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ON QUASI-HYPERIDEALS AND BI-HYPERIDEALS IN

MULTIPLICATIVE HYPERSEMIRINGS

MD. SALIM

Abstract. In this paper we introduce the notion of quasi-hyperideal
in multiplicative hypersemirings which is a generalization of one-
sided hyperideal and study some of its properties and obtain some
characterizations of quasi-hyperideal in multiplicative hypersemir-
ings. Also, we introduce the notion of bi-hyperideal in multiplica-
tive hypersemirings. We prove that in a multiplicative hypersemir-
ing every quasi-hyperideal is a bi-hyperideal, but the converse is not
true. Lastly, we characterize regular multiplicative hypersemiring
with the help of quasi-hyperideal and bi-hyperideal.
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1. Introduction

Algebraic hyperstructure which is based on the notion of hyperoper-
ation was introduced by Marty [5] in 1934 and studied extensively by
many researchers who have observed that the theory of hyperstructure
has many applications in many disciplines such as theoretical physics,
computer science, information science and coding theory etc. In a clas-
sical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements
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is a set. In [18, 19, 20, 21] Corsini and Fotea and in [2] Davvaz and
Fotea points out their applications in rough set theory, cryptography,
geometry, binary relations, graphs and hypergraphs. In 1934, Dresher
and Ore [10] introduced the notion of multigroup which is an algebraic
system that satisfied all the axioms of group except that multiplication
is multivalued. In the work of Ibrahim and Ejegwa [1] it was revealed
that “A hypergroup is also known as a multigroup, although some call
a multigroup a hypergroup with a designed identity element, as well as
a designated inverse for every element with respect to the identity”. In
2006, Marshall [14] introduced the notions of multirings, multifield and
studied their properties. Hamidi et. al [11] constructed relation between
multigroups and multiring on every nonempty set. In [12], Hamidi et. al
generalized the concept of multirings to general multirings and studied
their properties.

The notion of multiplicative hyperring has been introduced by Rota
[24] in which the addition is a binary operation and multiplication is
a binary hyperoperation. In [13] Krasner also introduced the notion of
hyperring, called Krasner hyperring. In Krasner hyperring (R,+, ·), ‘+’
is a binary hyperoperation and ‘·’ is a binary operation, in which the
zero element is absorbing zero. The hyperstructure hypersemiring [23],
introduced by Ciampi and Rota in the year 1987, is a straight hyper-
structural generalization of the notion of semiring. In [25], Dasgupta
studied multiplicative hypersemirings in his Ph.D thesis. Ameri, Kordi
and Sarka-Mayerova [22] introduced the notion of coprime hyperideals
in multiplicative hypersemiring. In the recent year the theory of hyper-
structures is further developed by many researchers [7, 8, 4]. In 2015,
Salim et. al [15] introduced the class of multiplicative ternary hyper-
ring. After that, in 2018, Tamang and Mandal [16] defined ternary
hypersemiring, which is a generalization of the concept of multiplicative
ternary hyperring and studied prime and primary hyperideal in ternary
hypersemirings.

In 1956, Steinfeld [17] introduced the notion of quasi-hyperideal. Quasi-
ideals of semirings was studied by Dönges in [3], Sioson [6]. Quasi-ideals
and bi-ideals of ternary semigroup was studied by Dixit et. al [26]. In
[9], Hila et al. introduced the notion of quasi-hyperideal in semihyper-
group and studied it. In this paper we introduce quasi-hyperideal and
bi-hyperideal of multiplicative hypersemiring which are generalizations
of one-sided hyperideal and quasi-hyperideal respectively. Furthermore
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we investigate their properties in multiplicative hypersemiring and ob-
tain the relation between them. Also some intersection properties of
quasi-hyperideal have been studied. We obtain some characterization
of quasi-hyperideal and bi-hyperideal in a multiplicative hypersemiring.
Finally we prove that in a regular multiplicative hypersemiring the no-
tions of quasi-hyperideal and bi-hyperideal coincide.

2. Preliminaries

Definition 2.1. By a hyperoperation ‘◦’ on a nonempty set H, we
shall mean a mapping ◦: H × H → P ∗(H) where P ∗(H) is the set of
all nonempty subsets of H. For x, y ∈ H, the image of the element
(x, y) ∈ H ×H under the mapping ‘◦’ will be denoted by x ◦ y (which is
called the hyperproduct x, y).

A nonempty set H equipped with a single hyperoperation ◦ is called
hypergroupoid (H, ◦). An element a of hypergroupoid (H, ◦) is called a
scalar in H if |a ◦ x| = |x ◦ a| = 1, for all x ∈ H.

A hypergroupoid (H, ◦) is commutative, when x◦y = y◦x, ∀x, y ∈ H.
If (H, ◦) is a hypergroupoid, then for any x ∈ H and A,B ∈ P (H)

(power set of H), we define that A ◦B =
⋃

(a,b)∈A×B

a ◦ b, x ◦A = {x} ◦A

and A ◦ x = A ◦ {x}.
A hypergroupoid (H, ◦) is said to be semihypergroup if the hyperop-

eration ‘◦’ satisfies the associative law: x ◦ (y ◦ z) = (x ◦ y) ◦ z, for all
x, y, z ∈ H.

Let A,B ∈ P (S) then A + B = {a + b : a ∈ A and b ∈ B}, where
P (S) is the power set of S.

