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FUZZY N-FOLD OBSTINATE IDEALS IN

MV -ALGEBRAS

FERESHTEH FOROUZESH

Abstract. In this paper, we introduce the notion of n-fold Boolean
ideals of an MV -algebra and consider the quotient algebras induced
by n-fold Boolean ideals. Also we prove that I is a n-fold Boolean
ideal of an MV -algebra if and only if A/I is a n+1-bounded MV -
algebra if and only if A/I is a subdirect product of algebras  Lk,
with 2 ≤ k ≤ n.
Finally, we introduce the notion of fuzzy n-fold obstinate ideals
in MV -algebras. We give some characterizations of fuzzy n-fold
obstinate ideals.
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1. Introduction

Chang invented MV -algebras in order to give an algebraic proof of the
completeness theorem of the infinite-valued logic of  Lukasiewicz [2, 3].
Also, Mundici in the study of AFC∗-algebras, shows that category of
MV -algebras is equivalent to category of lu-groups [17].

Ideal theory is a major tool in an MV -algebra, i.e., a certain type of
ideals is useful to characterize an MV -algebra.

Then these classes of algebras have been intensively studied by many
researcher. In particular, emphasis has been put an the filter theory
of BL-algebras [12]. In [13] and [16] the authors defined the notion of
n-fold Boolaen filters, n-fold fanstastic filters, n-fold normal filters in
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BL-algebras and studied the relations among many types n-fold filters
in BL-algebras.
MV -algebras as well as BL-algebras are important logical algebras.
This motivates us to study the notion of n-fold Boolean ideals in MV -
algebras. Hence we introduce concept of n-fold Boolean ideals MV -
algebra and we state and prove the extension theorem of this n-fold ideals
and several characterizations of n-fold Boolean ideals of MV -algebras.

In addition, n-fold Boolean ideals are important, because we prove
that the quotient algebras induced by n-fold Boolean ideals are n+1-
boundedMV -algebras that are generated by all finite  Lukasiewicz chains
of n + 1 elements or less.

Also, several characterizations of this n-fold ideals are given. We prove
that every semi-maximal ideal of an MV -algebra is a n-fold Boolean
ideal but the inverse this theorem is not true in general.

The concept of fuzzy set was introduced by Zadeh (1965) [20]. This
idea has been applied to other algebraic structures such as semi-group,
group, ideals, modules and topologies. In 1991, Xi [19] applied the con-
cept of fuzzy sets to BCK-algebras and proposed the notion of fuzzy
implicative ideals. Afterwards, Hoo [11] proved that fuzzy implicative
and fuzzy Boolean ideals are equivalent in MV -algebras.
In [9] results regarding fuzzy obstinate ideals of MV-algebras were ob-
tained.

We introduce the notion of fuzzy n-fold obstinate ideals in MV -
algebras. We give some characterizations of fuzzy n-fold obstinate ideals
and establish the extension theorem of this class of ideals and study some
properties of them.

Definition 1.1. [2] An MV -algebra is a structure (A, ⊕, *, 0) where ⊕
is a binary operation, *, is a unary operation, and 0 is a constant such
that the following axioms are satisfied for any a, b ∈ A :
(MV 1) (A, ⊕, 0) is an abelian monoid,
(MV 2) (a∗)∗ = a,
(MV 3) 0∗ ⊕ a = 0∗,
(MV 4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Note that we define 1 = 0∗ and the auxiliary operation � as follow:

x� y = (x∗ ⊕ y∗)∗.
We say that the element x ∈ A has order n and we write ord(x) = n,

if n is the smallest natural number such that nx = 1. We say that the
element x has a finite order, and write ord(x) < ∞. An MV -algebra
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A is locally finite if every non-zero element of A has finite order. We
recall that the natural order determines a bounded distributive lattice
structure such that

x∨y = x⊕(x∗�y) = y⊕(x�y∗) and x∧y = x�(x∗⊕y) = y�(y∗⊕x).

Lemma 1.2. [4] In each MV -algebra, the following relations hold for
all x, y, z ∈ A:
(1) x ≤ y if and only if y∗ ≤ x∗,
(2) If x ≤ y, then x⊕ z ≤ y ⊕ z and x� z ≤ y � z,
(3) x ≤ y if and only if x∗ ⊕ y = 1 if and if x� y∗ = 0,
(4) x, y ≤ x ⊕ y and x � y ≤ x, y, x ≤ nx = x ⊕ x ⊕ · · · ⊕ x and
xn = x� x� · · · � x ≤ x,
(5) x⊕ x∗ = 1 and x� x∗ = 0,
(6) If x ∈ B(A), then x ∧ y = x� y, for any y ∈ A,
(7) x� y ≤ z ↔ x ≤ y∗ ⊕ z,
(8) If x ≤ y and z ≤ t, then x⊕ z ≤ y ⊕ t.
An element a ∈ A is called complemented if there is an element b ∈ A
such that a ∨ b = 1 and a ∧ b = 0. We denote the set of complemented
of A by B(A).

