full sub-multilattice.

Proof. Let z,y € Fixy(M). Since d is f-contractive, d(z ® y) < x © y. It follows
from Proposition 2.9 that f(x ®y) = f(x) ® f(y) = d(z) ©d(y) < d(x ®y). Hence
x @y € Fixg(M).

Let z,y € Fixg(M), d(z Uy) = d(T) © flzUy) € d(T) o (f(z) U fy) =
d(T) © (d(z) Ud(y)) = d(T) A (d(x) Ud(y)) = d(z) Ud(y). Furthermore, f(xUy) S
f@)U f(y) = d(z) Ud(y). Using the fact that d is a contractive f-derivation, we
have d(a) < f(a) with d(a), f(a) € d(x) Ud(y) and d(a) = f(a) for all a € z U y.
Therefore, 2 Ly C Fixg(M).

Forallz,y € M, d(zMNy) = d(T)o f(zMy) C d(T)O(f(2)Mf(y)) = d(T)©(d(z)M
d(y)). For every a € d(z)MNd(y), a < d(z),d(y) < d(T)and d(T)®a=d(T)ANa = a.
This implies that d(T) ® (d(x) Md(y)) = d(x) Nd(y) and d(z My) C d(z) M d(y).
But, f(zxMy) C f(x) M f(y) = d(x) Nd(y). Using the fact that d is f-contractive,
we obtain d(z My) = f(x My). O

4. CONCLUSION AND FINAL REMARKS

The notion of derivation is a powerful tool for studying structural properties
of different algebras. We initiated the study of f-derivations on residuated mul-
tilattices as a natural generalization of derivations on residuated multilattices and
residuated lattices by introducing definitions with clear examples. The set of all
complemented elements of a residuated multilattices enabled us to characterize good
ideal f-derivations by using the image of the top element as a generator, which of-
fers us a complete description of good ideal f-derivations. Various sets related to
derivations were investigated and found to carry nice substructures.
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