Definition 2.2. [25] A multiplicative hypersemiring (S,+, ◦) is an ad-
ditive commutative semigroup (S,+) endowed with a hyperoperation ‘◦’
such that the following conditions hold :

(i): (S, ◦) is semihypergroup;
(ii): (x + y) ◦ z ⊆ x ◦ z + y ◦ z, and x ◦ (y + z) ⊆ x ◦ y + x ◦ z,
∀x, y, z ∈ S;

where if the inclusions in (ii) are replaced by equalities, then the mul-
tiplicative hypersemiring is called a strongly distributive multiplicative
hypersemiring.

We have the following remark.
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Remark 2.3. It is immediate to see that the notion of multiplicative
hypersemiring coincides with the notion of a semiring if and only if
|a ◦ b| = 1 for all a, b ∈ S.

On the other hand if (S,+, ◦) is a semiring then (S,+, .) can be re-
garded as a strongly distributive multiplicative hypersemiring if we take
a ◦ b = {a · b} for all a, b ∈ S.

Thus the above notion of a multiplicative hypersemiring is a general-
ization of the notion of semiring.

Example 2.4. Let S = {a, b}. Then the binary operation ‘+’ and hyper-
operation ‘◦’ defined respectively as follows:

+ a b
a a a
b a b

◦ a b
a {a} S
b {a} {b}

Then (S,+, ◦) is a multiplicative hypersemiring.

Definition 2.5. The additive identity ‘0’ of a multiplicative hypersemir-
ing (S,+, ◦) is said to be a zero (strong zero) of (S,+, ◦) if 0 ∈ a◦0 = 0◦a
(resp.{0} = a ◦ 0 = 0 ◦ a) for all a ∈ S.

Example 2.6. Consider the semiring (Z+
0 ,+, .) of the set of all non-

negative integers with respect to the usual addition and multiplica-
tion of integers. Then (Z+

0 ,+, ◦) forms a multiplicative hypersemir-
ing with zero element, if the ‘+’ is the usual addition of integers and
x ◦ y = {x · y + nk : n, k ∈ Z+

0 }.

Example 2.7. Consider the ternary semiring (Z−0 ,+, .) of the set of all
non-positive integers with respect to the usual addition and multipli-
cation of integers. Corresponding to any subset A of the set of nega-
tive integers there exists a multiplicative hypersemiring (Z−A ,+, .), where

Z−A = Z−0 and for any x, y ∈ Z−A,+ is the usual addition of integers and
x ◦ y = {x · a · y : a ∈ A}.

The above multiplicative hypersemiring is called a multiplicative hy-
persemiring induced by A.

Definition 2.8. An additive subsemigroup T of a multiplicative hyper-
semiring (S,+, ◦) is called a subhypersemiring without zero if x ◦ y ⊆ T
for all x, y ∈ T .

and is called subhypersemiring with zero if 0 ∈ T and x ◦ y ⊆ T for
all x, y ∈ T .

Definition 2.9. [25] Let (S,+, ◦) be multiplicative hypersemiring. An
additive subsemigroup I of S is called
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(i): a left hyperideal of S if s◦x ⊆ I, for all x ∈ I and for all s ∈ S;
(ii): a right hyperideal of S if x ◦ s ⊆ I, for all x ∈ I and for all
s ∈ S;

(iii): a hyperideal of S if I is both a left and a right hyperideal of
S;

Let S be a multiplicative hypersemiring. If A and B are two nonempty

subsets of S, then A ◦B =
⋃
{
∑
finite

ai ◦ bi : ai ∈ A, bi ∈ B}.

Definition 2.10. [25] An element e ∈ S\(S ◦ 0 ∪ 0 ◦ S) is called a
hyperidentity of the multiplicative hypersemiring (S,+, ◦), if x ∈ e◦x =
x ◦ e, for all x ∈ S.

Proposition 2.11. [25] Let (S,+, ◦) be a multiplicative hypersemiring
and A be a nonempty subset of S. Then S ◦ A, A ◦ S and S ◦ A ◦ S
are respectively a left hyperideal, a right hyperideal and a hyperideal of
S. If the multiplicative hypersemiring S has a hyperidentity e, then left
hyperideal generated by A is 〈A〉l = S ◦A, right hyperideal generated by
A is 〈A〉r = A ◦ S and hyperideal generated by A is 〈A〉 = S ◦ A ◦ S +
S ◦A+A ◦ S.

Definition 2.12. An element a of a multiplicative hypersemiring (S,+, ◦)
is called idempotent if a ◦ a = a.

A hyperideal I of a multiplicative hypersemiring (S,+, ◦) is called
idempotent if I ◦ I = I.

Definition 2.13. A left hyperideal L of a multiplicative hypersemiring
S is said to be a minimal left hyperideal of S if L does not properly
contain any left hyperideal of S.

Definition 2.14. A right hyperideal L of a multiplicative hypersemiring
S is said to be a minimal right hyperideal of S if L does not properly
contain any right hyperideal of S.

3. Quasi-hyperideal in multiplicative hypersemirings

Definition 3.1. An additive subsemigroup Q of a multiplicative hyper-
semiring (S,+, ◦) is called a quasi-hyperideal of S if Q ◦ S ∩ S ◦Q ⊆ Q.

Example 3.2. (i) The set S and the hyperideal 〈0〉 both are the
quasi-hyperideals of S.