Definition 1.3. [2] An ideal of an MV -algebra A is a nonempty subset
I of A satisfying the following conditions:
(I1) If x ∈ I , y ∈ A and y ≤ x then y ∈ I,
(I2) If x, y ∈ I, then x⊕ y ∈ I.
We denote by Id(A) the set of ideals of an MV -algebra A.

Definition 1.4. [4] Let I be an ideal of an MV -algebra A. Then I is a
proper if I 6= A. Proper ideal P is a prime if and only if for all x, y ∈ A,
x� y∗ ∈ P or y � x∗ ∈ P .
• [1] An ideal I of an MV -algebra A is called a Boolean ideal if x∧x∗ ∈ I,
for all x ∈ A.
• [1] P is a primary ideal of an MV -algebra A if it is a proper ideal such
that for every a, b ∈ A such that a� b ∈ P , there exists an integer n > 0
such that an ∈ P or bn ∈ P .

• [5] An ideal I is a quasi-implicative if for any x ∈ A such that xn ∈ I
for some n ≥ 1, then x ∈ I.

Lemma 1.5. [4, 18] M is a maximal ideal of an MV -algebra A if and
only if for any x /∈M , (nx)∗ ∈M , for some integer n ≥ 1.
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Remark 1.6. [4] In an MV -algebra M , the distance function is
d : M ×M −→M, d(x, y) := (x� y∗)⊕ (y � x∗).
Suppose that I is an ideal of an MV -algebra A. Define x ∼I y if and
only if d(x, y) ∈ I if and only if x� y∗ ∈ I and y� x∗ ∈ I. Then ∼I is a
congruence relation on A. The set of all congruence classes is denoted
by A/I then A/I = {[x] : x ∈ A}, where [x] = {y ∈ A : x ∼I y}. We
can easily to see that x ∈ I if and only if x/I = 0/I. The MV -algebra
operations on A/I given by x/I ⊕ y/I = (x ⊕ y)/I and (x/I)∗ = x∗/I,
are well defined. Hence (A/I,⊕, ∗, [0]) becomes an MV -algebra [4, 18].

Definition 1.7. [6] Let I be a proper ideal of A. The intersection of all
maximal ideals of A which contain I is called the radical of I and it is
denoted by Rad(I). It is proved that

Rad(I) = {a ∈ A : na� a ∈ I, for all n ∈ N}.

Definition 1.8. [6] A proper ideal I of A is said to be a semi-maximal
ideal of A if Rad(I) = I. Hence I is semi-maximal ideal if and only if
na� a ∈ I, implies a ∈ I, for all a ∈ A and n ∈ N.

Lemma 1.9. I is a maximal ideal of A if and only if A/I is a locally
finite MV -algebra.

Definition 1.10. [4] Let n ≥ 2 be an integer. By an n-bounded MV -
algebra we shall mean an algebra satisfying the equation

(n− 1)x = nx

The variety of n-bounded MV -algebras will be denoted by Un.

Theorem 1.11. [4] Let A be an MV -algebra and n ≥ 2 an integer.
Then A ∈ Un if and only if A is a subdirect product of algebra  Lk,
with 2 ≤ k ≤ n, where  Lk i.e, the n element  Lukasiewicz chains ( Lk =
{0, 1/(k − 1), 2/(k − 1), · · · , (k − 2)/(k − 1), 1}).

Definition 1.12. [20] A fuzzy set in A is a mapping µ : A→ [0, 1]. Let
µ be a fuzzy set in A. For t ∈ [0, 1], the set µt = {x ∈ A : µ(x) ≥ t} is
called a level subset of µ.
For any fuzzy sets µ, ν in A, the binary relation ⊆ is defined as

µ ⊆ ν if and only if µ(x) ≤ ν(x) for all x ∈ A.

Definition 1.13. [20] Let X,Y be two sets, µ be a fuzzy subset of X,
µ′ be a fuzzy subset of Y and f : X → Y be a homomorphism. The
image of µ under f denoted by f(µ) is a fuzzy set of Y defined by:
for all y ∈ Y , f(µ)(y) = supx∈f−1(y)µ(x), if f−1(y) 6= ∅ and f(µ)(y) = 0
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if f−1(y) = ∅.
The preimage of µ′ under f denoted by f−1(µ′) is a fuzzy set of X
defined by: for all x ∈ X, f−1(µ′)(x) = µ′(f(x)).

Definition 1.14. [10] Let A be an MV -algebra. Then a fuzzy set µ in
A is a fuzzy ideal of A, if it satisfies
(MV 1) µ(0) ≥ µ(x), for all x ∈ A,
(MV 2) µ(y) ≥ µ(x) ∧ µ(y � x∗), for all x, y ∈ A.

Proposition 1.15. [10, Proposition 2.1] Let A be an MV -algebra and
µ : A → [0, 1] be a fuzzy set on A. Then µ is called a fuzzy ideal on A,
if and only if
(1) µ(x) ≤ µ(0), for all x ∈ A and
(2) µ(x⊕ y) ≥ µ(x) ∧ µ(y), for all x, y ∈ A,
(3) If x ≤ y, then µ(x) ≥ µ(y).

