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REGULAR EQUIVALENCE AND STRONGLY

REGULAR EQUIVALENCE ON MULTIPLICATIVE

TERNARY HYPERRING

MD. SALIM, T. CHANDA AND T. K. DUTTA

Abstract. We introduce the notion of a multiplicative ternary hy-
perring, consider regular equivalences and strongly regular equiv-
alences of a multiplicative ternary hyperring and investigate their
properties. As a consequence, three isomorphism theorems on mul-
tiplicative ternary hyperrings are obtained.
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1. Introduction

The theory of hyperstructure was introduced by F. Marty[7] in 1934.

He first studied the hypergroups and analyzed their properties and then

applied them to groups and rational algebraic functions. Nowadays,

there has been a remarkable growth of hyperstructure theory. Many

mathematicians have taken interest to explore the theory of hyperstruc-

ture which has many applications in both Pure and Applied sciences.

The notion of a multiplicative hyperring has been introduced by Rota

[12] in which the addition is a binary operation and the multiplication is

a multiplicative hyperoperation. Krasner also introduced the notion of
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hyperring, called krasner hyperring [11]. In krasner hyperring (R,+, ·),
‘+’ is a binary hyperoperation and ‘·’ is a binary operation. D. Salvo

[10] ans Assokumar and Velrajan [1] also studied hyperrings in which

both addition and multiplication are binary hyperoperations. In 2014,

Davvaz[2] also studied krasner hyperring and obtained three isomor-

phism theorems in krasner hyperring where the hyperideals are normal.

The introduction of mathematical literature of ternary algebraic sys-

tem dated back to 1924. The notion of ternary algebraic system was first

introduced by H.Prüfer[8] by the name ’Schar’. After that W.Dörnte

further studied this type of algebraic system. In 1932, D.H.Lehmer[5]

investigated certain ternary algebraic systems called triplexes which turn

out to be a commutative ternary groups. Ternary groups are the special

case of polyadic groups(in terminologies which are known as n-groups)

introduced by E.L.Post[6]. In 1971, W.G.Lister[14] introduced the no-

tion of ternary ring and study some important properties of it. Accord-

ing to Lister[14], a ternary ring is an algebraic system consisting of a

non-empty set R together with a binary operation, called addition and

a ternary multiplication , which forms a commutative group relative to

addition, a ternary semigroup relative to multiplication and left, right,

lateral distributive laws hold.

In 2010, Davvaz and Mirvakili [3] introduced a new class of n-ary mul-

tivalued hyper algebra called an (m, n)-hyperring in which both the m-

ary operation and the n-ary operation are hyperoperations and studied

it. Recently Anvariyeh and Mirvakili [13] studied (m, n)-hypermodule

over (m, n)-hyperring. J. R. Castillo and Jocelyn S. Paradero-Vilela in

the year 2014 [9] introduceed ternary hyperrings, called Krasner ternary

hyperring. In Krasner ternary hyperring (R,+, ·), ‘+’ is a binary hyper-

operation and ‘·’ is a ternary multiplication.

In this paper we introduce the notion of a multiplicative ternary hy-

perring. Our notion of a multiplicative ternary hyperring differs from
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the notion of Krasner multiplicative ternary hyperring. In our multi-

plicative ternary hyperring addition is a binary operation and multipli-

cation is a ternary hyperoperation, whereas in Krasner ternary hyper-

ring addition is a binary hyperoperation and multiplication is a ternary

operation. We consider regular equivalance and strongly regular equiv-

alence on a multiplicative ternary hyperring and study some properties

of them. The regular equivalence plays the same role as the congruence

does in algebra. As a consequence of regular equivalence relation and

strongly regular equivalence on a multiplicative ternary hyperring, we

obtain three isomorphism theorems(The first, the second and the third)

on a multiplicative ternary hyperring.

2. Preliminaries

Definition 2.1. Let S be a non-empty set endowed with a binary op-

eration, namely, the addition operation and ternary multiplication. We

denote the ternary multiplication on S by juxtaposition and the sys-

tem S endowed with the above two operations is said to be a ternary

ring if S forms an additive commutative group satisfying the following

conditions:

(i): (abc)de = a(bcd)e = ab(cde);

(ii): (a+b)cd = acd+bcd;

(iii): a(b+c)d = abd+acd;

(iv): ab(c+d) = abc+abd

for all a, b, c, d, e ∈ S.

Definition 2.2. A ternary ring S is said to admit an identity pro-

vided that there exist elements {(ei, fi) ∈ S × S(i = 1, 2, ..., n)} such

that
n∑

i=1
eifix =

n∑
i=1

eixfi =
n∑

i=1
xeifi = x for all x ∈ S. In this

case, the ternary ring S is said to be a ternary ring with identity

{(ei, fi) : i = 1, 2, ..., n}. In particular, if there exists an element e ∈ S

such that eex = exe = xee = x for all x ∈ S, then the element e ∈ S is

called a unital element of the ternary ring S.
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It is easy to see that xye = (exe)ye = ex(eye) = exy and xye =

x(eye)e = xe(yee) = xey, for all x, y ∈ S. Hence, the following proposi-

tion follows.

