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ANALYTICAL APPROXIMATION SOLUTION OF A
MATHEMATICAL MODELING OF
REACTION-DIFFUSION BRUSSELATOR SYSTEM BY
REDUCED DIFFERENTIAL TRANSFORM METHOD

A. TAGHAVI, A. BABAEI AND A. MOHAMMADPOUR

ABSTRACT. In this paper an approximate analytical solution of
a mathematical modeling of reaction-diffusion Brusselator system
with fractional time derivative will be obtained with the help of
the reduced differential transform method. Fractional reaction-
diffusion Brusselator system is used for modeling of certain chem-
ical reaction-diffusion processes. The fractional derivatives are de-
scribed in the Caputo sense. It is indicated that the solutions ob-
tained by the reduced differential transform method are reliable and
present an effective method for strongly nonlinear partial equations.
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1. INTRODUCTION

We consider 2-dimensional time fractional reaction-diffusion Brusse-
lator system

Dfu =B+ u?v— (A+1)u+ A(um + uyy>
(1.1) D,@Bv = Au —u*v + A(vm + vyy>
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subject to the initial conditions
u(z,y,0) =e 7Y
(1.2) v(z,y,0) = ™Y,

where u = u(z,y,t), v = v(x,y,t) are chemical concentrations of reac-
tion products, and A, B are constant concentrations of input reagents,
and A is a constant based on a diffusion coefficient. Also Dy, Df is used
to represent the Caputo-type fractional derivative of order «, 3 [1, 7].
Fractional differential operators have played a very important role in
various fields such as electrical circuits, biology, biomechanics, viscoelas-
ticity, etc. [14, 9, 13, 6, 8. Recently various methods such as the
Adomian decomposition method (ADM), the homotopy perturbation
method (HPM), the variational iteration method (VIM) and the ho-
motopy analysis method (HAM) have been applied for fractional PDEs
10, 11, 12].

The Reduced differential transform method (RDTM) has been used by
many authors to obtain analytical and approximate solutions to nonlin-
ear problems [1]. In the present work, we are concerned with the applica-
tion of the reduced differential transform method (RDTM) [5, 3], for the
2-dimensonal time fractional reaction-diffusion Brusselator system. The
Brusselator system occurs in a large number of physical problems such
as the formation of ozone by atomic oxygen through a triple collision
and enzymatic reactions [7].

2. FRACTIONAL CALCULUS

In this section, we present a review of the notations, definitions and
preliminary of fractional calculus according to the refferences [3-6].

Definition 2.1. A real function f(z),x > 0 is said to be in the space
Cy, 1 € R, if there exists a real number ¢(> ), such that f(x) = 29¢(z),
where g(z) € C[0, 00|, and it is said to be in the space C};" if fm e Cy,
m € N.

Definition 2.2. For a function f € C,, u > —1, the Riemann-Liouville
fractional integral operator of order a > 0, is defined as

Jof(x) = g i@ = Do f(dt, > 0,2 >0,
(2.1)
1f(z) = f(2).
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For f € Cy,p > —1 and Vo, B € Ry, the operator J has the proper-
ties:
W) JO TP f(x) = JHBf(x).
i) J TP f(z) = JPJf(x).

We all know that, the Riemann-Liouville approach leads to initial
conditions containing the limit values of the Riemann-Liouville fractional
derivatives which there is no known physical interpretation for such types
of initial condition. A modified fractional differential operator D* which
proposed by Caputo in his work on the theory of viscoelasticity [2] is

o [t

I'(m—a«

(2.2) D*f(x) = T f0) (z) =

form—-1<a<m,meN,z>0and f € C™.

The main advantage of Caputo’s approach is that the initial conditions
for fractional differential equations with Caputo derivatives take on the
same form as for integer-order differential equations.

Definition 2.3. For m to be the smallest integer that exceeds «, the
Caputo time-fractional derivative operator of order v > 0 is defined as

(2.3)

o 0%u(x,t
Dfu(z,t) = 8(750‘ )

t a1 8™Mu(z,
ﬁfo(t_s)mal$d& m—1<a<m,

O™ u(x,t)

S s a=m €N.

3. REDUCED DIFFERENTIAL TRANSFORM METHOD

In this section, we apply the reduced differential transform method
for three variables function u(x, y,t) which has been developed in [1] and
[]-

Consider a function of three variables u(z,y,t) which is analytic and
differentiated continuously in the domain of interest, and suppose that
it can be represented as u(z,y,t) = f(x,y)g(t).
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Definition 3.1. If function u(x,y,t) is analytic and differentiated con-
tinuosly with respect to x, y and ¢ in the domain of interest, then let

1 ok
Far 1) |ama @y t)|

(3.1) Uk(z,y) = T »

where the t-dimensional spectrum function Uy(z,y) is the transformed
function which is called T-function.