(ii) In Example 2.4, Q1 = {a} and Q2 = {b} are quasi-hyperideal of
S.
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Example 3.3. Let S = {a, b, c}. Then (S,+, ◦) is a multiplicative hyper-
semiring with restpect to the binary operation ‘+’ and hyperoperation
‘◦’ defined respectively as follows:

+ a b c
a a b c
b b c a
c c b a

◦ a b c
a {a} {c} S
b {a, b} {b} {b, c}
c {b} {a} {c}

Here we can easily verify that Q1 = {a}, Q2 = {b, c} and Q3 = {c}
are the quasi-hyperideals of S.

Example 3.4. Let S =

{(
a b
c d

)
: a, b, c ∈ Z+

0

}
where Z+

0 is set of all

non-negative integers. Then S is a semigroup with respect to matrix
addition.

Let A =

{(
0 0
1 0

)
,

(
0 0
0 1

)}
, there exists a multiplicative hyper-

semiring (SA,+, ◦) where SA = S and for any a, b ∈ SA, a◦b = {a · i ·b :
i ∈ A} where a, b ∈ (S,+). This multiplicative hypersemiring is called
the multiplicative hypersemiring over the semiring S induced by A. Let

Q =

{(
0 0
0 a

)
: a ∈ Z+

0

}
. Then Q is a quasi-hyperideal of (SA,+, ◦).

Lemma 3.5. Every left, right and a hyperideal of a multiplicative hy-
persemiring S is a quasi-hyperideal of S.

Proof. Suppose Q is a left hyperideal of S, then S◦Q ⊆ Q and obviously
S ◦ S ⊆ S. Now Q ◦ S ∩ S ◦Q ⊆ S ◦ S ∩Q ⊆ S ∩Q ⊆ Q. Thus Q is a
quasi-hyperideal of S.

Similarly we can prove the other cases. �

Remark 3.6. The converse of Lemma 3.5 is not true. We give an example
of a quasi-hyperidealQ of a multiplicative hypersemiring which is neither
a left hyperideal nor a right hyperideal of S.

Example 3.7. Let T =

{(
a b
c d

)
: a, b, c ∈ Z+

0

}
where Z+

0 is set of all

non-negative integers. Then T is a semigroup with respect to matrix
addition.

Let A =

{(
1 0
0 0

)
,

(
0 0
0 1

)}
, there exists a multiplicative hyper-

semiring (TA,+, ◦) where TA = T and for any a, b ∈ TA, a◦b = {a · i ·b :

i ∈ A}. Let Q =

{(
a 0
0 0

)
: a ∈ Z+

0

}
. Then we can easily verify that
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Q is a quasi-hyperideal, but Q is neither a right hyperideal nor a left
hyperideal of (T,+, ◦).

From above Example 3.7 we observe that the class of quasi-hyperideals
in multiplicative hypersemiring is the generalization of the class of one-
sided hyperideal of multiplicative hypersemiring.

Lemma 3.8. Each Quasi-hyperideal of multiplicative hypersemiring (S,+, ◦)
is subhypersemiring of S.

Proof. Let Q be a quasi-hyperideal of a multiplicative hypersemiring S.
Then Q is an additively subsemigroup. Let x, y ∈ Q. Then x◦y ⊆ Q◦S
for x ∈ Q and y ∈ S. Again x ◦ y ⊆ S ◦ Q for x ∈ S and y ∈ Q. Thus
x ◦ y ⊆ Q ◦ S ∩ S ◦Q ⊆ Q and Q is subhypersemiring of S. �

Lemma 3.9. Let S be a multiplicative hypersemiring, then

(a): Let Q be a quasi-hyperideal of a multiplicative hypersemiring
S and T be a subhypersemiring of S, then Q∩T is either empty
or a quasi-hyperideal of T .

(b): The intersection of arbitrary collection of quasi-hyperideals
of a multiplicative hypersemiring S is either empty or a quasi-
hyperideal of S.

Proof. (a) If Q ∩ T is a nonempty, then Q ∩ T is a subset of T . Now
((Q ∩ T ) ◦ T ) ∩ (T ◦ (Q ∩ T )) ⊆ (T ∩ T ) ∩ (T ◦ T ) ⊆ T ∩ T = T . Again
((Q∩T )◦T )∩ (T ◦ (Q∩T )) ⊆ (Q◦T )∩ (T ◦Q) ⊆ (Q◦S)∩ (S ◦Q) ⊆ Q.
Hence ((Q ∩ T ) ◦ T ) ∩ (T ◦ (Q ∩ T )) ⊆ Q ∩ T . This shows that Q ∩ T is
a quasi-hyperideal of T .

(b) Let Qi be a quasi-hyperideal of S for i ∈ I. We show
⋂
i∈I

Qi is

either empty or a quasi-ideal of S . Assusme that
⋂
i∈I

Qi 6= φ. We have

(
⋂
i∈I

Qi) ◦ S ∩ S ◦ (
⋂
i∈I

Qi) ⊆ Qi ◦ S ∩ S ◦ Qi ⊆ Qi for all I ∈ I. Hence⋂
i∈I

Qi is a quasi-hyperideal of S. �

Theorem 3.10. An additive subsemigroup Q of a multiplicative hyper-
semiring S is a quasi-hyperideal of S if Q is the intersection of a right
hyperideal and a left hyperideal of S.

Proof. Let R be a right hyperideal and L be a left hyperideal of S such
that Q = R ∩ L. Then by Lemma 3.9, it is obvious that Q is a quasi-
hyperideal of S. �
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Claim 3.11. A quasi-hyperideal Q said to have a intersection property
if Q is the intersection of a right hyperideal and a left hyperideal of S.