Definition 1.16. [7] µ is called a fuzzy Boolean ideal, if µ(x∧ (nx)∗) =
µ(0), for all x ∈ A.

Theorem 1.17. [10] Let µ be a fuzzy ideal in A. For any x, y ∈ A, the
following hold:
(1) µ(x⊕ y) = µ(x) ∧ µ(y),
(2) µ(x ∨ y) = µ(x) ∧ µ(y).

2. n-fold Boolean ideals in MV -algebras

Form now on (A,⊕, ∗, 0, 1) or simply A is an MV -algebra.

Definition 2.1. Let I be an ideal of A. I is called n-fold Boolean ideal
of A, if it satisfies: x ∧ (nx)∗ ∈ I.

In particular, 1-fold Boolean ideals are Boolean ideals.
The following example shows that n-fold Boolean ideals exist and that
an ideal is not n-fold Boolean ideal of A, in general.

Example 2.2. Let A = {0, a, b, 1}, where 0 < a, b < 1. Define �, ⊕ and
∗ as follows:

� 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

⊕ 0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1
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∗ 0 a b 1
1 b a 0

Then (A,⊕,�, ∗, 0, 1) is an MV -algebra [14], it is clear that I1 = {0, a}
and I2 = {0, b} are n-fold Boolean ideals of A.

Example 2.3. Let A = {0, a, b, c, d, 1}, where 0 < a, b < c < 1 and
0 < b < d < 1. Define ⊕, � and ∗ as follows:

� 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

∗ 0 a b c d 1
1 d c b a 0

Then (A,⊕,�, ∗, 0, 1) is an MV -algebra [14] and it is clear I = {0, a} is
an ideal of A but since c ∧ c∗ = c ∧ b = b /∈ I, it is not a 1-fold Boolean
ideal of A.

Theorem 2.4. Every n-fold Boolean ideal is a (n+1)-fold Boolean ideal
of A.

Proof. Let I be n-fold Boolean ideal of A and x∧(nx)∗ ∈ I, for all x ∈ A.
We must show that x∧ ((n+ 1)x)∗ ∈ I. We have nx ≤ (n+ 1)x. Hence
by Lemma 1.2 (1), ((n+1)x)∗ ≤ (nx)∗. We imply that ((n+1)x)∗∧x ≤
(nx)∗ ∧ x ∈ I. Thus ((n+ 1)x)∗ ∧ x ∈ I. �

The following example shows that the converse of Theorem 2.4, is not
true in general.

Example 2.5. Let A be an MV -algebra from Example 2.3, I = {0, a} is
2-fold Boolean ideal of A, while is not 1-fold Boolean ideal of A, since
c ∧ c∗ = c ∧ b = b /∈ I.
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Theorem 2.6. Let n ≥ 1, I1 and I2 two ideals of A such that I1 ⊆ I2.
If I1 is a n-fold Boolean ideal, then so is I2.

Proof. If I1 is a n-fold Boolean ideal, then x ∧ (nx)∗ ∈ I1, for all x ∈ A.
Since I1 ⊆ I2, we have x ∧ (nx)∗ ∈ I2, for all x ∈ A. Thus I2 is a n-fold
Boolean ideal of A. �

Remark 2.7. Let I and J be ideals of A. We have

I ∨ J = (I ∪ J ] = {a ∈ A : a ≤ b⊕ c, for some b ∈ I and c ∈ J}.

It is an ideal of A, [4, 18]. If I or J is a n-fold Boolean ideal, then by
Theorem 2.6, we get that I ∨ J is a n-fold Boolean ideal.

Lemma 2.8. {0} is a n-fold Boolean ideal of A if and only if every ideal
I of A is a n-fold Boolean ideal.

Theorem 2.9. Let I be an ideal of A. Then I is a n-fold Boolean ideal
of A if and only if every ideal of A/I is a n-fold Boolean ideal.

Proof. Assume that I is a n-fold Boolean ideal of A. From Lemma 2.8,
we have

x ∧ (nx)∗ ∈ I ⇔ (x ∧ (nx)∗)/I = 0/I,

⇔ x/I ∧ (nx)∗/I = 0/I,

⇔ x/I ∧ ((nx)/I)∗ = 0/I,

⇔ x/I ∧ (n(x/I))∗ = 0/I ∈ {[0]}.

Hence {[0]} is a n-fold Boolean ideal of A/I, thus by Lemma 2.8, we
conclude that every ideal of A/I is a n-fold Boolean ideal. �

The following example shows that the MV -homomorphic image of an
n-fold Boolean ideal is not even an ideal.

Example 2.10. In Example 2.2, consider MV -homomorphism f : A→ A
such that f(0) = 0, f(a) = 1, f(b) = 0 and f(1) = 1. It is clear
I = {0, a} is a 1-fold Boolean ideal of A, while f(I) = {0, 1} is not an
ideal of A.