Proposition 2.3. If e is a unital element of a ternary ring S, thenexy =

xey = xye, for all x, y ∈ S.

Definition 2.4. Let S and T be two ternary rings. Then a mapping

f : S → T is called a ternary ring homomorphism of S into T if

(i): f(a+b) = f(a)+f(b)

(ii): f(abc) = f(a)f(b)f(c)

A bijective ternary ring homomorphism is called a ternary ring isomor-

phism and in this case we write S ∼= T .

3. Multiplicative ternary hyperring

Definition 3.1. By a ternary hyperoperation ‘◦’ on a nonempty set H,

we shall mean a mapping ◦: H×H×H → P ∗(H) when P ∗(H) is the set

of all nonempty subsets of H. For x, y, z ∈ H, the image of the element

(x, y, z) ∈ H ×H ×H under the mapping ‘◦’ will be denoted by x ◦ y ◦ z
(which is called the ternary hyperproduct of x, y, z).

Definition 3.2. A multiplicative ternary hyperring (S,+, ◦) is an addi-

tive commutative group (S,+) endowed with a ternary hyper operation

‘◦’ such that the following conditions hold

(i): (a ◦ b ◦ c) ◦ d ◦ e = a ◦ (b ◦ c ◦ d) ◦ e = a ◦ b ◦ (c ◦ d ◦ e)
(ii): (a+ b) ◦ c ◦ d ⊆ a ◦ c ◦ d+ b ◦ c ◦ d;
(iii): a ◦ (b+ c) ◦ d ⊆ a ◦ b ◦ d+ a ◦ c ◦ d;
(iv): a ◦ b ◦ (c+ d) ⊆ a ◦ b ◦ c+ a ◦ b ◦ d;

for all a, b, c, d, e ∈ S, where if the inclusions in (ii)−(iv) are replaced by

equalities, then the multiplicative ternary hyperring is called a strongly

distributive multiplicative ternary hyperring.

We have the following remark.
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Remark 3.3. It is immediate to see that the notion of multiplicative

ternary hyperring coincides with the notion of a ternary ring if and only

if |a ◦ b ◦ c| = 1 for all a, b, c ∈ S.

On the other hand if (S,+, ◦) is a ternary ring then (S,+, ·) can be re-

garded as a strongly distributive multiplicative ternary hyperring if we

take a ◦ b ◦ c = {a · b · c} for all a, b, c ∈ S.

Thus the above notion of a multiplicative ternary hyperring is a gener-

alization of the notion of ternary ring.

The following definitions are some basic definitions in this paper.

Definition 3.4. Let (S,+, ◦) be a multiplicative ternary hyperring. For

a nonempty set A we define A ◦ x ◦ y = ∪{
∑

a ◦ x ◦ y : a ∈ A}, for any
x, y ∈ S.

Definition 3.5. A multiplicative ternary hyperring (S,+, ◦) is called

commutative if a1◦a2◦a3 = aσ(1)◦aσ(2)◦aσ(3), where σ is a permutation

of {1, 2, 3} for all a1, a2, a3 ∈ S.

Definition 3.6. A multiplicative ternary hyperring (S,+, ◦) is called

weakly commutative if a1 ◦ a2 ◦ a3 ∩ aσ(1) ◦ aσ(2) ◦ aσ(3) ̸= ϕ where σ is a

permutation of {1, 2, 3} for all a1, a2, a3 ∈ S.

Definition 3.7. The additive identity ‘0’ of a multiplicative ternary hy-

perring (S,+) is said to be a zero (strong zero) of (S,+◦) if 0 ∈ a◦b◦0 =

a ◦ 0 ◦ b = 0 ◦ a ◦ b (resp.{0} = a ◦ 0 ◦ b = 0 ◦ a ◦ b = a ◦ b ◦ 0) for all

a, b ∈ S.

Unless otherwise stated by an ternary hyperring we shall mean an ternary

hyperring with zero.

We give below some examples of multiplicative ternary hyperrings.

Example 3.8. Consider the ring (Z,+, ·) of the set of all integers with

respect to the usual addition and multiplication of integers. Correspond-

ing to any subset A of the set of integers there exists a multiplicative

ternary hyperring (ZA,+, ◦), where ZA = Zand for any x, y, z ∈ ZA,+
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is the usual addition of integers and x ◦ y ◦ z = {x · a · y · b · z : a, b ∈ A}.
The above multiplicative ternary hyperring is called the multiplicative

ternary hyperring induced by A.

Example 3.9. Let S be the set of all integers. Then (S,+) is a commuta-

tive group with respect to the usual addition of integers.On S we define

a ternary hyperoperation ‘◦’ as follows:
a ◦ b ◦ c = [0, x] for all a, b, c ∈ S, where x =max(a, b, c). Then (S,+, ◦)
is a multiplicative ternary hyperring.