Lemma 3.12. Let S be a multiplicative hypersemiring and e ∈ S. The
following statements hold ture

(i) S ◦ e is a left hyperideal of S and hence quasi-hyperideal of S.
(ii) e ◦ S is a right hyperideal of S and hence quasi-hyperideal of S.
(iii) e ◦ S ∩ S ◦ e is a quasi-hyperideal of S.

Proof. (i) It follows from S ◦ (S ◦ e) ⊆ (S ◦S) ◦ e ⊆ S ◦ e and rest follows
from Lemma 3.5.

(ii) Similiar to (i).
(iii) It follows from Lemma 3.9 [b]. �

Definition 3.13. A quasi-hyperideal L of a multiplicative hypersemir-
ing S is said to be a minimal quasi-hyperideal of S if L does not properly
contain any quasi-hyperideal of S.

Theorem 3.14. An additive subsemigroup Q of multiplicative hyper-
semiring S is a minimal quasi-hyperideal of S if and only if Q is the
intersection of a minimal right hyperideal and a minimal left hyperideal
of S.

Proof. Let R be a minimal right hyperideal and L be a minimal left
hyperideal of S such that Q = R ∩ L. Then, by Theorem 3.10, we find
that Q is a quasi-hyperideal of S. Now we show that Q is minimal.
Suppose Q′ ⊆ Q be any other quasi-hyperideal of S. Then Q′ ◦ S is a
right hyperideal of S and Q′ ◦ S ⊆ Q ◦ S ⊆ R ◦ S ⊆ R, since R is a
minimal right hyperideal of S, we have Q′ ◦ S = R. Similarly, we can
prove that S ◦ Q′ = L. Therefore Q = R ∩ L = Q′ ◦ S ∩ S ◦ Q′ ⊆ Q′.
Consequently Q = Q′ and hence Q is a minimal quasi-hyperideal of S.

Conversely, let Q be a minimal quasi-hyperideal of S. Then Q ◦ S ∩
S ◦Q ⊆ Q. Let q ∈ Q, by Lemma 3.12, q ◦ S is a right hyperideal of S
and S ◦ q is a left hyperideal of S. Then by Lemma 3.12, q ◦ S ∩ S ◦ q
is a quasi-hyperideal of S. Now q ◦ S ∩ S ◦ q ⊆ Q ◦ S ∩ S ◦ Q ⊆ Q.
Since Q is minimal quasi-hyperideal of S, we get q ◦ S ∩ S ◦ q = Q.
Now we show that q ◦ S and S ◦ q is a minimal right hyperideal and
minimal left hyperideal of S respectively. Suppose that R is any other
right hyperideal of S such that R ⊆ q ◦ S. Then R ◦ S ⊆ R ⊆ q ◦ S.
Now R ◦ S ∩ S ◦ Q ⊆ q ◦ S ∩ S ◦ Q ⊆ Q ◦ S ∩ S ◦ Q ⊆ Q. Since Q is
minimal quasi-hyperideal of S, then R ◦ S ∩ S ◦ Q = Q. This implies
that Q ⊆ R ◦ S. Again q ◦ S ⊆ Q ◦ S ⊆ (R ◦ S) ◦ S ⊆ R ◦ S ⊆ R.
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Thus R = q ◦ S. Consequently q ◦ S is a minimal right hyperideal of S.
Similarly we can prove that S ◦ q is a minimal left hyperideal of S. �

Corollary 3.15. Let S be a multiplicative hypersemiring. Then S has
at least one minimal quasi-hyperideal if and only if S has at least one
minimal right hyperideal and at least one minimal left hyperideal.

Proof. Suppose that Q is a minimal quasi-hyperideal of S, then for any
q ∈ Q, q ◦S is a right hyperideal of S and S ◦ q is a left hyperideal of S.
By Theorem 3.14, q ◦S is the minimal right hyperideal of S and S ◦ q is
the minimal left hyperideal of S. Thus S has at least one minimal right
hyperideal and at least one minimal left hyperideal.

Converse is straightforward. �

Theorem 3.16. Let (S,+, ◦) be a multiplicative hypersemiring. Then

(i) A right hyperideal R is minimal if and only if a ◦ S = R for all
a ∈ R;

(ii) A left hyperideal L is minimal if and only if S ◦ a = L for all
a ∈ L;

(iii) A quasi-hyperideal Q is minimal if and only if a ◦ S ∩ S ◦ a = Q
for all a ∈ Q.

Proof. (i) Suppose that R is minimal right hyperideal. Let a ∈ R. Then
a ◦ S ⊆ R ◦ S ⊆ R. By Lemma 3.12, a ◦ S is a right hyperideal of S.
Since R is the minimal hyperideal of S we have a ◦ S = R.

Conversely, let a ◦ S = R for all a ∈ R. Let R
′

is another right
hyperideal of S such that R

′ ⊆ R. Let x ∈ R′ ⊆ R. Then R = x ◦ S ⊆
R′ ◦ S ⊆ R′. Hence R = R′. Therefore R is minimal.

(ii) It is similiar to (i).
(iii) Let Q be a minimal quasi-hyperideal of S. Let a ∈ Q. Then

S ◦ a is a left hyperideal and a ◦ S is a right hyperideal of S. By
Theorem 3.10, we have (a◦S)∩ (S ◦a) is a quasi-hyperideal of S. Again
(a ◦ S) ∩ (S ◦ a) ⊆ (Q ◦ S) ∩ (S ◦Q) ⊆ Q implies that Q = a ◦ S ∩ S ◦ a.