In the following theorem, we study inverse image of a n-fold Boolean
ideal under a MV -homomorphism.

Theorem 2.11. Let f : A → B be an onto MV -homomorphism and
I be a n-fold Boolean ideal of B. Then inverse image of I is a n-fold
Boolean ideal of A.
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Proof. Let I be a n-fold Boolean ideal of B. We show that for x ∈ A,
x ∧ (nx)∗ ∈ f−1(I). Since f(x) ∈ B and I is a n-fold Boolean ideal of
B, f(x) ∧ (nf(x))∗ ∈ I if and only if f(x) ∧ (f(nx))∗ ∈ I if and only if
f(x ∧ (nx)∗) ∈ I if and if x ∧ (nx)∗ ∈ f−1(I). Hence f−1(I) is a n-fold
Boolean ideal of A. �

Theorem 2.12. Let I be a primary ideal and quasi-implicative ideal of
A. Then I is a n-fold Boolean ideal.

Proof. We have 0 = x � (x∗)n = x � (nx)∗ ∈ I, for any x ∈ A. Since I
is a primary ideal, so xm ∈ I or ((nx)∗)m ∈ I, for some integer m ≥ 1.
Since I is a quasi-implicative ideal, then x ∈ I or (nx)∗ ∈ I. Hence
x ∧ (nx)∗ ≤ x, (nx)∗ ∈ I, thus x ∧ (nx)∗ ∈ I. Therefore I is a n-fold
Boolean ideal. �

Proposition 2.13. The following conditions are equivalent for any ideal
I and any n ≥ 1:
(i) For all x, y ∈ A, x� (y∗ ⊕ nx) ∈ I implies x ∈ I,
(ii) If nx� x ∈ I, for all x ∈ A, implies x ∈ I.

Proof. (i) → (ii) We obtain the result by setting y = 1 in the equation
(i).
(ii) → (i) Suppose that x � (y∗ ⊕ nx) ∈ I, for all x, y ∈ A. Hence
x � nx ≤ x � (y∗ ⊕ nx) ∈ I. It follows that x � nx ∈ I, and by
hypothesis we obtain x ∈ I. �

Theorem 2.14. A proper ideal I is a n-fold Boolean ideal of A if and
only if nx� x ∈ I, then x ∈ I, for all n ∈ N.

Proof. Let I be a n-fold Boolean ideal of A. We have x ∧ (nx)∗ ∈ I.
Suppose that nx � x ∈ I. We prove that x ∈ I. Since I is an ideal,
x∧ (nx)∗⊕ (x� nx) = (x� (x∗⊕ (nx)∗)⊕ (x� (nx)) ∈ I. On the other
hand, x ≤ (x� nx) ∨ x ∈ I, thus x ∈ I.
Conversely, let x ∈ A. Setting t = x ∧ (nx)∗, we show that t ∈ I. Since
t ≤ x, we have nt ≤ nx and then (nx)∗ ∧ x ≤ (nx)∗ ≤ (nt)∗ and then
t ≤ (nt)∗ or t�nt = 0 ∈ I. So by hypothesis, we imply that t ∈ I. Thus
I is n-fold Boolean ideal of A. �

By the above theorem, we have:

Corollary 2.15. If I is a semi-maximal ideal of A, then I is a n-fold
Boolean ideal of A.

The following example shows that the converse of the above theorem
is not true in general.
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Example 2.16. In Example 2.3, we have I = {0, a} is 2-fold Boolean
ideal. Since b� 1b = 0 ∈ I but b /∈ I, hence I is not semi-maximal ideal
of A.

Lemma 2.17. A is a n+1-bounded MV -algebra if and only if it satisfies
the following condition:

x ∧ (nx)∗ = 0, for all x ∈ A.

Proof. Let x ∧ (nx)∗ = 0, for all x ∈ A. Hence x∗ ∨ (nx) = 1. So

1 = x∗ ∨ (nx) = nx⊕ ((nx)∗� x∗) = nx⊕ (nx⊕ x)∗ = nx⊕ ((n+ 1)x)∗.

It follows from Lemma 1.2 (3) that (n + 1)x ≤ nx. Thus A is a n+1-
bounded MV -algebra. The converse is clear. �

The following example shows that MV -algebras are not in general
n+1-bounded MV -algebras.

Example 2.18. We consider Chang’sMV -algebraA = {0, c, 2c, 3c, . . . , 1−
2c, 1− c, 1} in [2] with operations as follows:
if x = nc and y = mc, then x⊕ y := (m+ n)c,
if x = 1− nc and y = 1−mc, then x⊕ y := 1,
if x = nc and y = 1−mc and m ≤ n, then x⊕ y := 1,
if x = nc and y = 1−mc and n < m, then x⊕ y := 1− (m− n)c,
if x = 1−mc and y = nc and m ≤ n, then x⊕ y := 1,
if x = 1−mc and y = nc and n < m, then x⊕ y := 1− (m− n)c,
if x = nc, then x∗ := 1− nc,
if x = 1− nc, then x∗ := nc.