Example 3.10. Let Z be the set of all integers. Suppose that n ∈ Z is

arbitrarily chosen but fixed integer. Define a ternary hyperoperation ‘◦’
on Z by a◦b◦c = {abc+nk : k ∈ Z for all a, b, c ∈ Z}. Then with respect

to the usual addition of integers and defined ternary hyperoperation, the

system (Z,+, ◦) forms a commutative multiplicative ternary hyperring

with a zero 0.

4. Regular and strongly regular equivalences on a

multiplicative ternary hyperring

Let ρ be an equivalence on a non-empty set S and P (S) denote the

power set of S. Let P ∗(S) = P (S)−{ϕ}. Then, we define two relations

ρ and ρ on P ∗(S) as follows:

(i): For any A,B ∈ P ∗(S), AρB holds if and only if for each a ∈ A

there exists b ∈ B such that aρb holds and also for each b′ ∈ B

there exists a′ ∈ A such that a′ρb′ holds.

(ii): AρB holds if and only if aρb holds for all a ∈ A and b ∈ B.

Definition 4.1. An equivalence ρ defined on a multiplicative ternary

hyperring (S,+, ◦) is called
(i) regular if ρ is a congruence on the commutative group (S,+) i.e.

aρb ⇒ (a+c)ρ(b+c) for a, b, c ∈ S and aρb, cρd, eρf ⇒ (a◦c◦e)ρ(b◦d◦f)
for a, b, c, d, e, f ∈ S;
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(ii) strongly regular if ρ is a congruence on the commutative group (S,+)

i.e. aρb ⇒ (a + c)ρ(b + c) for a, b, c ∈ S and aρb, cρd, eρf ⇒ (a ◦ c ◦
e)ρ(b ◦ d ◦ f) for a, b, c, d, e, f ∈ S.

Remark 4.2. The second condition stated in (i) and (ii) of the Definition

4.1. are equivalent to the following conditions respectively:

aρb ⇒ (a ◦ c ◦ d)ρ(b ◦ c ◦ d), (c ◦ a ◦ d)ρ(c ◦ b ◦ d) and (c ◦ d ◦ a)ρ(c ◦ d ◦ b)
for all a, b, c, d ∈ S and aρb ⇒ (a ◦ c ◦ d)ρ(b ◦ c ◦ d), (c ◦ a ◦ d)ρ(c ◦ b ◦ d)
and (c ◦ d ◦ a)ρ(c ◦ d ◦ b) for all a, b, c, d ∈ S.

It is clear that the strongly regular equivalence is a regular equivalence

on a multiplicative ternary hyperring.

To give an example of a regular equivalence on a multiplicative ternary

hyperring which is not a strongly regular equivalence, we first define

homomorphism of multiplicative ternary hyperrings.

Definition 4.3. Let (S,+, ◦) and (S′,+, ◦) be two multiplicative ternary

hyperrings. Then a mapping f : S → S′ is called a homomorphism(a

good homomorphism) if f(a + b) = f(a) + f(b) and f(a ◦ b ◦ c) ⊆
f(a) ◦ f(b) ◦ f(c)(resp. f(a ◦ b ◦ c) = f(a) ◦ f(b) ◦ f(c)).

Definition 4.4. Let f be a good homomorphism from a multiplica-

tive ternary hyperring (S,+, ◦) to a multiplicative ternary hyperring

(T,+, ◦). Then the relation ρf on S defined by aρfb if and only if

f(a) = f(b), for a, b ∈ S, is called the relation on S induced by f .

For multiplicative ternary hyperrings, we have the following proposi-

tions.

Proposition 4.5. The relation ρf induced by a good homomorphism

f from a multiplicative ternary hyperring (S,+, ◦) to a multiplicative

ternary hyperring (T,+, ◦) is a regular equivalance on (S,+, ◦).

Proof. Obviously ρf is an equivalence on S. Let a, b, c, d ∈ S be such that

aρfb and cρfd. Then f(a) = f(b) and f(c) = f(d) and hence we have

f(a+ c) = f(a) + f(c) = f(b) + f(d) = f(b+ d). Thus (a+ c)ρf (b+ d).
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Hence ρf is a congruence on the additive commutative group (S,+).

Let aρfa
′, bρfb

′ and cρfc
′, where a, b, c, a′, b′, c′ ∈ S. Then we have

f(a) = f(a′), f(b) = f(b′) and f(c) = f(c′). Now f(a ◦ b ◦ c) = f(a) ◦
f(b) ◦ f(c)(Since f is a good homomorphism) = f(a′) ◦ f(b′) ◦ f(c′) =

f(a′◦b′◦c′). Now, for any x ∈ a◦b◦c there exists an element y ∈ a′◦b′◦c′

such that f(x) = f(y) i.e. xρfy. Also for any y′ ∈ a′ ◦ b′ ◦ c′ there exists

an element x′ ∈ a′ ◦b′ ◦c′ such that f(x′) = f(y′) i.e.x′ρfy
′. This implies

that (a ◦ b ◦ c)ρf (a′ ◦ b′ ◦ c′). Hence we have shown that ρf is a regular

equivalence on (S,+, ◦). Obviously ρf is not a strongly regular relation

on (S,+, ◦). □

Proposition 4.6. An equivalence ρ on a multiplicative ternary hyper-

ring (S,+, ◦) is regular if and only if (S/ρ,+, ◦) is a multiplicative

ternary hyperring, where S/ρ = {aρ : a ∈ S} and aρ is the equivalence

class containing a, aρ+ bρ = (a+ b)ρ and aρ ◦ bρ ◦ cρ = {xρ : x ∈ a◦ b◦ c}
for any a, b, c ∈ S.