The differential inverse transform of Uj(x,y) is defined as

(32) u(x7y7t) = ZUk(x¢y)tkaa
k=0

combining Eqgs. (3.1) and (3.2) gives that

.- 1 o
(3.3) u(z,y,t) = [ au(a:,y,t)] the,
kzzo (ko +1) | otk 0

In real applications, by consideration of Uy(x,y) = h(x,y) as transfor-
maiton of initial condition

(3.4) u(z,y,0) = h(z,y),

the function u(x,y,t) can be approximated by a finite series of Eq. (3.2)
as

n
(3.5) Un(2,y,t) = Ukl y)t*.
k=0
A straightforward iterative calculations, gives the Ug(z,y) values for
k =1,2,---,n. Then the inverse transformation of the {Ux(z,y)};_,
gives the approximation solutoin as uy,(z,y,t), where n is order of ap-
proximation solution. Next, the exact solutoin is obtained by u(z,y,t) =
lim uy,(z,y,t).

n——o0

Some basic properties of the reduced differential transformation obtained
from Eqs. (3.1) and (3.2) are summarized in Table 1. Note, in this table

I'(z) :_/ e 't at, z € C.
0
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Function Form

Transformed Form

u(z,y,t) = v(z,y,t) + wlz,y, t)

Uk(x7y) = Vk(mvy) + Wk(r,y)

u(z,y,t) = cv(z, y, t)

Uk(z,y) = cVi(z,y) (cis a constant)

1 k=an

u(z,y,t) = ct"v(z,y,t) Uk(z,y) = cv(z,y)d(k — an) = { 0 k + an

k

U(%y,t) = ’U("E,y, t)w(x,y, t) Uk(w) y) = kz Vkl (LB, y)kakl (a:,y)
1=0

k ko
U(I, yat) = 'U(CC,y, t)w(I,y,t)Z(I,y, t) Uk(xv y) = Z E Vkl (xvy)wk27k1 (‘rzy)Zkka (x,y)
ko—=0 k1 =0
u(@,y,t) = Sxzv(@,y,t) Uk(x,y) = %mw v)
mIn
u(z,y,t) = @2?@71”(957% t) Uk(z,y) = va(x v)

Table 1. Some basic reduced differential transformations.

According to the RDTM and table 1, we can construct the following

iteration for the Eq. (1.1) as
WUMN% y) = Bo(k) + Ek: Z Vi@, Y)Us—r(2,y)U—s(2,y) — (A+ 1)Uk(2,y)
s=0 r=0
+ )\(;;Uk(m,y) + ;;Uk(QC»y))
va+l(x,y) AU(z,y) iozov (@, Y Us—r (2, y)Ug—s(, y)
(3.6)

2 2

Ao Vil) + 53 Vilo)

Initial condition (1.2) gives

Uo(z,y) = e 77

(3.7) Vo(z,y) = "V,

By substituding of Eqs. (3.7) into (3.6) we can obtain the next terms
of Ux(x,y) and Vi(x,y) as
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e (z+y)

— _ x+y\_~—
Us(z,y) (1 AA + 4)\ + 4Be )4r(1+a)’

Us(z,y) = {( — 16+ 164 +4(1 + 4A)62<2+y>>r(1 + a)

_ 2aty) ( —5—16A% — 16Be® Y — 24\ — 162 + 244

(3.9)
6_3(1"‘1‘:[/)

160(1+20)T(1+B)

+16Be™ + 32A)r(1 + ,6)}

erty

41+ B)’
Va(z,y) = [( A4+ (1+ 4A)62<z+y>) ( A+ 4A+ (14 4A)e2<w+y>)r(1 +a)

Vilw,y) = (= 4444+ (1 +40)e2e)

+4( =2+ A)e2t) (1 C4A AN+ 4Bex+y)r(1 +B)

(3.9)
6_3(z+y)

} 16I'(1+a)[(1428)"

The time fractional reaction-diffusion Brusselator system (1.1) when
A=1 B =0, a = =1and A\ = 0.25 has the exact solution
u(z,y,t) = e @7Y705 and v(z,y,t) = e*t¥H05 [7]. By considering
of ten terms, we can get the approximation solution wujo(x,y,t) and
v10(z, y,t), which is very close to exact solution. A comparison between
the exact and the approximation solution have been presented in Table 2.
Also, the exact and approximation solution in this case and approximate
solution for different values of v and 8 have been indicated in Figure 1
for u(x,y,t) and Figure 2 for v(z,y,t) respectively. finally in figure 3,
the exact and approximate solution at x =y = 0.5 and 0 < ¢ < 1, have
been compared.
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FIGURE 1. Solutions using the w1 (z, y, t) for different values
of a and B when A = 0.25: (a) exact (o = f = 1), (b) (a =
B=1),(c)a=p=0.75and (d) o« = =0.5.

FIGURE 2. Solutions using the v19(z, y, t) for different values
of a and B when A = 0.25: (a) exact (&« = 5 = 1), (b) (a =
B=1),(c)a=p=075and (d) o« =6 =0.5.

FIGURE 3. Comparison between exact and approximate so-
lution at z = y = 0.5 and 0 < ¢ < 1: (a) u(z,y,t) and (b)

oz, 3, 1)
x Y 14 |“("E7t) —ﬁlo(r,y, t)' ‘U(CE, t) —510(.’2,?;, t)l
x=0.3 | y=0.3 | t=1 6.44401E-12 2.32552E-11
t=2 1.26854E-8 4.97669E-8
x=0.6 | y=0.6 | t=1 3.53662E-12 4.2375E-11
t=2 6.96188E-9 9.06812E-8
x=0.9 | y=0.9 | t=1 1.94088E-12 7.72058E-11
t=2 3.82076E-9 1.65232E-7
x=1.2 | y=1.2 | t=1 1.06519E-12 1.40684E-10
t=2 2.09688E-9 3.01072E-7
x=1.5 | y=1.5 | t=1 5.84588E-13 2.56335E-10
t=2 1.15079E-9 5.48589E-7

Table 2. Comparison between the exact solution and the approximate solution for
a=pF=1and A =0.25.

4. CONCLUSION

In this paper, the reduced differential transform method was success-
fully applied for the time fractional reaction-diffusion Brusselator sys-
tem. Figurse 1, 2, 3 and Table 2 indicate that, the mentioned method is
a very powerful and effcient technique for finding approximate solutions
for nonlinear problems, and does not require linearization, discretization
or perturbation.
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