Since c ∧ (nc)∗ = c ∧ (1 − nc) = c � (c∗ ⊕ (1 − nc)) = c � 1 = c 6= 0,
hence A is not n+1-bounded MV -algebra.

Theorem 2.19. The following conditions are equivalent:
(i) {0} is a n-fold Boolean ideal of A,
(ii) x� nx = x, for all x ∈ A.

Proof. (i) → (ii) Let x � nx = x, for all x ∈ A. Hence x ∧ (nx)∗ =
x� (x∗⊕ (nx)∗) = x� (x�nx)∗ = x�x∗ = 0 ∈ {0}. Thus {0} is n-fold
Boolean ideal of A.

(ii) → (i) Assume that {0} is a n-fold Boolean ideal. Hence for all
x ∈ A holds x ∧ (nx)∗ = 0. Hence x � (x � nx)∗ = x � (x∗ ⊕ (nx)∗) =
x∧ (nx)∗ = 0 or equivalently, x ≤ x� (nx) ≤ x. Thus x� (nx) = x, for
all x ∈ A. �

By the above theorem, we have
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Corollary 2.20. A is a n+1-bounded MV -algebra if and only if {0} is
a n-fold Boolean ideal of A.

We recall that I is maximal ideal of A if and only if A/I is locally
finite MV -algebra [18].

Theorem 2.21. If A is a totally ordered MV -algebra, then any n-fold
Boolean ideal of A is maximal ideal of A and A/I is a locally finite
MV -algebra.

Proof. Let A be a totally ordered MV -algebra. Assume that I is n-fold
Boolean ideal and let x ∈ A be an element that x /∈ I. From Theorem
2.14, we obtain x�nx /∈ I, hence x ≤ (nx)∗ or equivalently x�nx = 0 ∈
I, which is a contradiction. So we necessarily have (nx)∗ ≤ x. Therefore
nx ⊕ x = 1 and so (n + 1)x = 1, hence ((n + 1)x)∗ = 0 ∈ I. It follows
from Lemma 1.5 that I is a maximal ideal of A. Hence A/I is a locally
finite MV -algebra. �

By Theorem 2.21, we have the following result:

Corollary 2.22. A totally ordered MV -algebra is a locally finite if {0}
is a n-fold Boolean ideal. A totally ordered n+1-bounded MV -algebra is
a locally finite.

Theorem 2.23. An ideal I of A is a n-fold Boolean ideal if and only if
A/I is a n+1-bounded MV -algebra.

Proof. Suppose that I is a n-fold Boolean ideal. Hence for x ∈ A, we
have

x ∧ (nx)∗ ∈ I ⇔ (x ∧ (nx)∗)/I = 0/I,

⇔ x/I ∧ (nx)∗/I = 0/I,

⇔ x/I ∧ (x∗)n/I = 0/I,

⇔ x/I ∧ (x∗/I)n = 0/I,

⇔ x/I ∧ ((x/I)∗)n = 0/I,

⇔ x/I ∧ (n(x/I))∗ = 0/I, for all x/I ∈ A/I.
Hence A/I is a n+1-bounded MV -algebra. �

Theorem 2.24. I is a maximal and n-fold Boolean ideal if and only if
I is a prime and n-fold Boolean ideal of A.

Proof. Let I be a prime and n-fold Boolean ideal of A. Also suppose
that x /∈ I. Then we have x∧ (nx)∗ ∈ I, for any x ∈ A. Since I is prime,
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x ∈ I or (nx)∗ ∈ I. Since x /∈ I, (nx)∗ ∈ I. It follows from Lemma 1.5
that I is a maximal ideal of A. �

By Theorem 1.11 and Theorem 2.23, we conclude the following corol-
lary:

Corollary 2.25. I is a n-fold Boolean ideal if and only if A/I is a n+1-
bounded MV -algebra if and only if A/I is a subdirect product of algebras
 Lk, with 2 ≤ k ≤ n.

Remark 2.26. In the following diagram, relationships among n-fold Boolean
ideals and the other ideals in MV -algebras are described [8].

(a)

n-fold obstinate

��

// n-fold Boolean
max

oo // prime

rr
primary

quasi-implicative

OO

3. Fuzzy n-fold obstinate ideals in MV -algebras

Definition 3.1. Let µ be a fuzzy ideal in A. µ is called a fuzzy n-fold
obstinate ideal if it satisfies

µ(x� (ny)∗) ∧ µ(y � (nx)∗) ≥ (1− µ(x)) ∧ (1− µ(y)), for all x, y ∈ A.

In particular, fuzzy 1-fold obstinate ideals are fuzzy obstinate ideals.

Lemma 3.2. A fuzzy ideal µ of an MV -algebra A is a fuzzy obstinate
ideal if and only if it satisfies the following condition:

µ((nx)∗) ≥ 1− µ(x), for all x ∈ A.