Proof. Let ρ be a regular equivalence on (S,+, ◦). Then ρ is a congru-

ence on the additive commutative group (S,+) and hence we have the

quotient group (S/ρ,+). Now we define a multiplicative ternary hyper-

operation on S/ρ by aρ ◦bρ ◦cρ = {xρ : x ∈ a◦b◦c}. Let aρ = a′ρ, bρ = b′ρ
and cρ = c′ρ, where a, b, c, a′, b′, c′ ∈ S. Then aρa′, bρb′ and cρc′. Since ρ

is regular, (a◦b◦c)ρ(a′ ◦b′ ◦c′). Let xρ ∈ (aρ ◦bρ ◦cρ). Then x ∈ a◦b◦c.
Since (a ◦ b ◦ c)ρ(a′ ◦ b′ ◦ c′), there exists y ∈ (a′ ◦ b′ ◦ c′) such that xρy.

Then xρ = yρ ∈ a′ ◦ b′ ◦c′. Hence aρ ◦ bρ ◦cρ ⊆ aρ′ ◦ bρ′ ◦cρ′ . Similarly, we

obtain aρ′ ◦bρ′ ◦cρ′ ⊆ aρ◦bρ◦cρ. Hence aρ′ ◦bρ◦cρ′ = aρ◦bρ◦cρ. Thus ‘◦’
is well-defined. Next let xρ ∈ (aρ ◦ bρ ◦ cρ)◦dρ ◦ eρ, where a, b, c, d, e ∈ S.

Then x ∈ p ◦ d ◦ e, where pρ ∈ (aρ ◦ bρ ◦ cρ). This implies p ∈ (a ◦ b ◦ c).
Thus x ∈ (a ◦ b ◦ c) ◦ d ◦ e = a ◦ b ◦ (c ◦ d ◦ e). So xρ ∈ (aρ ◦ bρ ◦ yρ), where
y ∈ c ◦ d ◦ e. So yρ ∈ (cρ ◦ dρ ◦ eρ). Thus xρ ∈ aρ ◦ bρ ◦ (cρ ◦ dρ ◦ eρ). Thus
(aρ◦bρ◦cρ)◦dρ◦eρ ⊆ aρ◦bρ◦(cρ◦dρ◦eρ). Similarly we can prove the con-

verse. Hence (aρ◦bρ◦cρ)◦dρ◦eρ = aρ◦bρ◦(cρ◦dρ◦eρ). Similarly we can

prove that aρ◦(bρ◦cρ◦dρ)◦eρ = aρ◦bρ◦(cρ◦dρ◦eρ). So ‘◦’ is associative.
Lastly let xρ ∈ aρ◦bρ◦(cρ+dρ) = aρ◦bρ◦(c+d)ρ, where a, b, c, d ∈ S. This
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implies x ∈ a◦b◦(c+d) ⊆ a◦b◦c+a◦b◦d. So x = y+z, where y ∈ a◦b◦c
and z ∈ a ◦ b ◦ d. Hence xρ = (y + z)ρ = yρ + zρ, where yρ ∈ aρ ◦ bρ ◦ cρ
and zρ ∈ aρ ◦ bρ ◦ dρ. Thus aρ ◦ bρ ◦ (cρ + dρ) ⊆ aρ ◦ bρ ◦ cρ + aρ ◦ bρ ◦ dρ.
Similarly we can prove (aρ + bρ) ◦ cρ ◦ dρ ⊆ aρ ◦ cρ ◦ dρ + bρ ◦ cρ ◦ dρ and

aρ ◦ (bρ + cρ) ◦ dρ ⊆ aρ ◦ bρ ◦ dρ + aρ ◦ cρ ◦ dρ, for a, b, c, d ∈ S. Thus

(S/ρ,+, ◦) is a multiplicative ternary hyperring. Conversely, suppose

that (S/ρ,+, ◦) is a multiplicative ternary hyperring. Since (S/ρ,+) is

an additive commutative group, + is well defined. Let aρb and cρd.

Then aρ = bρ and cρ = dρ. Hence (a+c)ρ = aρ+cρ = bρ+dρ = (b+d)ρ.

