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ON THE 2-ABSORBING IDEALS AND ZERO DIVISOR
GRAPH OF EQUIVALENCE CLASSES OF ZERO
DIVISORS

SHIROYEH PAYROVI AND SAKINEH BABAEI

ABSTRACT. Let R be a commutative ring, I be a 2-absorbing ideal
of Randlet T=Q1N---NQn (n>2) with /Q, =P for i=
1,---,n, be a minimal primary decomposition of I. Let I'g(R/I)
denote the graph of equivalence classes of zero divisors of R/I. It is
shown that Qlﬂ'"ﬂQn_l,Qlﬂ'--ﬂQn_Q,--' ,Q17P17P2"' ,Pn
are all vertices of 'g(R/I) and also the degrees of all vertices are
determined.
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1. INTRODUCTION

The concept of 2-absorbing ideals was introduced and investigated in
[1]. A proper ideal I of a commutative ring R is called a 2-absorbing
ideal if whenever abc € I for a,b,c € R, then ab € I or bc € I or ac € I.
The reader is referred to [I}, B [5] for more results and examples about
2-absorbing ideals. Let I be a 2-absorbing ideal of a commutative ring
R and let z be an arbitrary element of R. The basic properties of the
ideals anng(z + I) are studied in 3, 5]. It is shown that anng(z + I) is
a prime or is a 2-absorbing ideal of R, and {anng(x +I) | x € R} is a
totally ordered set or is union of two totally ordered set.

The graph of equivalence classes of zero divisors of a ring R, which
is constructed from classes of zero divisors determined by annihilator
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ideals, was introduced and investigated in [0, 8]. It will be denoted
by I'g(R). This graph has some advantages over zero divisor graph
which introduced and studied in [2, [4]. In many cases zero divisor graph
of equivalence classes of zero divisors in a commutative ring R is finite
when the zero divisor graph is infinite. Another important aspect of zero
divisor graph of equivalence classes of zero divisors is the connection to
associated primes of R.

Let R be a commutative ring, I be a 2-absorbing decomposable ideal
of R. Let I=Q1N---NQ, with /Q, =P, for i=1,--- ,n, be a min-
imal primary decomposition of I. In this article, we study the graph of
equivalence classes of zero divisors of the ring R/I. For this reason, first
in section 2 we study the associated prime ideals of I and then in section
3, we show that Q1N - - NQp_1,Q1 N -NQpn_2, -, Q1,P1,Po---, Py,
are all vertices of the zero divisor graph of equivalence classes of zero
divisors of R/I.

Throughout, R will denote a commutative ring with non-zero identity
and [ is an ideal of R. For notations and terminologies not given in this
article, the reader is referred to [7].

2. PRIMARY DECOMPOSITION OF 2-ABSORBING IDEALS

In this section we study 2-absorbing ideals which has primary de-
composition. However, before going on to this study we should like to
establish that 2-absorbing ideals with primary decomposition with at
least two primary components do exist. Suppose that k is a field and
R = k[z,y] is the ring of polynomials over k in indeterminates z, y. As-
sume that P = (z), M = (x,y) and I = (22, zy). It is easy to see that I
is a 2-absorbing ideal of R, I = PN M? is a primary decomposition of
I, VI =P and ass(I) = {M, P}.

In rest of this paper, we assume that I is a decomposable ideal of R,
and I =Q1N---NQ, with /Q, =P, for i =1,---,n, is a minimal
primary decomposition of I.

Theorem 2.1. Let I be a 2-absorbing ideal of R such that T = P is a
prime ideal of R. Then the following statements are true.

(i) P = Py for some k with 1 <k <n.
(ii) Pp =1 :g x for some x € R.
(iii) There exists x; € R such that P; = I :p x; for eachi=1,---  n.
Furthermore, either P; C Pj or P; C P; for each i,j =1,--- ,n.
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Proof. (i) By assumption P = N}, P;. Hence, P = Py for some k with
1 < k < n see Corollary 3.35 in [7].