Proof. Suppose that µ is a fuzzy n-fold obstinate ideal of A. Since x ≤ 1,
by fuzzy ideal properties, we obtain 1−µ(x) ≤ 1−µ(1) and we conclude
that
µ((nx)∗) = µ((nx)∗�1) ≥ min{µ((nx)∗�1), µ(x�(n1)∗)} ≥ min{1−

µ(x), 1− µ(1)} = 1− µ(x).
Conversely, let µ((nx)∗) ≥ 1 − µ(x), for all x ∈ A. By Lemma 1.2,

(nx)∗ � y ≤ (nx)∗ and (ny)∗ � x ≤ (ny)∗, we have

min{1− µ(x), 1− µ(y)} ≤ 1− µ(x) ≤ µ((nx)∗) ≤ µ((nx)∗ � y)
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and min{1−µ(x), 1−µ(y)} ≤ 1−µ(y) ≤ µ((ny)∗) ≤ µ((ny)∗�x). Thus

min{1− µ(x), 1− µ(y)} ≤ min{µ((nx)∗ � y), µ((ny)∗ � x)}.
Hence µ is a fuzzy n-fold obstinate ideal of A. �

The following example shows that fuzzy n-fold obstinate ideals exist
and a fuzzy ideal may not be a fuzzy obstinate ideal of A.

Example 3.3. Consider Example 2.2.
(i) Define a fuzzy set µ in A by µ(0) = 0.8 and µ(1) = µ(a) = µ(b) =

0.5. Obviously, µ is a n-fold fuzzy obstinate ideal on A, for n ≥ 1.
(ii) Define a fuzzy set µ′ in A by µ′(0) = 0.8 and µ′(1) = µ′(a) =

µ′(b) = 0.3. Obviously, µ′ is a fuzzy ideal in A. Since µ′(b∗) = µ′(a) =
0.3 < 1− µ′(b) = 0.7, hence µ′ is not 1-fold obstinate ideal of A.

Lemma 3.4. (Extension theorem of fuzzy n-fold obstinate ideals) Sup-
pose that A is an MV -algebra and µ and ν are two non-constant fuzzy
ideals such that µ ⊆ ν. If µ is a fuzzy n-fold obstinate ideal, then ν is
also a fuzzy n-fold obstinate ideal of A.

Proof. Let µ is a fuzzy n-fold obstinate ideal such that µ ⊆ ν. We show
that ν is a fuzzy n-fold obstinate ideal. Since µ is a fuzzy n-fold obstinate
ideal, µ((nx)∗) ≥ 1− µ(x), for all x ∈ A.

Also, µ ⊆ ν, so µ(x) ≤ ν(x), for all x ∈ A. It follows that

ν((nx)∗) ≥ µ((nx)∗) ≥ 1− µ(x) ≥ 1− ν(x).

Hence ν(nx)∗ ≥ 1−ν(x), for all x ∈ A. Thus ν is a fuzzy n-fold obstinate
ideal of A. �

Theorem 3.5. Every fuzzy n-fold obstinate ideal is a fuzzy (n+1)-fold
obstinate ideal of A.

Proof. Let µ be a fuzzy n-fold obstinate ideal of A. We have

min{µ(x� (ny)∗), µ(y � (nx)∗)} ≥ min{1− µ(x), 1− µ(y)}.
We show that µ is a fuzzy (n+1)-fold obstinate ideal, we need to prove
that

min{µ(y � ((n+ 1)x)∗), µ(x� ((n+ 1)y)∗)} ≥ min{1− µ(x), 1− µ(y)}.
Using Lemma 1.2, we have y�((n+1)x)∗ ≤ y�(nx)∗ and x�((n+1)y)∗ ≤
x � (ny)∗. Since µ is a fuzzy ideal, we obtaine µ(y � ((n + 1)x)∗) ≥
µ(y � (nx)∗) and µ(x � (n + 1)y)∗) ≥ µ(x � (ny)∗). By hypothesis, It
follows that

min{µ(x� ((n+ 1)y)∗), µ(y � ((n+ 1)x)∗)} ≥ min{1− µ(x), 1− µ(y)},
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so µ is a fuzzy (n+1)-fold obstinate ideal of A. �

By finite induction, we can prove that every fuzzy n-fold obstinate
ideal is a fuzzy (n+k)-fold obstinate ideal for any integer k ≥ 0.

The following example shows that any fuzzy (n+1)-fold obstinate ideal
may not be a fuzzy n-fold obstinate ideal of A.

Example 3.6. Let A = {0, 1, 2} be a linearly ordered set (chain). A is
an MV -algebra with operations ∧ = min, x ⊕ y = min{2, x + y} and
x � y = max{0, x + y − 2}, for every x, y ∈ A [14]. On the other hand
A is an MV -algebra with the following operations:

⊕ 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

∗ 0 1 2
2 1 0

Define a fuzzy set in A by µ(0) = 0.8, µ(1) = 0.3 and µ(2) = 0.3.
Using Lemma 3.2, for n = 2, it is easy to chack that µ is a fuzzy

2-fold obstinate ideal of A but it is not a fuzzy 1-fold obstinate ideal of
A because 0.3 = µ(1∗) = µ(1) � 1− µ(1) = 1− 0.3 = 0.7.