Thus (a + c)ρ(b + d). So ρ is a congruence on (S,+). Again ‘◦’ is

well-defined. Let aρa′, bρb′ and cρc′, where a, b, c, a′, b′, c′ ∈ S. Then

aρ = a′ρ, bρ = b′ρ and cρ = c′ρ. Hence aρ ◦ bρ ◦ cρ = a′ρ ◦ b′ ◦ c′ρ. Now

x ∈ a ◦ b ◦ c ⇒ xρ ∈ aρ ◦ bρ ◦ cρ = a′ρ ◦ b′ρ ◦ c′ρ ⇒ xρ = yρ, where

y ∈ a′ ◦ b′ ◦ c′ ⇒ xρy, where y ∈ a′ ◦ b′ ◦ c′. Similarly, we can prove the

converse. Hence (a ◦ b ◦ c)ρ(a′ ◦ b′ ◦ c′) and hence ρ is regular. □

Definition 4.7. For a regular equivalence relation ρ on a multiplicative

ternary hyperring (S,+, ◦) the multiplicative ternary hyperring (S/ρ,+, ◦)
is called the quotient ternary hyperring of (S,+, ◦) by ρ.

Proposition 4.8. Let f be a good homomorphism from a multiplica-

tive ternary hyperring (S,+, ◦) to a multiplicative ternary hyperring

(T,+, ◦). Then (f(S),+, ◦) is also a multiplicative ternary hyperring.

Proof. Let f(a), f(b), f(c) ∈ f(S), where a, b, c ∈ S. Then f(a)+f(b) =

f(a+ b) ∈ f(S), −f(a) = f(−a) ∈ f(S) and f(a)◦f(b)◦f(c) = f(a◦ b◦
c) ⊆ f(S). Hence (f(S),+, ◦) is a multiplicative ternary hyperring. □

Proposition 4.9. Let f be a homomorphism from a multiplicative ternary

hyperring (S,+, ◦) to a multiplicative ternary hyperring (T,+, ◦). Then

(f−1(T ),+, ◦) is also a multiplicative ternary hyperring, where f−1(T ) =

{s ∈ S|f(s) ∈ T}.

Proof. Obviously f−1(T ) ̸= ϕ, since 0s ∈ f−1(T ). Let s1, s2 ∈ f−1(T ).

Then f(s1), f(s2) ∈ T . This implies f(s1 − s2) = f(s1) − f(s2) ∈
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T . Hence s1 − s2 ∈ f−1(T ). Again let s1, s2, s3 ∈ f−1(T ). Then

f(s1), f(s2), f(s3) ∈ T . This implies that f(s1 ◦ s2 ◦ s3) ⊆ f(s1) ◦ f(s2) ◦
f(s3) ⊆ T . Thus if x ∈ s1 ◦s2 ◦s3 then f(x) ∈ f(s1 ◦s2 ◦s3) ⊆ T . Hence

x ∈ f−1(T ). So s1 ◦ s2 ◦ s3 ⊆ f−1(T ). The other properties required

to define a multiplicative ternary hyperring are obviously satisfied. So

(f−1(T ),+, ◦) is a multiplicative ternary hyperring. □

Remark 4.10. Let f be a good homomorphism from a multiplicative

ternary hyperring (S,+, ◦) to a multiplicative ternary hyperring (T,+, ◦).
Then from Proposition 4.5. it follows that ρf is regular and hence from

Proposition 4.6. it follows that (S/ρf ,+, ◦) is a multiplicative ternary

hyperring.

We now state some theorems of multiplicative ternary hyperrings.

The following theorem is the first isomorphism theorem of multiplicative

ternary hyperrings.

Theorem 4.11. Let f be a good homomorphism from a multiplica-

tive ternary hyperring (S,+, ◦) to a multiplicative ternary hyperring

(T,+, ◦). Then the multiplicative ternary hyperring (f(S),+, ◦) is iso-

morphic to the multiplicative ternary hyperring (S/ρf ,+, ◦).

Proof. Define a map ϕ : f(S) → S/ρf by ϕ(f(a)) = aρf for all a ∈ S.

Now f(a) = f(b), a, b ∈ S ⇔ aρf = bρf ⇔ ϕ(f(a)) = ϕ(f(b)). Hence

ϕ is well-defined and injective. Obviously ϕ is surjective. Let a, b ∈ S.

Nowϕ(f(a) + f(b)) = ϕ(f(a + b)) = (a + b)ρf = aρf + bρf (since ρf is a

congruence on (S,+)) = ϕ(f(a))+ϕ(f(b)). Further ϕ(f(a)◦f(b)◦f(c)) =
ϕ(f(a◦b◦c)) (since f is a good homomorphism)=ϕ(f(x) : x ∈ a◦b◦c) =
{xρf : x ∈ a ◦ b ◦ c} = aρf ◦ bρf ◦ cρf = ϕ(f(a)) ◦ ϕ(f(b)) ◦ ϕ(f(c)) for

a, b, c ∈ S. Thus ϕ is an isomorphism. Hence (f(S),+, ◦) is isomorphic

to (S/ρf ,+, ◦).
□

The notion of strongly regular equivalence relation plays an important

role in the theory of multiplicative ternary hyperring. In fact, starting
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with a multiplicative ternary hyperring and applying a strongly regu-

lar equivalence relation on it, we can easily construct a ternary ring

structure on the quotient set.

