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ON QUOTIENT CLEAN HYPERRING

SOHRAB OSTADHADI-DEHKORDI

Abstract. In this paper, we introduce the notion of quotient Kras-
ner hyperrings and prove that if I is a normal ideal of Krasner hy-
perring (R,+, ·), then quotient clean Krasner hyperring considered
in [1] by Talebi et. al are just clean rings.
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1. Introduction and basic definitions

The concept of clean rings were introduced by Nicholas [14] in his
study of lifting idempotents and exchange rings. Moreover, he proved a
ring R is an exchange ring if and only if idempotents can be lifted mod-
ulo every left (respectively right) ideal. For a more general introduction
to clean rings, see [15, 17].

The hypergroup notion was introduced in 1934 by a French math-
ematician F. Marty [12], at the 8th Congress of Scandinavian Math-
ematicians. He published some notes on hypergroups, using them in
different contexts: algebraic functions, rational fractions, non commu-
tative groups. Algebraic hyperstructures are a suitable generalization
of classical algebraic structures. In a classical algebraic structure, the
composition of two elements is an element, while in an algebraic hyper-
structure, the composition of two elements is a set. Since then, hundreds
of papers and several books have been written on this topic, see [6, 7, 8].
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The more general structure that satisfies the ring-like axioms is the
hyperring in the general sense: (R,+, ·) is a hyperring if + and · are
two hyperoperations such that (R,+) is a hypergroup and · is an asso-
ciative hyperoperation, which is distributive with respect to +. There
are different notions of hyperrings. If only the addition + is a hyperop-
eration and the multiplication · is a usual operation, then we say that
R is an additive hyperring. A special case of this type is the hyperring
introduced by Krasner[11]. The concept of hypergroup over a Krasner
hyperring has been introduced and investigated by Massouros [13] and
this concept has been studied in depth by many authors, for example,
see [2, 4, 16]. Recently, the notion of Γ-hyperstructure introduced and
studied by many researcher and represent an intensively studied field of
research, for example, see[3, 9, 10].

In this section we present some notion. These definitions and results
are necessary for the next section.

Let H be a non-empty set and ◦ : H × H −→ P∗(H) be a hyper-
operation. The couple (H, ◦) is called a hypergroupoid. For any two
non-empty subsets A and B of H and x ∈ H, we define

A ◦B =
⋃

a∈A,b∈B
a ◦ b, A ◦ {x} = A ◦ x, {x} ◦B = x ◦B.

A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c of H
we have (a ◦ b) ◦ c = a ◦ (b ◦ c). A hypergroupoid (H, ◦) is called a quasi-
hypergroup if for all a of H we have a ◦H = H ◦ a = H. This condition
is also called the reproduction axiom. A hypergroupoid (H, ◦) which is
both a semihypergroup and a quasihypergroup is called a hypergroup.

A special case of this type is the hyperring introduced by Krasner [11].
Also, Krasner introduced a new class of hyperrings and hyperfields.
A Krasner hyperring is an algebraic structure (R,+, ·) which satisfies
the following axioms:
1. (R,+) is a canonical hypergroup, i.e.,

(i) for every x, y, z ∈ R; (x+ y) + z = x+ (y + z),
(ii) for every x, y ∈ R; x+ y = y + x,

(iii) there exists 0 ∈ R such that x = x+ 0, for all x ∈ R,

(iv) for every x ∈ R there exists a unique element x
′

such that 0 ∈
x+x

′
(we shall write −x for x

′
and we call it the opposite of x),

(v) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z − y.

2. Relating to the multiplication, (R, ·) is a semigroup having zero as a
bilaterally absorbing element.
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3. The multiplication is distributive with respect to the hyperoperation
+.
Let (R,+, ·) be a hyperring and I be a non-empty subset of R. Then,
I is said to be a subhyperring of R if (I,+, ·) is itself a hyperring. A
subhyperring I of a hyperring R is a left (right) hyperideal of R if r ·a ⊆ I
(a · r ⊆ I) for all r ∈ R, a ∈ A. I is called a hyperideal if I is both a
left and a right hyperideal. An ideal I of hyperring R is called normal
if x+ I − x ⊆ I, for every x ∈ R.