Conversely, Let Q = (a ◦S)∩ (S ◦ a) for all a ∈ Q. Let Q′ be another
hyperideal of S such that Q′ ⊆ Q. Let x ∈ Q. Then Q = x ◦S ∩S ◦x ⊆
Q′◦S∩S◦Q′ ⊆ Q′. Therefore Q = Q′, and Q is minimal quasi-hyperideal
of S. �
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4. Quasi-hyperideal and regularity of multiplicative
hypersemiring

Definition 4.1. [25] Let (S,+, ◦) be a multiplicative hypersemiring. An
element x ∈ S is said to be regular if x ∈ x ◦ S ◦ x, that is, there exists

si ∈ S(i = 1, 2, · · · , n) such that a ∈
n∑

i=1

a ◦ si ◦ a.

A multiplicative hypersemiring (S,+, ◦) is called regular if each of
its elemets is regular. If S is strongly distributive multiplicative hyper-
semiring, an element x ∈ S is regular if only if there exsists a ∈ S such
that x ∈ x ◦ a ◦ x.

Lemma 4.2. Let S be a multiplicative hypersemiring. If Q is a quasi-
hyperideal of S then Q ◦ S ◦Q ⊆ Q

Proof. LetQ be a quasi-hyperideal of S. NowQ◦S◦Q ⊆ Q◦S◦S ⊆ Q◦S,
again Q◦S ◦Q ⊆ S ◦S ◦Q ⊆ S ◦Q. Therefore Q◦S ◦Q ⊆ Q◦S∩S ◦Q ⊆
Q. �

Theorem 4.3. Let (S,+, ◦) be a multiplicative hypersemiring. Then the
following statements are equivalent:

(i): S is a regular;
(ii): For any right hyperideal R and left hyperideal L of S, R◦L =
R ∩ L;

(iii): Each right hyperideal R and each left hyperideal L of S sat-
isfies
(a) R ◦R = R;
(b) L ◦ L = L;
(c) R ◦ L is a quasi-hyperideal of S

(iv): The set Q of all quasi-hyperideals of S is a regular hyper-
semigroup with respect to hyperoperation ‘◦’;

(v): For any quasi-hyperideal Q of S satisfies Q = Q ◦ S ◦Q.

Proof. (i) ⇒ (ii) Suppose S is a regular multiplicative hypersemiring.
Let R and L be a right hyperideal and a left hyperideal of S respectively.
Obviously R ◦ L ⊆ R ∩ L (1). Now let x ∈ R ∩ L ⇒ x ∈ R and
x ∈ L. Then we have x ∈ x ◦ S ◦ x, since S is regular. Now x ∈ R and
S ◦ x ⊆ S ◦ L ⊆ L implies that x ∈ x ◦ (S ◦ x) ⊆ R ◦ L. Thus we have
R ∩ L ⊆ R ◦ L (2). From (1) and (2), it follows that R ∩ L = R ◦ L.

(ii) ⇒ (iii) For (a), Let R be a right hyperideal of S and 〈R〉l =
R+ S ◦R be a left hyperideal of S. By (ii), R = R ∩ 〈R〉l = R ◦ 〈R〉l =
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R ◦ (R+S ◦R) ⊆ R ◦R+R ◦S ◦R ⊆ R ◦R+R ◦R ⊆ R ◦R ⊆ R. Hence
R ◦R = R.

(b). It is similiar to (a).
(c). By Theorem 3.10, R ◦ L = R ∩ L is a quasi-hyperideal of S.
(iii) ⇒ (iv) Obviously ‘◦’ is associative on Q. Let Q1, Q2 ∈ Q be

quasi-hyperideals of S. By (iii) implies that S ◦ S = S. Let R =
Q1 ◦ Q2 ◦ S be a right hyperideal of S and L = S ◦ Q1 ◦ Q2 be a left
hyperideal of S. Now Q1◦Q2◦S∩S◦Q1◦Q2 = Q1◦Q2◦S◦S◦Q1◦Q2 ⊆
Q1 ◦ Q2 ◦ (S ◦ S ◦ S) ◦ Q2 ⊆ Q1 ◦ (Q2 ◦ S ◦ Q2) ⊆ Q1 ◦ Q2, by Lemma
4.2. Hence Q1 ◦Q2 is a quasi-hyperideal of S.

Again 〈Q〉r = Q◦S+Q is a right hyperideal of S and 〈Q〉l = S◦Q+Q
is left hyperideal of S. Then by (iii)(a), Q ⊆ (Q ◦ S + Q) = (Q ◦ S +
Q) ◦ (Q ◦ S + Q) ⊆ Q ◦ S. Similarly we can show Q ⊆ S ◦ Q. Again
Q ◦ S ∩ S ◦Q ⊆ Q. Consequently Q = Q ◦ S ∩ S ◦Q. By using (iii)(c),
we get R ◦ L = (R ◦ L ◦ S) ∩ (S ◦ R ◦ L). Now Q = Q ◦ S ∩ S ◦ Q =
(Q ◦ S ◦ S ◦ Q) ◦ S ∩ S ◦ (Q ◦ S ◦ S ◦ Q) = Q ◦ S ◦ S ◦ Q = Q ◦ S ◦ Q.
Hence Q is regular multiplicative hypersemigroup.