Theorem 4.12. An equivalence relation ρ on a multiplicative ternary

hyperring (S,+, ◦) is strongly regular if and only if (S/ρ,+, ◦) is a

ternary ring.

Proof. Suppose that ρ is a strongly regular equivalence relation on (S,+, ◦).
Since a strongly regular equivalence relation is regular, by Proposition

4.6. it follows that (S/ρ,+, ◦) is a multiplicative ternary hyperring.

Now we proceed to show that |aρ ◦ bρ ◦ cρ| = 1 for all a, b, c ∈ S. Let

xρ, yρ ∈ aρ ◦ bρ ◦ cρ. Then x, y ∈ a ◦ b ◦ c. Since aρa, bρb and cρc hold, we

have (a◦b◦c)ρ(a◦b◦c). Since ρ is strongly regular, xρy which implies that

xρ = yρ. Thus |aρ ◦ bρ ◦ cρ| = 1. This shows that (S/ρ,+, ◦) is a ternary

ring. Conversely let (S/ρ,+, ◦) be a ternary ring. Obviously ρ is a con-

gruence on (S,+). Let aρa′, bρb′ and cρc′. Since the hyperoperation ‘◦’
on S/ρ is well defined. So aρ◦bρ◦cρ = a′ρ◦b′ρ◦c′ρ. Since |xρoyρozρ| = 1 for

all x, y, z ∈ S, it follows that |aρ ◦ bρ ◦ cρ| = 1 = |a′ρ ◦ b′ρ ◦ c′ρ| (1). Let

x ∈ a◦b◦c. Then xρ ∈ aρ◦bρ◦cρ. Since |aρ◦bρ◦cρ| = 1, aρ◦bρ◦cρ = xρ.

Let y ∈ a′ρ ◦b′ρ ◦c′ρ. Then, as above, a′ρ ◦b′ρ ◦c′ρ = yρ. Now by (1) we have

xρ = yρ i.e. xρy. This is true for all x ∈ a◦ b◦ c and for all y ∈ a′ ◦ b′ ◦ c′.
So (a ◦ b ◦ c)ρ(a′ ◦ b′ ◦ c′). This shows that ρ is strongly regular. □

Theorem 4.13. Let f be a good homomorphism from a multiplica-

tive ternary hyperring (S,+, ◦) to a multiplicative ternary hyperring

(T,+, ◦). Then the equivalence relation ρf induced by f on S is strongly

regular if and only if the multiplicative ternary hyperring (f(S),+, ◦)
becomes a ternary ring.

Proof. The proof follows from Theorem 4.11. and Theorem 4.12. □

For strongly regular equivalences, we have the following theorem.
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Lemma 4.14. Let {ρi : i ∈ I} be a set of strongly regular equivalence

relations on a multiplicative ternary hyperring (S,+, ◦). Then ∩ρi is a

strongly regular equivalence relation on (S,+, ◦).

Proof. First we notice that ρ = ∩ρi is a congruence on (S,+). Let

aρa′, bρb′, cρc′ for a, b, c, a′, b′, c′ ∈ S. Then aρia
′, bρib

′, cρic
′ for all i ∈ I.

Since each ρi is strongly regular, (a ◦ b ◦ c)ρi(a
′ ◦ b′ ◦ c′). This implies

that xρiy for all i ∈ I, for all x ∈ a◦ b◦ c and for all y ∈ a′ ◦ b′ ◦ c′. Hence

x(
∩
i∈I

ρi)y i.e. xρy. This leads to (a ◦ b ◦ c)ρ(a′ ◦ b′ ◦ c′). Hence ρ = ∩ρi

is strongly regular. □

In the following theorem, we consider the lattice structure of the set

of strongly regular equivalences on a multiplicative ternary hyperring.

Theorem 4.15. The set of all strongly regular equivalence relations on a

multiplicative ternary hyperring (S,+, ◦) forms a complete lattice w.r.t.

the set inclusion.

Proof. Let T = {ρi : i ∈ I} be the set of all strongly regular equivalence

relations on (S,+, ◦). Obviously T is a poset w.r.t the set-inclusion with

the greatest element S × S. Let T ′ = {ρj : j ∈ J ⊆ I} be a nonempty

subset of T . Then by the above lemma
∩
j∈J

ρj is a strongly regular

equivalence relation on (S,+, ◦) and it is the glb of T ′. Consequently

T = {ρi : i ∈ I} forms a complete lattice w.r.t. the set-inclusion. □

Definition 4.16. Let θ and ϕ be two regular equivalence relations on a

multiplicative ternary hyperring (S,+, ◦) such that θ ⊆ ϕ. We define a

relation ϕ/θ on S/θ as follows: (aθ)ϕ/θ(bθ) if and only if aϕb for a, b ∈ S.