Theorem 3.7. Let f : X → Y be onto MV -homomorphism. Then the
preimage of a fuzzy n-fold obstinate ideal µ under f is also a fuzzy n-fold
obstinate ideal of X.

Proof. Suppose that µ is a fuzzy n-fold obstinate ideal of Y . Then for
all x, y ∈ X.

We have

min{f−1(µ)(x� (ny)∗), f−1(µ)(y � (nx)∗)},
= min{µ(f(x� (ny)∗), µ(f(y � (nx)∗),

≥ min{1− µ(f(x)), 1− µ(f(y))},
= min{1− f−1(µ)(x), 1− f−1(µ)(y)}.

Thus f−1(µ) is a fuzzy n-fold obstinate ideal of X. �

Proposition 3.8. Let f : X → Y be an onto MV -homomorphism. The
image f(µ) of a fuzzy n-fold obstinate ideal µ with a subproperty is also
a fuzzy n-fold obstinate ideal of Y .

Proof. It is sufficient to show that for all y1, y2 ∈ Y ,

min{f(µ)(y1�(ny2)
∗), f(µ)(y2�(ny1)

∗)} ≥ min{1−f(µ)(y1), 1−f(µ)(y2)}.
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Let y1, y2 ∈ Y and x1 ∈ f−1(y1), x2 ∈ f−1(y2) such that 1 − µ(x1) =
1− supt∈f−1(y1)µ(t) and 1− µ(x2) = 1− supt∈f−1(y2)µ(t).

We have f(µ)(y1 � (ny2)
∗) = supt∈f−1(y1�(ny2)∗)µ(t) ≥ µ(x1 � (nx)∗)

and
f(µ)(y2 � (ny1)

∗) = supt∈f−1(y2�(ny1)∗)µ(t) ≥ µ(x2 � (nx1)
∗). So

min{f(µ)(y1 � (ny2)
∗), f(µ)(y2 � (ny1)

∗)},
≥ min{µ(x1 � (nx2)

∗), µ(x2 � (nx1)
∗))},

≥ min{1− µ(x1), 1− µ(x2)}.

But min{1 − µ(x1), 1 − µ(x2)} = min{1 − f(µ)(y1), 1 − f(µ)(y2)}. We
conclude that f(µ) is a fuzzy n-fold obstinate ideal of Y . �

Theorem 3.9. A non-empty subset I of A is a n-fold obstinate ideal
if and only if the characteristic function χI is a fuzzy n-fold obstinate
ideal of A.

Proof. Assume that I is a n-fold obstinate ideal of A. We will prove
that χI is a fuzzy n-fold obstinate ideal of A.

Let x, y ∈ A. We show that

min{χI(x� (ny)∗), χI(y � (nx)∗)} ≥ min{1− χI(x), 1− χI(y)}.

If x ∈ I or y ∈ I, we have min{1− χI(x), 1− χI(y)} = 0 and

min{χI(x� (ny)∗), χI(y � (nx)∗)} ≥ min{1− χI(x), 1− χI(y)}.

If x /∈ I and y /∈ I, then min{1 − χI(x), 1 − χI(y)} = 1, since I is a
n-fold obstinate ideal of A, we obtain x� (ny)∗ ∈ I and y � (nx)∗ ∈ I.
So min{χI(x� (ny)∗), χI(y � (nx)∗)} = 1. We conclude that

min{χI(x� (ny)∗, χI(y � (nx)∗)} ≥ min{1− χI(x), 1− χI(y)}.

Assume that χI is a fuzzy n-fold obstinate ideal of A, we prove that I is
a n-fold obstinate ideal of A. Let x, y /∈ I, we have χI(x) = 0 = χI(y).
Since χI is a fuzzy n-fold obstinate ideal of A, we have

min{χI(x� (ny)∗), χI(y � (nx)∗)} ≥ min{1− χI(x), 1− χI(y)} = 1.

We obtain χI(x � (ny)∗) = χI(y � (nx)∗)} = 1. Hence x � (ny)∗ ∈ I
and y � (nx)∗ ∈ I. �

Now, we describe the transfer principle [15] for fuzzy n-fold obstinate
ideals in terms of level subsets:
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Theorem 3.10. (i) A fuzzy subset µ of an MV -algebra A is a fuzzy
n-fold obstinate ideal of A, if µt = {x ∈ A : µ(x) ≥ t} is either empty
or a n-fold obstinate ideal for every t ∈ [0, 1/2].
(ii) If µt 6= ∅, for any t ∈ (1/2, 1] and µt is a n-fold obstinate ideal, then
µ is a fuzzy n-fold obstinate ideal of A.