(iv)⇒ (v) Follows from (iv) and Lemma 4.2.
(v) ⇒ (i) For each element s ∈ S, then by Theorem 3.10, 〈s〉r ∩ 〈s〉l

is a quasi-hyperideal of S. Now by (v) s ∈ 〈s〉r ∩ 〈s〉l = (〈s〉r ∩ 〈s〉l) ◦
S ◦ (〈s〉r ∩ 〈s〉l) ⊆ 〈s〉r ◦S ◦ 〈s〉l ⊆ s ◦S ◦ s. i.e s ∈ s ◦S ◦ s. Hence s ∈ S
is regular in S. Consequently S is regular multiplicative hypersemiring.

�

Theorem 4.4. If every quasi-hyperideal Q of a multiplicative hyper-
semiring (S,+, ◦) is idempotent, then S is regular.

Proof. Let R be a right hyperideal and L be a left hyperideal of S. Then
by Lemma 3.10, R∩L is a quasi-hyperideal of S. Obviously R◦L ⊆ R∩L.
Now by hypothesis R∩L = (R∩L)◦(R∩L) ⊆ R◦L. Thus R∩L = R◦L.
Then by Theorem 4.3, S is a regular multiplicative hypersemiring. �

Lemma 4.5. Every hyperideal M of a regular multiplicative hypersemir-
ing (S,+, ◦) is a regular multiplicative subhypersemiring.

Proof. Each element m ∈ I ⊆ S is regular in S, so m ∈ m ◦ S ◦ m ⊆
m◦(S◦m◦S)◦m ⊆ m◦I◦m (as M is a hyperideal of S and S◦m◦S ⊆ I).
This follows that M is a regular multiplicative subhypersemiring. �

5. Bi-hyperideal in multiplicative hypersemirings

Definition 5.1. A multiplicative subhypersemiring B of a multiplica-
tive hypersemiring (S,+, ◦) is called a bi-hyperideal of S if B◦S◦B ⊆ B.
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Example 5.2. Let S be a set of negative integers. Let A = {−3,−5}.
Define a hyperopeartion ‘◦’ on S by a ◦ b = {a · x · y : x ∈ A} for all
a, b ∈ S. Then (S,+, ◦) is a multiplicative hypersemiring. Let B = 2S.
Then we can check B is a bi-hyperideal of S.

Example 5.3. Let S = {a, b}. Then the binary operation + and hyper-
operation ◦ defined respectively as follows:

+ a b
a a a
b a b

◦ a b
a {a} {a}
b {a} {a}

Then (S,+, ◦) is a multiplicative hypersemiring. Clearly B1 = {a} is
a bi-hyperideal of S but B2 = {b} is not a bi-hyperideal.

Example 5.4. [25] Let S be the set of all non-negative real numbers.
Then, (S,+) is a commutative semigroup, On S, ‘+’ and hyperoperation
◦ are defined by a+ b = min{a, b} and a ◦ b = [0, a] for all a, b ∈ S\{0}
and a ◦ 0 = 0 ◦ a = {0} for any a ∈ S. Then, (S,+, ◦) is a non-
commutative multiplicative hypersemiring having a strongly absorbing
zero. Let B = [0, 1]. Then B is a bi-hyperideal of S.

Lemma 5.5. Every quasi-hyperideal of a multiplicative hypersemiring
(S,+, ◦) is a bi-hyperideal of (S,+, ◦).

Proof. It follows from Lemma 4.2. �

Claim 5.6. Converse of the Lemma 5.5 does not hold, in general, that
is, a bi-hyperideal of a multiplicative hypersemiring S may not be a quasi-
hyperideal of S.

Example 5.7. Let S be a set of all natural number. Then (S,+) is a
commutative semigroup. On S, ‘◦’ defined on S by a◦ b = a+ b+ 3n for
n ∈ N for all a, b ∈ S. Then (S,+, ◦) forms a commutative multiplicative
hypersemiring. Let B = {4} ∪ {n0 ∈ N : n0 ≥ 10}. Then B is a bi-
hyperideal of S but B is not a quasi-hyperideal of S, since 4 ◦ 1 ⊆
B ◦ S ∩ S ◦B * B.

Remark 5.8. Since every right hyperideal and left hyperideal of S is
a quasi-hyperideal of S, it follows that every right hyperideal and left
hyperideal of S is a bi-hyperideal of S, but the converse is not true.

Proposition 5.9. If B is a bi-hyperideal of multiplicative hypersemiring
S and T is a multiplicative subhypersemiring of S, then B ∩ T is a bi-
hyperideal of T .
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Proof. It follows from (B ∩ T ) ◦ T ◦ (B ∩ T ) ⊆ (B ∩ T ) ◦ S ◦ (B ∩ T ) ⊆
B ◦S ◦B ⊆ B and (B ∩T ) ◦T ◦ (B ∩T ) ⊆ T ◦T ◦T ⊆ T . Consequently
(B ∩ T ) ◦ T ◦ (B ∩ T ) ⊆ B ∩ T and hence B ∩ T is a bi-hyperideal of
T . �

Lemma 5.10. If B is a bi-hyperideal of a multiplicative hypersemiring
(S,+, ◦) and T is a multiplicative subhypersemiring of S, then B◦T and
T ◦B are bi-hyperideal of S.