Let (H, ◦) be a semihypergroup and ρ be an equivalence relation on H.
If A and B are non-empty subsets of H, then AρB means that for every
a ∈ A, there is b ∈ B such that ρ(a) = ρ(b) and for every b ∈ B there
is a ∈ A such that ρ(a) = ρ(b), and AρB, means that for every a ∈ A
and b ∈ B, we have ρ(a) = ρ(b). The equivalence relation ρ is called
regular on the right (on the left) if for all x of H, from aρb, it follows that
(a◦x)ρ(b◦x) ((x◦a)ρ(x◦b) respectively) and ρ is called strongly regular
on the right (on the left) if for all a, b of H, from aρb, it follows that
(a◦x)ρ(b◦x) ((x◦a)ρ(x◦b) respectively), and ρ is called regular (strongly
regular) if it is regular (strongly regular) on the right and on the left.
Let (H, ◦) be a semihypergroup and ρ be an equivalence relation on H.
If ρ is regular, then H/ρ = {ρ(a) : a ∈ H} is a semihypergroup, with
respect to the hyperoperation ρ(a)� ρ(b) = {ρ(c) : c ∈ a ◦ b} and if this
hyperoperation is well defined on H/ρ, then ρ is regular (see Theorem
2.5.2 in [8]). Moreover, if (H, ◦) is a hypergroup and ρ is an equivalence
relation on H, then ρ is strongly regular if and only if (H/ρ, ◦), is a
group (see Corollary 2.5.6 in [8]).

In this paper, the notion of quotient krasner hyperrings are studied.
Let (R,+, ·) be a Krasner hyperring and I be a hyperideal of R. Then,
the quotient [R : I∗] is a Krasner hyperring. But if I is a normal
hyperideal , then the quotient [R : I∗] is a ring and the relation I∗ is a
strong regular relation. Then the all quotient hypering considered in [1]
are just rings.

2. Quotient Hypergroup

There are many classes of hypergroups, which have aroused a ma-
jor interest such as regular hypergroups, regular reversible hypergroups,
canonical hypergroups, join spaces, polygroups, complete hyper-groups,
cambiste hypergroups, cogroups, associativity hypergroups, cyclic hy-
pergroups, P-hypergroups, 1-hypergroups and others. Canonical hyper-
groups are a particular case of join spaces. The structure of canonical
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hypergroups was individualized for the first time by M. Krasner as the
additive structure of hyperfields.

Let N be a subhypergroup of a canonical hypergroup G. In this sec-
tion, we construct quotient canonical hypergroup [G : N∗] and prove
that when N is normal, [G : N∗] is an abelian group.

Let (G,+) be a semihypergroup and ρ be an equivalence relation on
G. If A and B are nonempty subsets of G, then

If N is a subhypergroup of a canonical hypergroup G, then we define
the relation

g1 ≡ g2 ⇔ g1 ∈ g2 +N,

for every g1, g2 ∈ G. This relation is denoted by g1N
∗g2.

Proposition 2.1. Let N be a subhypergroup of canonical hypergroup
G. Then, [G : N∗] is a canonical hypergroup with the following hyper
operation:

N∗(x)⊕N∗(y) = {N∗(z) : z ∈ x+ y}.

Proof. Suppose that N∗(x1) = N∗(x2) and N∗(y1) = N∗(y2). Hence
x2 ∈ x1 +N, y2 ∈ y1 +N. This implies that

x2 + y2 ⊆ (x1 +N) + (y1 +N) = (x1 + y1) +N.

Hence for every z2 ∈ x2 + y2, there is z1 ∈ x1 + y1 and n ∈ N such that
z2 ∈ z1 + n. Then

N∗(x2)⊕N∗(y2) ⊆ N∗(x1)⊕N∗(y1).

By a similar argument, we get

N∗(x1)⊕N∗(y1) ⊆ N∗(x2)⊕N∗(y2).

