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ON QUOTIENT CLEAN HYPERRING

SOHRAB OSTADHADI-DEHKORDI

ABSTRACT. In this paper, we introduce the notion of quotient Kras-
ner hyperrings and prove that if I is a normal ideal of Krasner hy-
perring (R, +, ), then quotient clean Krasner hyperring considered
in [1] by Talebi et. al are just clean rings.
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1. INTRODUCTION AND BASIC DEFINITIONS

The concept of clean rings were introduced by Nicholas [14] in his
study of lifting idempotents and exchange rings. Moreover, he proved a
ring R is an exchange ring if and only if idempotents can be lifted mod-
ulo every left (respectively right) ideal. For a more general introduction
to clean rings, see [15, 17].

The hypergroup notion was introduced in 1934 by a French math-
ematician F. Marty [12], at the 8" Congress of Scandinavian Math-
ematicians. He published some notes on hypergroups, using them in
different contexts: algebraic functions, rational fractions, non commu-
tative groups. Algebraic hyperstructures are a suitable generalization
of classical algebraic structures. In a classical algebraic structure, the
composition of two elements is an element, while in an algebraic hyper-
structure, the composition of two elements is a set. Since then, hundreds
of papers and several books have been written on this topic, see [0, 7, &].
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The more general structure that satisfies the ring-like axioms is the
hyperring in the general sense: (R,+,-) is a hyperring if + and - are
two hyperoperations such that (R, +) is a hypergroup and - is an asso-
ciative hyperoperation, which is distributive with respect to +. There
are different notions of hyperrings. If only the addition -+ is a hyperop-
eration and the multiplication - is a usual operation, then we say that
R is an additive hyperring. A special case of this type is the hyperring
introduced by Krasner[l1]. The concept of hypergroup over a Krasner
hyperring has been introduced and investigated by Massouros [13] and
this concept has been studied in depth by many authors, for example,
see [2, 4, 16]. Recently, the notion of I'-hyperstructure introduced and
studied by many researcher and represent an intensively studied field of
research, for example, see[3, 9, 10].

In this section we present some notion. These definitions and results
are necessary for the next section.

Let H be a non-empty set and o : H x H — P*(H) be a hyper-
operation. The couple (H,o) is called a hypergroupoid. For any two
non-empty subsets A and B of H and « € H, we define

AoB= U aob, Ao{x} =Aoux, {r}oB=x0B.
a€A,beB

A hypergroupoid (H, o) is called a semihypergroup if for all a, b, c of H
we have (aob)oc=ao(boc). A hypergroupoid (H, o) is called a quasi-
hypergroup if for all a of H we have ao H = H o a = H. This condition
is also called the reproduction aziom. A hypergroupoid (H,o) which is
both a semihypergroup and a quasihypergroup is called a hypergroup.

A special case of this type is the hyperring introduced by Krasner [11].
Also, Krasner introduced a new class of hyperrings and hyperfields.

A Krasner hyperring is an algebraic structure (R,+,-) which satisfies

the following axioms:

1. (R,+) is a canonical hypergroup, i.e.,

(i) for every z,y,z € R; (x +y)+z=2+ (y + 2),

(ii) for every z,y € Ry x +y =y + =z,

(iii) there exists 0 € R such that x = + 0, for all x € R,

(iv) for every z € R there exists a unique element z’ such that 0 €
x4 (we shall write —z for 2" and we call it the opposite of ),

(v) z € x+y implies that y € —x + z and x € z — y.
2. Relating to the multiplication, (R, -) is a semigroup having zero as a
bilaterally absorbing element.
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3. The multiplication is distributive with respect to the hyperoperation
+.

Let (R,+,-) be a hyperring and I be a non-empty subset of R. Then,
I is said to be a subhyperring of R if (I,+,-) is itself a hyperring. A
subhyperring I of a hyperring R is a left (right) hyperideal of Rifr-a C I
(a-r CI)forallr € R,ac A. Iis called a hyperideal if I is both a
left and a right hyperideal. An ideal I of hyperring R is called normal
ife+1—xCI, for every z € R.

Let (H, o) be a semihypergroup and p be an equivalence relation on H.
If A and B are non-empty subsets of H, then ApB means that for every
a € A, there is b € B such that p(a) = p(b) and for every b € B there
is a € A such that p(a) = p(b), and ApB, means that for every a € A
and b € B, we have p(a) = p(b). The equivalence relation p is called
regular on the right (on the left) if for all x of H, from apb, it follows that
(aoz)p(box) ((zoa)p(xob) respectively) and p is called strongly regular
on the right (on the left) if for all a,b of H, from apb, it follows that
(aoz)p(box) ((xoa)p(xob) respectively), and p is called regular (strongly
reqular) if it is regular (strongly regular) on the right and on the left.
Let (H,o) be a semihypergroup and p be an equivalence relation on H.
If p is regular, then H/p = {p(a) : a € H} is a semihypergroup, with
respect to the hyperoperation p(a) ® p(b) = {p(c) : ¢ € aob} and if this
hyperoperation is well defined on H/p, then p is regular (see Theorem
2.5.2 in [8]). Moreover, if (H, o) is a hypergroup and p is an equivalence
relation on H, then p is strongly regular if and only if (H/p,o0), is a
group (see Corollary 2.5.6 in [8]).