Proof. It follows from (B ◦ T ) ◦ S ◦ (B ◦ T ) ⊆ (B ◦ (T ◦ S) ◦ B) ◦ T ⊆
(B ◦S ◦B)◦T ⊆ B ◦T , since T ◦S ⊆ S ◦S ⊆ S and B is a bi-hyperideal
of S. Hence B ◦ T is a bi-hyperideal of S. �

Corollary 5.11. If B1, B2 are two bi-hyperideals of a multiplicative
hypersemiring S, then B1 ◦B2 is a bi-hyperideal of S.

Proof. It follows from (B1◦B2)◦S◦(B1◦B2) ⊆ (B1◦(B2◦S)◦B1)◦B2 ⊆
(B1 ◦ (S ◦ S) ◦ B1) ◦ B2 ⊆ (B1 ◦ S ◦ B1) ◦ B2 ⊆ B1 ◦ B2, since B1 is a
bi-hyperideal of S. �

Corollary 5.12. If Q1, Q2 are two quasi-hyperideals of a multiplicative
hypersemiring S, then Q1 ◦Q2 is a bi-hyperideal of S.

Proof. Since Q1 and Q2 are quasi-hyperideals of S. Then by Lemma
3.9[b], Q1 ◦ Q2 is a quasi-hyperideal of S. Thus from Corollary 5.11,
Q1 ◦Q2 is bi-hyperideal of S. �

Theorem 5.13. Let B be a bi-hyperideal of a multiplicative hypersemir-
ing S, and C be a bi-hyperideal of B such that C ◦C = C. Then C is a
bi-hyperideal of S.

Proof. Since B is bi-hyperideal in S, then B ◦ S ◦ B ⊆ B and C is
bi-hyperideal in B, then C ◦B ◦ C ⊆ C.

Now C◦S◦C = C◦(C◦S◦C)◦C ⊆ C◦(B◦S◦B)◦C ⊆ C◦B◦C ⊆ C.
Hence C is a bi-hyperideal of S. �

Proposition 5.14. Let X and Y be two multiplicative subhypersemiring
of a multiplicative hypersemiring S and B = X ◦ Y . Then B is a bi-
hyperideal of S if at least one of X, Y a right and a left hyperideal of
S.

Proof. Let B = X ◦ Y . Suppose that X is a left hyperideal of S. Then
we get (X ◦Y )◦S ◦ (X ◦Y ) ⊆ (S ◦S)◦S ◦ (X ◦Y ) ⊆ (S ◦X)◦Y ⊆ X ◦Y .
Hence B = X ◦ Y is a bi-hyperideal of S.
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Suppose that Y is a left hyperideal of S. Then we get (X ◦ Y ) ◦ S ◦
(X ◦ Y ) ⊆ X ◦ (S ◦ S ◦ S) ◦ Y ⊆ X ◦ (S ◦ Y ) ⊆ X ◦ Y . This shows that
B = X ◦ Y is a bi-hyperideal of S.

Similarly we can prove the other cases. �

An immediate corollary of the Proposition 5.14 is the following one.

Corollary 5.15. A multiplicative subhypersemiring B of a multiplica-
tive hypersemiring S is a bi-hyperideal of S if B = R ◦ L, where R is a
right hyperideal and L is a left hyperideal of S.

Theorem 5.16. Let S be a regular multiplicative hypersemiring. Then
the following statements hold ture:

(i): Each quasi-hyperideal Q satisfies Q = R∩L = R ◦L, where R
is a right hyperideal and L is a left hyperideal of S,

(ii): Each quasi-hyperideal Q of S satisfies Q ◦Q = Q ◦Q ◦Q,
(iii): Each bi-hyperideal B of S is a quasi-hyperideal of S.

Proof. (i) LetQ be a quasi-hyperideal of S, it has a intersection property.
Let R = 〈Q〉r be a right hyperideal of S and L = 〈Q〉l be a left hyperideal
of S. Then Q ⊆ 〈Q〉r ⊆ Q ◦ S and Q ⊆ 〈Q〉l ⊆ S ◦ Q by Theorem 4.3
(iii). So Q ⊆ 〈Q〉r ∩ 〈Q〉l ⊆ Q ◦ S ∩ S ◦Q ⊆ Q. Hence Q = 〈Q〉r ∩ 〈Q〉l
i.e Q = R ∩ L, since S is regular then Q = R ∩ L = R ◦ L.

(ii) Obviously Q◦Q◦Q ⊆ Q◦Q. By Theorem 4.3 (iv), Q◦Q is a quasi-
hyperideal of S. So Q ◦Q ⊆ (Q ◦Q) ◦S ◦ (Q ◦Q) = Q ◦ (Q ◦S ◦Q) ◦Q ⊆
Q ◦Q ◦Q. Therefore Q ◦Q = Q ◦Q ◦Q.

(iii) Let B be a bi-hyperideal of S. Let R = 〈B〉r be a right hyperideal
of S and L = 〈B〉l be a left hyperideal of S, Theorem 4.3, implies that
〈B〉r∩〈B〉l = 〈B〉r◦〈B〉l ⊆ B+B◦S◦B ⊆ B. So B is a quasi-hyperideal
of S.

�

Corollary 5.17. Let (S,+, ◦) be a regular multiplicative hypersemiring,
then R ∩ L is bi-hyperideal of S, for any right hyperideal R and left
hyperideal L of S.

Proof. It follows from Theorem 4.3 and Proposition 5.14. �

Proposition 5.18. Let B be a subhypersemiring of multiplicative hy-
persemiring S. If R is a right hyperideal and L is a left hyperideal of S
such that R ◦ L ⊆ B ⊆ R ∩ L, then B is a bi-hyperideal of S.