Thus, hyperaddition ⊕ is well defined. Let N∗(x1), N∗(x2), N∗(x3) ∈
[G : N∗] and N∗(x) ∈ (N∗(x1) ⊕ N∗(x2)) ⊕ N∗(x3). Then for some
N∗(a) ∈ N∗(x1) ⊕ N∗(x2), we have N∗(x) ∈ N∗(a) ⊕ N∗(x3) and
N∗(a) = N∗(b) that is b ∈ x1 +x2. This means that x ∈ a+x3 ⊆ b+N+
x3 ⊆ (x1 +x2)+x3 +N = x1 +(x2 +x3)+N . Hence x ∈ x1 +c+N where
c ∈ x2 + x3. Then N∗(x) ∈ N∗(x1) ⊕ (N∗(x2) ⊕ N∗(x3)). This means
that (N∗(x1)⊕N∗(x2))⊕N∗(x3) ⊆ N∗(x1)⊕ (N∗(x2)⊕N∗(x3)). Simi-
larly, we get N∗(x1)⊕ (N∗(x2)⊕N∗(x3) ⊆ (N∗(x1)⊕N∗(x2))⊕N∗(x3).
Thus, the hyperoperation ⊕ is associative. Let N∗(0) ∈ [G : N∗]. Then,
for any N∗(x) ∈ [G : N∗], we have

N∗(x)⊕N∗(0) = {N∗(y) : y ∈ x+ 0} = N∗(x).
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Similarly, N∗(0)⊕N∗(x) = N∗(x). Let x ∈ G. Then,

N∗(x)⊕N∗(−x) = {N∗(y) : y ∈ x+ (−x)}
Since, 0 ∈ x−x, we haveN∗(0) ∈ N∗(x)⊕N∗(−x). LetN∗(a) be another
inverse element of N∗(x). Then, 0 ∈ a+x implies that a ∈ 0−x ∈ N−x.
Hence N∗(−x) = N∗(a).Thus, the element N∗(x) has a unique inverse
N∗(−x).

Let N∗(x) ∈ N∗(y) ⊕ N∗(z). Then, there is a ∈ y + z such that
N∗(x) = N∗(a). This implies that y ∈ a−z ⊆ x+N −z. Hence there is
b ∈ x−z such that y ∈ b+N . Thus, N∗(y) = N∗(b) ∈ N∗(x)⊕N∗(−z).
Similarly, we can see N∗(z) ∈ N∗(x) ⊕ N∗(−y). G is commutative,
it is obvious that [G : N∗] is commutative. Therefore, [G : N∗] is
commutative. �

Proposition 2.2. Let N be a normal canonical subhypergroup of hyper-
group G. Then, for every x1, x2 ∈ G the following are equivalent:

(i) x2 ∈ x1 +N ,
(ii) x1 − x2 ⊆ N ,
(iii) (x1 − x2) ∩N 6= ∅.

Proof. Suppose that (x1 − x2) ∩ N 6= ∅. Then there exists x ∈ (x1 −
x2)∩N . So −x2 +x1 ⊆ −x2 +x+x2 ⊆ N . If x ∈ −x2 +x1, then x ∈ N .
Hence −x2 ∈ x− x1 and x2 ∈ x1 − x ⊆ x1 +N . Therefore, (iii) implies
(i). It is easy to see that (i) implies (ii) and (ii) implies (iii). �

Remark 2.3. Let G be a canonical hypergroup and N be a normal canon-
ical subhypergroup of G. Then, the equivalence relation ≡ coincide with
the equivalence relation defined by Talebi et. al in [1].

Definition 2.4. Let G be a canonical hypergroup and N be a subhy-
pergroup of G. We denote Ω(N) = {x ∈ G : x− x ⊆ N}.

Proposition 2.5. Let G be a canonical hypergroup and N be a subhy-
pergroup of G. Then, Ω(N) is a subhypergroup of G and N ⊆ Ω(N).

Proof. Since N 6= ∅, the set Ω(N) is non-empty. Let x1, x2 ∈ Ω(N),
x ∈ x1 − x2. Then,

x− x ⊆ (x1 − x2)− (x1 − x2) = (x1 − x1) + (x2 − x2) ⊆ N +N = N.

Hence x1 − x2 ⊆ Ω(N). Moreover, for every x ∈ N , since N is a
subhypergroup of G, x − x ⊆ N . Therefore, Ω(N) is a subhypergroup
of G containing N . �
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Proposition 2.6. Let G be a canonical hypergroup and x1, x2 ∈ Ω({0}).
Then, x1 + x2 is a singleton set.