In this paper, the notion of quotient krasner hyperrings are studied.
Let (R,+,") be a Krasner hyperring and I be a hyperideal of R. Then,
the quotient [R : I*] is a Krasner hyperring. But if I is a normal
hyperideal , then the quotient [R : I*] is a ring and the relation I* is a
strong regular relation. Then the all quotient hypering considered in [!]
are just rings.

2. QUOTIENT HYPERGROUP

There are many classes of hypergroups, which have aroused a ma-
jor interest such as regular hypergroups, regular reversible hypergroups,
canonical hypergroups, join spaces, polygroups, complete hyper-groups,
cambiste hypergroups, cogroups, associativity hypergroups, cyclic hy-
pergroups, P-hypergroups, 1-hypergroups and others. Canonical hyper-
groups are a particular case of join spaces. The structure of canonical
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hypergroups was individualized for the first time by M. Krasner as the
additive structure of hyperfields.

Let N be a subhypergroup of a canonical hypergroup G. In this sec-
tion, we construct quotient canonical hypergroup [G : N*| and prove
that when N is normal, [G : N*] is an abelian group.

Let (G,+) be a semihypergroup and p be an equivalence relation on
G. If A and B are nonempty subsets of G, then

If N is a subhypergroup of a canonical hypergroup G, then we define
the relation

g1=g2< 91 €92+ N,
for every g1, g2 € G. This relation is denoted by g1 N*gs.

Proposition 2.1. Let N be a subhypergroup of canonical hypergroup
G. Then, [G : N*] is a canonical hypergroup with the following hyper
operation:

N*(z)® N*(y) ={N*(2) : z € z + y}.

Proof. Suppose that N*(z1) = N*(x2) and N*(y1) = N*(y2). Hence
x9 € x1 + N,ys € y1 + N. This implies that

2o+y2 C (w1 +N)+(y1 +N) = (z1 +31) + N.

Hence for every z9 € x9 + 72, there is z1 € 1 + y1 and n € N such that
z9 € z1 +n. Then

N*(x2) ® N*(y2) € N*(x1) & N*(y1)-

By a similar argument, we get

N*(z1) & N*(y1) € N*(z2) & N*(y2)-

Thus, hyperaddition @ is well defined. Let N*(z1), N*(z2), N*(x3) €
[G : N*] and N*(z) € (N*(z1) @ N*(z2)) ® N*(x3). Then for some
N*(a) € N*(z1) @ N*(x2), we have N*(z) € N*(a) ® N*(x3) and
N*(a) = N*(b) that is b € x1+x2. This means that v € a+xz3 C b+ N+
x3 C (x1+x2)+23+ N =21+ (x2+23)+ N. Hence z € x1+c+ N where
¢ € 9+ x3. Then N*(z) € N*(z1) ® (N*(x2) ® N*(x3)). This means
that (N*(z1) & N*(z2)) ® N*(x3) C N*(z1) ® (N*(x2) & N*(x3)). Simi-
larly, we get N*(x1) @ (N*(x2) ® N*(x3) C (N*(21) ® N*(x2)) ® N*(x3).
Thus, the hyperoperation @ is associative. Let N*(0) € [G : N*]. Then,
for any N*(x) € [G : N*], we have

N*(z)® N*(0) = {N*(y) :y € 2+ 0} = N*(z).
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Similarly, N*(0) & N*(x) = N*(z). Let € G. Then,
N¥(z) ® N*(—z) ={N*(y) : y € 2 + (—)}

Since, 0 € x—x, we have N*(0) € N*(z)®N*(—xz). Let N*(a) be another
inverse element of N*(z). Then, 0 € a+x implies that a € 0—z € N —=z.
Hence N*(—z) = N*(a).Thus, the element N*(x) has a unique inverse
N*(—x).

Let N*(z) € N*(y) ® N*(z). Then, there is a € y + z such that
N*(z) = N*(a). This implies that y € a —z C x+ N — z. Hence there is
b € x — z such that y € b+ N. Thus, N*(y) = N*(b) € N*(z) ® N*(—=z).
Similarly, we can see N*(z) € N*(x) & N*(—y). G is commutative,
it is obvious that [G : N*| is commutative. Therefore, [G : N*| is
commutative. g

Proposition 2.2. Let N be a normal canonical subhypergroup of hyper-
group G. Then, for every x1,x9 € G the following are equivalent:

(i) ro €Ex1+ N,
(11) l‘l—CCQQN,
(111) (.’El *I‘Q)QN# 0.

Proof. Suppose that (1 — x2) " N # (. Then there exists x € (z1 —
x2)NN. So —x9+x1 C —zo+x+2x9 C N. If 2 € —x9+ 271, then x € N.
Hence —z9 € © — 21 and x5 € 1 —x C 21 + N. Therefore, (ii7) implies
(7). It is easy to see that (i) implies (ii) and (ii) implies (iii). O

Remark 2.3. Let G be a canonical hypergroup and N be a normal canon-
ical subhypergroup of GG. Then, the equivalence relation = coincide with
the equivalence relation defined by Talebi et. al in [1].