Proof. (i) Assume that µ is a fuzzy n-fold obstinate ideal of A. Let
t ∈ [0, 1/2] and x ∈ µt. Then µ(x) ≥ t. Since µ is a fuzzy ideal,
µ(0) ≥ µ(x), therefore 0 ∈ µt. Let x, y /∈ µt. We show that x�(ny)∗ ∈ µt
and y � (nx)∗ ∈ µt. Since x, y /∈ µt, µ(x) < t, µ(y) < t and µ is a fuzzy
n-fold obstinate ideal of A, we have

µ(x� (ny)∗) ≥ min{µ(x� (ny)∗)), µ(y � (nx)∗)}
≥ min{1− µ(x), 1− µ(y)}
≥ 1− t
≥ t.

for every t ∈ [0, 1/2]. Also, by similarly, µ(y � (nx)∗) ≥ t. Hence
x� (ny)∗ ∈ µt and y� (nx)∗ ∈ µt. Thus µt is a n-fold obstinate ideal of
A.
(ii) Assume that for every t ∈ (1/2, 1], µt is a n-fold obstinate ideal of
A. We will prove that µ is a fuzzy n-fold obstinate ideal of A. It is easy
to prove that for all x ∈ A, µ(0) ≥ µ(x). Let x, y ∈ A. We show that
min{µ(x�(ny)∗), µ(y�(nx)∗)} ≥ min{1−µ(x), 1−µ(y)}. If not, there
exist a, b ∈ A such that

min{µ(a� (nb)∗), µ(b� (na)∗)} < min{1− µ(a), 1− µ(b)}. Setting

t0 = 1/2(min{µ(a� (nb)∗), µ(b� (na)∗)}+min{1− µ(a), 1− µ(b)}).
We have min{µ(a�(nb)∗), µ(b�(na)∗)} < t0 < min{1−µ(a), 1−µ(b)}.
We conclude that µ(a � (nb)∗) < t0 or µ(b � (na)∗) < t0. Also, t0 <
1− µ(a) and t0 < 1− µ(b). We consider two cases:
Case 1. If t0 > 1

2 , then we conclude that µ(a) < 1 − t0 < t0 and
µ(b) < 1 − t0 < t0. Also, since µ(a � (nb)∗) < t0 or µ(b � (na)∗) < t0,
hence a� (nb)∗ /∈ µt0 or b� (na)∗ /∈ µt0 , for a /∈ µt0 and b /∈ µt0 , which
is a contradiction.
Case 2. If t0 ≤ 1

2 , since 1− t0 ≥ 1
2 , then µ(a� (nb)∗) < t0 ≤ 1

2 ≤ 1− t0
or µ(b� (na)∗) < t0 ≤ 1

2 ≤ 1− t0. Also, µ(a) < 1− t0 and µ(b) < 1− t0.
Hence a�(nb)∗ /∈ µ1−t0 or b�(na)∗ /∈ µ1−t0 , for a /∈ µ1−t0 and b /∈ µ1−t0 ,
which is a contradiction.
Therefore µ is a fuzzy n-fold obstinate ideal of A. �
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Corollary 3.11. Let µ be a fuzzy ideal of an MV -algebra A. The level
ideal I = {x ∈ A : µ(x) = µ(0)} is a n-fold obstinate ideal of A if µ is a
fuzzy n-fold obstinate ideal of A with µ(0) ∈ [0, 1/2].

In the following theorem, we investigate the relation between fuzzy
n-fold obstinate ideals and the fuzzy n-fold Boolean ideals of A.

Theorem 3.12. Let µ be a fuzzy n-fold obstinate ideal of A such that
µ(0) ≤ 1/2. Then µ is a fuzzy n-fold Boolean ideal of A.

Proof. Let µ be a fuzzy n-fold obstinate ideal of A. It is sufficient to
show that µ(x ∧ (nx)∗) = µ(0). Since 0 ≤ x ∧ (nx)∗, by fuzzy ideal
property, µ(0) ≥ µ(x ∧ (nx)∗). Since µ is a fuzzy n-fold obstinate ideal
of A and x ∧ (nx)∗ ≤ (nx)∗,

µ(x ∧ (nx)∗) ≥ µ((nx)∗) ≥ 1− µ(x) ≥ 1− µ(0) ≥ µ(0).

Hence µ(x ∧ (nx)∗) = µ(0). Thus µ is a fuzzy n-fold Boolean ideal of
A. �

The following example, shows that the converse of the above theorem
is not true, in general.

Example 3.13. Let A = {0, a, b, c, d, 1}. where 0 < a, c < d < 1 and
0 < a < b < 1. Define ⊕ and ∗ as follows:

⊕ 0 a b c d 1
0 0 a b c d 1
a a b b d 1 1
b b b b 1 1 1
c c d 1 c d 1
d d 1 1 d 1 1
1 1 1 1 1 1 1

∗ 0 a b c d 1
1 d c b a 0

Then (A,⊕,�, ∗, 0, 1) is an MV -algebra [14]. Define µ fuzzy set in
A by µ(0) = µ(1) = µ(a) = µ(b) = µ(c) = µ(d) = 0.4. µ is a fuzzy
n-fold Boolean ideal but is not fuzzy 1-fold obstinate ideal of A, since
µ(a∗) = µ(d) = 0.4 < 1− µ(a) = 1− 0.4 = 0.6.
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