Proof. The proof is straightforward. �

Proposition 2.7. Let G be a hypergroup. Then, Ω({0}) is an abelian
group and for every subgroup M1 of G, M1 ⊆ Ω({0}).
Proof. Suppose that x1, x2 ∈ Ω({0}) and x, y ∈ x1 + x2. Then

x− y ⊆ (x1 + x2)− (x1 + x2) = (x1 − x2)− (x1 − x2) = 0.

This implies that x1 + x2 is a singleton and Ω({0}) is a subgroup. Let
M1 be any subgroup of G and x ∈ M1. Then, x − x = {0}. Hence
x ∈ Ω({0}) and M1 ⊆ Ω({0}). This completes the proof. �

Corollary 2.8. Let G be a canonical hypergroup and N be a subhyper-
group of G. Then, (M,+) is abelian group if and only if Ω({0}) = M .

Proposition 2.9. Let G be a canonical hypergroup and N be a subhy-
pergroup of G. Then, N is normal if and only if Ω(N) = G.

Proof. Suppose that N be a subhypergroup and Ω(N) = G. Then for
every x ∈ G and n ∈ N we have

x+ n− x = x− x+ n ⊆ N + n ⊆ N +N = N.

Hence N is normal. Let N be a normal subhypergroup and x ∈ G. This
implies that x + 0 − x ⊆ x + N − x ⊆ N . Hence x − x ⊆ N , for every
x ∈ G. Therefore, G ⊆ Ω(N). This completes the proof. �

Corollary 2.10. Let N1 and N2 be subhypergroups of G such that N1 ⊆
N2 and N1 be normal subhypergroup. Then, N2 is also normal.

Corollary 2.11. Let G be a canonical hypergroup such that {0} is nor-
mal. Then, all subhypergroups of G are normal.

Theorem 2.12. Let G be a canonical hypergroup. Then, (G,+) is
abelian group if and only if {0} is a normal canonical subhypergroup.

Proof. We know that (G,+) is abelian group if and only if Ω({0}) = G.
Moreover, Ω({0}) = G if and only if {0} is a normal subhypergroup.
Hence, (G,+) is an abelian group if and only if {0} is a normal subhy-
pergroup of G. This completes the proof. �

Definition 2.13. Let G be a canonical hypergroup. Then, we define

S(G) =

{
x ∈ G : ∃ 1 ≤ i ≤ n, xi ∈ G, x ∈

n∑
i=1

(xi − xi)

}
.
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Proposition 2.14. Let G be a canonical hypergroup. Then, S(G) is a
smallest normal canonical subhypergroup of G.

Proof. Suppose that x, y ∈ S(G). Then,

x ∈
n∑

i=1

(xi − xi), y ∈
m∑
j=1

(yj − yj),

where xi, yj ∈ G. This implies that x−y ∈ S(G) and S(G) is a canonical
subhypergroup of G. Now, for a ∈ S(G) there exists n ∈ N and xi ∈ G
such that a ∈

∑n
i=1(xi − xi). Thus, for every x ∈ G,

x+ a− x ⊆ x+

n∑
i=1

(xi − xi)− x = (x− x) +

n∑
i=1

(xi − xi) ∈ S(G).

Hence S(G) is a normal canonical subhypergroup of G.
Assume that N is a normal canonical subhypergroup of G. Then, for

every x ∈ G,

x− x = x+ 0− x ⊆ x+N − x ⊆ N.
Since N is a canonical subhypergroup of G, for every xi ∈ G,

∑n
i=1(xi−

xi) ⊆ N . This implies that S(G) ⊆ N . Therefore, S(G) smallest normal
canonical subhypergroup of G. �

Corollary 2.15. Let G be a canonical hypergroup. Then, G ia an
abelian group if and only if S(G) =< 0 >.

Theorem 2.16. Let G be a canonical hypergroup and N be a normal
canonical subhypergroup of G. Then, [G : N∗] is an abelian group.

Proof. Suppose that N is a normal canonical subhypergroup of G. Since

N∗(x)⊕N∗(0)⊕N∗(−x) = (x+N − x) +N ⊆ N +N = N.

This implies that {N} is a normal canonical subhypergroup in [G : N∗].
By Corollary 2.12, [G : N∗] is an abelian group. �

Remark 2.17. Suppose that (R,+, ·) is a krasner hyperring and I is a
hyperideal of R. Hence [R : I∗] is a hyperring. Moreover when I is a
normal ideal of R, then the quotient hypering considered in [1] are just
rings.
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