Definition 2.4. Let G be a canonical hypergroup and N be a subhy-
pergroup of G. We denote Q(N) ={z € G:xz—x C N}.

Proposition 2.5. Let G be a canonical hypergroup and N be a subhy-
pergroup of G. Then, Q(N) is a subhypergroup of G and N C Q(N).
Proof. Since N # 0, the set Q(N) is non-empty. Let z1,29 € Q(N),
x € x1 — x2. Then,

x—x C(r) —m2) — (21 —w2) = (21 — 1) + (22 —22) TN+ N = N.

Hence z1 — o C Q(N). Moreover, for every =z € N, since N is a
subhypergroup of G, z — x C N. Therefore, (N) is a subhypergroup
of G containing N. O
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Proposition 2.6. Let G be a canonical hypergroup and x1,x2 € Q({0}).
Then, x1 + xo is a singleton set.

Proof. The proof is straightforward. O

Proposition 2.7. Let G be a hypergroup. Then, Q({0}) is an abelian
group and for every subgroup Mi of G, M; C Q({0}).
Proof. Suppose that z1,z2 € Q({0}) and =,y € 1 + x2. Then

x—y C(r1+22) — (1 4+ 22) = (1 — 22) — (1 — 22) = 0.

This implies that x; + z2 is a singleton and ©({0}) is a subgroup. Let
M; be any subgroup of G and = € M;. Then, x — z = {0}. Hence
x € Q({0}) and M; C Q({0}). This completes the proof. O

Corollary 2.8. Let G be a canonical hypergroup and N be a subhyper-

group of G. Then, (M,+) is abelian group if and only if Q({0}) = M.

Proposition 2.9. Let G be a canonical hypergroup and N be a subhy-

pergroup of G. Then, N is normal if and only if Q(N) = G.

Proof. Suppose that N be a subhypergroup and Q(N) = G. Then for

every £ € G and n € N we have
z+n—z=z—x+nCN+nCN+N=N.

Hence N is normal. Let N be a normal subhypergroup and x € GG. This
implies that t +0—xz C x4+ N —x C N. Hence x — x C N, for every
x € G. Therefore, G C Q(N). This completes the proof. O

Corollary 2.10. Let Ny and Ny be subhypergroups of G such that N1 C
Ny and Ny be normal subhypergroup. Then, Na is also normal.

Corollary 2.11. Let G be a canonical hypergroup such that {0} is nor-
mal. Then, all subhypergroups of G are normal.

Theorem 2.12. Let G be a canonical hypergroup. Then, (G,+) is
abelian group if and only if {0} is a normal canonical subhypergroup.

Proof. We know that (G, +) is abelian group if and only if Q({0}) = G.
Moreover, Q({0}) = G if and only if {0} is a normal subhypergroup.
Hence, (G, +) is an abelian group if and only if {0} is a normal subhy-
pergroup of G. This completes the proof. O

Definition 2.13. Let G be a canonical hypergroup. Then, we define

S(G)—{mEG:Ellgign, x; € G, er(x,—mz)}

i=1
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Proposition 2.14. Let G be a canonical hypergroup. Then, S(G) is a
smallest normal canonical subhypergroup of G.

Proof. Suppose that z,y € S(G). Then,

n m
i=1 7=1

where z;,y; € G. This implies that z—y € S(G) and S(G) is a canonical
subhypergroup of G. Now, for a € S(G) there exists n € N and z; € G
such that a € Y1 | (z; — x;). Thus, for every z € G,

n n
x—l—a—me—kZ(:vi—mi)—w: ($—$)+Z($i—$i) € S(G).
=1 =1

Hence S(G) is a normal canonical subhypergroup of G.
Assume that NV is a normal canonical subhypergroup of G. Then, for
every z € G,
r—xrx=2+0—x2Cx+N—x2CN.
Since N is a canonical subhypergroup of G, for every z; € G, > | (x; —
x;) € N. This implies that S(G) C N. Therefore, S(G) smallest normal
canonical subhypergroup of G. U

Corollary 2.15. Let G be a canonical hypergroup. Then, G ia an
abelian group if and only if S(G) =< 0 >.

Theorem 2.16. Let G be a canonical hypergroup and N be a normal
canonical subhypergroup of G. Then, [G : N*] is an abelian group.

Proof. Suppose that N is a normal canonical subhypergroup of G. Since
N*(z)® N*(0) @ N*(—z)=(x+N—-2)+ NC N+ N = N.

This implies that {N} is a normal canonical subhypergroup in [G : N*|.
By Corollary 2.12, [G : N*] is an abelian group. O

Remark 2.17. Suppose that (R,+,-) is a krasner hyperring and I is a
hyperideal of R. Hence [R : I*] is a hyperring. Moreover when [ is a
normal ideal of R, then the quotient hypering considered in [1] are just
rings.
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