For regular equivalence, we have the following lemma.

Lemma 4.17. ϕ/θ is a regular equivalence relation on the quotient

ternary hyperring (S/θ,+, ◦).
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Proof. Obviously ϕ/θ is an equivalence relation on the quotient set S/θ.

Now (aθ)ϕ/θ(a
′
θ) and (bθ)ϕ/θ(b

′
θ), where a, b, a′, b′ ∈ S

⇒ aϕa′ and bϕb′

⇒ (a+ b)ϕ(a′ + b′) since ϕ is a congruence on (S,+)

⇒ (a+ b)θ(ϕ/θ)(a
′ + b′)θ

⇒ (aθ + bθ)(ϕ/θ)(a
′
θ + b′θ)

⇒ ϕ/θ is a congruence on (S/θ,+)

Again aiθ(ϕ/θ)biθ , i = 1, 2, 3 and ai, bi ∈ S.

⇒ aiϕbi, i = 1, 2, 3

⇒ (a1 ◦ a2 ◦ a3)ϕ(b1 ◦ b2 ◦ b3) (1)

since ϕ is a regular equivalence on S. Let xθ ∈ a1θ ◦ a2θ ◦ a3θ .
Then x ∈ a1 ◦ a2 ◦ a3. So by (1) there exists an element y ∈ b1 ◦ b2 ◦ b3
such that xϕy. This implies that (xθ)ϕ/θ(yθ). So for each element

xθ ∈ a1θ ◦ a2θ ◦ a3θ there exists an element yθ ∈ b1θ ◦ b2θ ◦ b3θ such that

(xθ)ϕ/θ(yθ). Similar is the converse. So (a1θ ◦a2θ ◦a3θ)ϕ/θ(b1θ ◦b2θ ◦b3θ).
So ϕ/θ is a regular equivalence relation on (S/θ,+, ◦). □

The following theorem is the second isomorphism theorem of multi-

plicative ternary hyperrings.

Theorem 4.18. Let (S,+, ◦) be a multiplicative ternary hyperring and

θ, ϕ be two regular equivalence relations on S such that θ ⊆ ϕ. Then

the quotient ternary hyperrings ((S/θ)/(ϕ/θ),+, ◦) and (S/ϕ,+, ◦) are

isomorphic.

Proof. We define a mapping f : S/θ → S/ϕ by f(aθ) = aϕ for all a ∈ S.

Now aθ = bθ ⇒ aθb ⇒ aϕb(since θ ⊆ ϕ) ⇒ aϕ = bϕ ⇒ f(aθ) = f(bθ).

So f is well defined. Obviously the mapping f is surjective. Now, we

consider the following equality.
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f(aθ ◦ bθ ◦ cθ) = f({xθ : xθ ∈ aθ ◦ bθ ◦ cθ})
= f({xθ : x ∈ a ◦ b ◦ c})
= {f(xθ) : x ∈ a ◦ b ◦ c}
= {xϕ : x ∈ a ◦ b ◦ c}

= aϕ ◦ bϕ ◦ cϕ
= f(aθ) ◦ f(bθ) ◦ f(cθ)

Thus f is a good homomorphism. Hence by Theorem 4.11. ((S/θ)/ρf ,+, ◦) ∼=
(S/ϕ,+, ◦), where ρf is the regular equivalence relation on S/θ, de-

fined by (aθ)ρf (bθ) iff f(aθ) = f(bθ). Now (aθ)ρf (bθ) ⇔ f(aθ) =

f(bθ) ⇔ aϕ = bϕ ⇔ aϕb ⇔ (aθ)(ϕ/θ)(bθ). Hence ρf = ϕ/θ. Thus

((S/θ)/(ϕ/θ),+, ◦) ∼= (S/ϕ,+, ◦). □

Proposition 4.19. Let (T,+, ◦) be a multiplicative subternary hyper-

ring of a multiplicative ternary hyperring (S,+, ◦) and θ be a regular

equivalence relation on (S,+, ◦). Then the following hold.

(i) T θ = {a ∈ S : there exists b ∈ T such that aθb} is a subternary

hyperring of (S,+, ◦);
(ii) θT = θ ∩ T 2 is a regular equivalence relation on (T,+, ◦).

Proof. (i) Obviously T ⊆ T θ and hence T θ ̸= ϕ. Let a1, a2 ∈ T θ. Then

there exist b1, b2 ∈ T such that a1θb1 and a2θb2. So (a1 − a2)θ(b1 − b2).