Proof. It follows from B ◦ S ◦B ⊆ (R∩L) ◦ S ◦ (R∩L) ⊆ (R ◦ S) ◦L ⊆
R ◦ L ⊆ B. �
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Theorem 5.19. Let S be a multiplicative hypersemiring. Then the fol-
lowing are equivalent

(i): Each right hyperideal R and each left hyperideal L of S satisfies
R ◦ L = L ∩R ⊆ L ◦R.

(ii): The set Q of all quasi-hyperideal of S is an idempotent semi-
group with respect to hyperoperation ‘◦’.

(iii): Each quasi-hyperideal Q of S satisfies Q = Q ◦Q.

Proof. (i) ⇒ (ii) The set Q is a regular semigroup with respect multi-
plicative hyperoperation ‘◦’ by Theorem 4.3. Now it remains to show
that Q is idempotent. By Theorem 4.3, we have Q = Q ◦ S ◦ Q and
S◦S = S combining this two we get Q = Q◦S◦Q = Q◦S◦Q◦S◦Q◦S◦
Q = (Q◦S◦Q)◦(S◦S)◦(Q◦S◦Q) = (Q◦S)◦((Q◦S)◦(S◦Q))◦(S◦Q) ⊆
(Q ◦S) ◦ ((S ◦Q) ◦ (Q ◦S)) ◦ (S ◦Q) = (Q ◦S ◦Q) ◦ (Q ◦S ◦Q) = Q ◦Q
by (i). Obviously Q ◦Q ⊆ Q. Hence Q ◦Q = Q.

(ii)⇒ (iii) It is straightforward.
(iii) ⇒ (i) Let R be a right hyperideal and L be a left hyperideal of

S then R ◦ L ⊆ R ∩ L = L ∩ R and the intersection L ∩ R is quasi-
hyperideal of S. By (iii), L ∩ R = (L ∩ R) ◦ (L ∩ R) ⊆ R ◦ L and
L ∩R = (L ∩R) ◦ (L ∩R) ⊆ L ◦R. Hence R ◦ L = L ∩R ⊆ L ◦R. �

The following theorem gives a characterization of regular multiplica-
tive hypersemiring S in terms of quasi-hyperideal and bi-hyperideal of
S.

Theorem 5.20. Let (S,+, ◦) be a multiplicative hypersemiring, then the
following conditions are equivalent:

(i): S is regular;
(ii): every hyperideal I of R is an idempotent;
(iii): for every bi-hyperideal B of S, B ◦ S ◦B = B;
(iv): for every quasi-hyperideal Q of S, Q ◦ S ◦Q = Q.

Proof. (i) ⇔ (ii) Let S be a regular multiplicative hypersemiring and
I be any hyperideal of S. Obviously I ◦ I ⊆ I. Let x ∈ I ⊆ S. Then
x ∈ x ◦ S ◦ x ⊆ (x ◦ S) ◦ x ⊆ I ◦ I. Thus I = I ◦ I.

For the converse, let every hyperideal I of S is idempotent. Let R be a
right hyperideal and L be a left hyperideal of S. Obviously R◦L ⊆ R∩L.
Now we have R∩L = (R∩L)◦(R∩L) ⊆ R◦L. Therefore R∩L = R◦L.
By Theorem 4.3, S is regular.
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(i)⇒ (iii) Suppose S is regular. Let B be a bi-hyperideal of S. Then
B ◦S ◦B ⊆ B (1). Let b ∈ B ⊆ S. Then b ∈ b ◦S ◦ b ⊆ B ◦S ◦B (2).
From (1) and (2), B = B ◦ S ◦B.

(iii)⇒ (iv) it follows from the Lemma 5.5.
(iv) ⇒ (i) Suppose the conditions hold. Let R be a right hyperideal

and L be a left hyperideal of S. Then by Theorem 3.10, Q = R ∩L is a
quasi-hyperideal of S. By hypothesis Q ◦ S ◦Q = Q. Now R∩L = Q =
Q ◦ S ◦ Q = (R ∩ L) ◦ S ◦ (R ∩ L) ⊆ (R ◦ S) ◦ L ⊆ R ◦ L, since R is a
right hyperideal of S. Hence R ∩ L = R ◦ L and S is regular. �

Theorem 5.21. A subhypersemiring B of a regular multiplicative hyper-
semiring S is a bi-hyperideal of S if and only if B is a quasi-hyperideal
of S.

Proof. Let B be a bi-hyperideal of regular multiplicative hypersemiring
S. Then by Theorem 4.3, R∩L = R ◦L for any right hyperideal R and
any left hyperideal L of S.

Now B ◦S ∩S ◦B = (B ◦S) ◦ (S ◦B) ⊆ B ◦S ◦B ⊆ B. Consequently
B is a quasi-hyperideal of S.

Converse follows from Lemma 5.5. �

Theorem 5.22. If Q1 is a multiplicative subhypersemiring and Q2 is a
bi-hyperideal of a regular multiplicative hypersemiring S, then Q1 ◦ Q2

and Q2 ◦Q1 are quasi-hyperideals of S.

Proof. The theorem follows from Lemma 5.10 and Theorem 5.21. �

Corollary 5.23. For any two quasi-hyperideal Q1, Q2 of a regular mul-
tiplicative hypersemiring S, Q1 ◦Q2 is a quasi-hyperideal of S.

Proof. Corollary follows from Corollary 5.12 and Theorem 5.22. �
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