Hence a1 − a2 ∈ T θ. Let a1, a2, a3 ∈ T θ. Then aiθbi for i = 1, 2, 3 for

some b1, b2, b3 ∈ T . So (a1 ◦ a2 ◦ a3)θ(b1 ◦ b2 ◦ b3)(since θ is a regular

equivalence relation on S). Let x ∈ a1 ◦ a1 ◦ a3. By (1) there exists an

element y ∈ b1 ◦ b2 ◦ b3 such that xθy, where y ∈ T . So x ∈ T θ. Thus

a1 ◦ a2 ◦ a3 ∈ P ∗(T θ). Hence T θ is a subternary hyperring of (S,+, ◦).
(ii) Obviously θT is an equivalence relation on T . Now a1θT b1 and

a2θT b2, a1, a2, b1, b2 ∈ T

⇒ a1θb1, a2θb2, (a1, b1), (a2, b2) ∈ T 2

⇒ (a1 + a2)θ(b1 + b2), (a1 + a2, b1 + b2) ∈ T 2

⇒ (a1 + a2)θT (b1 + b2).
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Let aiθT bi for i = 1, 2, 3. Then aiθbi and (ai, bi) ∈ T 2

⇒ (a1 ◦a2 ◦a3)θ(b1 ◦ b2 ◦ b3) and ((a1 ◦a2 ◦a3), (b1 ◦ b2 ◦ b3)) ∈ (P ∗(T ))2.

⇒ (a1 ◦ a2 ◦ a3)θT (b1 ◦ b2 ◦ b3).
Thus θT is a regular equivalence relation on (T,+, ◦). □

Finally, we prove the third isomorphism theorem of multiplicative

ternary hyperrings.

Theorem 4.20. Let (T,+, ◦) be a multiplicative subternary hyperring

of the multiplicative ternary hyperring (S,+, ◦). Let θ be a regular equiv-

alence relation on (S,+, ◦). Then (T θ/θT θ ,+, ◦) ∼= (T/θT ,+, ◦).

Proof. We define a mapping f : T → T θ/θT θ by f(x) = xθT θ . Let yθT θ ∈
T θ/θT θ . Then y ∈ T θ. This implies that there exists x ∈ T (⊆ T θ) such

that (x, y) ∈ θ. Again (x, y) ∈ (T θ)2. So (x, y) ∈ θ ∩ (T θ)2 = θT θ .

So yθT θ = xθT θ = f(x). Thus f is surjective. Let x1, x2 ∈ T . Then

(f(x1 + x2) = (x1 + x2)θT θ = x1θT θ + x2θT θ = f(x1) + f(x2). Let

x1, x2, x3 ∈ T . Now f(x1◦x2◦x3) = f({y : y ∈ x1◦x2◦x3}) = {f(y) : y ∈
x1 ◦x2 ◦x3} = {yθT θ : y ∈ x1 ◦x2 ◦x3} = x1θT θ ◦x2θT θ ◦x3θT θ = f(x1)◦
f(x2) ◦ f(x3). Thus f is a good homomorphism. Hence by Theorem

4.11, T/ρf ∼= T θ/θT θ . Now for x, y ∈ T, xρfy ⇔ f(x) = f(y) ⇔ xθT θ =

yθT θ ⇔ (x, y) ∈ θT θ ⇔ (x, y) ∈ θ and (x, y) ∈ T 2(x, y ∈ T ) ⇔ xθT =

yθT ⇔ xθT y. So ρf = θT θ . Hence T θ/θT θ ,+, ◦) ∼= (T/θT ,+, ◦). □
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[8] H. Prüfer, Theorie der Abelschen Gruppen, I. Grundeigenschaften, Math. Z., 20

(1924), 165-187.

[9] J. R. Castillo and Jocelyn S. Paradero-Vilela, Quotient and Homomorphism

in Ternary Hyperrings, International Journal of Mathematical Analysis, 8

(2014).no.58, 2845-2859.

[10] M. De Salvo. Hyperring and Hyperfields. Anneles Scientifiques de Universite de

Clermont-Ferrand II No. 22,(1984).

[11] M. Krasner, A Class of hyperrings and hyperfields, Internat. J. Math, Sci., 6

(1983) 307-311.

[12] R. Rota, R, Strongly Distribute Multiplicative Hyperrings. Journal of Geometry.

39, No-1(1990) 130-138

[13] S. M. Anvariyeh and S. Mirvakili, Canonical (m, n)-Hypermodules over krasner

(m, n)-ary Hyperrings, Iranian Journal of Mathematical Science and Informatics,

7 No 2(2012),

[14] W. G. Lister, Ternary Rings, Trans. Amer. Math. Soc., 154 (1971), 37-55.

Md. Salim

Department of Pure Mathematics, University of Calcutta, P.O.Box 700019, Kolkata,

India

Email: smpmath746@yahoo.in

T. Chanda

Department of Mathematics, Ananda Mohan College, P.O.Box 700009, Kolkata, In-

dia

Email: tanusree chanda@yahoo.co.in



36 Md. Salim and T. Chanda and T. K. Dutta

T. K. Dutta

Department of Pure Mathematics, University of Calcutta, P.O.Box 700019, Kolkata,

India

Email: duttatapankumar@yahoo.co.in


	1. Introduction
	2. Preliminaries
	3. Multiplicative ternary hyperring
	4. Regular and strongly regular equivalences on a multiplicative ternary hyperring
	References