(ii) First note that if Qx = Py, then I :gp © = Qf :gr © = Qy for each
T € My 2xQi \ Q in view of |7, Lemma 4.14(iii)]. Now, suppose that
Qi C Py. First of all, we show that ﬂ?zl’#in N Py € Q. Assume
that a € ﬁ?:L#in \ Q. If a € Py, then we have an element of the
desired form. We therefore assume henceforth in this proof a ¢ Py. By
assumption there exists b € Py \ Q. Now define ¢ = ab and note that
cE ﬁ?:L#in N Py, but ¢ € Q. Suppose that = € ﬁ?:L#in N Py \ Q.
Thus I :p x = Q :g = is a prime ideal of R containing P = P} by [3|
Theorem 2.5]. On the other hand, in view of [7, Lemma 4.14(ii)] Qx :r
is a Pg-primary ideal of R so that P, =1 :p x = Qf :r T.

(iii) Assume that 1 < i,57 < n and i # k and j # k. There exists
Ti € Moy #QS \ Q; by definition of primary decomposition. Thus
z; € P, and with a similar argument to that of (ii) one can see that
I:grx = Q;:rx; = P. In addition it is easy to see that P; = I :p x;
for some z; € R. Now, we have P, C P; or P; C P; in view of [3l
Theorem 2.5]. There is nothing to prove for i = k or j = k, by (i) and
(ii). O

Corollary 2.2. Let I be a 2-absorbing ideal of R such that VI = P is a
prime ideal of R. Then ass(I) ={ Pi,---, Py} is a totally ordered set.

Proof. This is immediate from Theorem O

Remark 2.3. Let I be a 2-absorbing ideal of R such that /I = P is a
prime ideal of R. In the rest of this paper, we suppose that P;,--- , P,
have been numbered (renumbered if necessary) such that P = P; and
PPCPC---CPh,.

Theorem 2.4. Let the situation be as in Remark[2.3. Then
(i) Mizj1Qi € Pj for each j with 1‘§ j<n-1.
(ii) There exists a; € R such that N)_1Q; = I :g a;j for each j with
1<j<n—1. ‘
(iii) For each x € R either [ :gp x = Pj or I :p x = N!_,Q; for some
g with 1 <53 <n.
(iv) There exist a1, -+ ,a, and x1,--- ,xy, in R such that
Tipan=N"1Q; C Iligan1=N'"7QC--Cligar=Q
- P1:I:R{E1 CPQII:R{L'QC-”CPHII:R.TR.
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Proof. (i) It is obvious by arrangements that we made in Remark
(i) Let 1 < j <n—1and a; € N7_;1Q; \ . Then a; ¢ P, for all
i=1,---,7. Thus Lemma 4.14(ii) in [7] shows that

Iigpaj=0Qiraj =M_(Qiraj) =N_,Q:

(iii) Let x € P;. Then in view of [3, Theorem 2.5], I :g = is a
prime ideal of R, furthermore I :p = is an associated prime ideal of I
so that there is 1 < j < n such that I :r x = P;. Now, suppose that
x € R\ Py and suppose that z lies in all Pyyq,---, P, but in none of
P, P,. If k=mn,then I :g z = ﬂ?zl(Qi ‘R T) = N Qi = I, see
Lemma 4.14 in [7]. We therefore assume henceforth in this proof that
k < n. In this case, there exists ¢ € N such that 2! € Ny 1Qi- Thus
I:gat =Ny (Q g ') = ﬂle(Qi r ot) = ﬁé“:lQi. To complete
the proof, it is enough to show that I :p o = I :g x!. It is obvious
that I :p o C I :p z'. Assume that a € I :p z!. Thus ax! € I which
implies that ax € I or 2 € I since I is a 2-absorbing ideal. If ax € I
we are done. Otherwise, 2 € I which shows that z € P; and this is a
contradiction.

(iv) It is obvious by (ii) and Theorem [2.1(iii). O

Theorem 2.5. Let I be a 2-absorbing ideal of R such that /T = PN P/,

where P, P’ are the only distinct prime ideals of R that are minimal over

1. Then the following statements are true:
(i) P = Py and P' = Py for some k,s with 1 < k,s <n and k # s.

(ii) Qr = Px and Qi =1 :p a for each a € ﬂ?zl’#in \ Qk-

(iii) Qs = Ps and Qs = I :p a for each a € ﬂ?zl,#sQi \ Qs.

(iv) If I # /I, then any primary decomposition of I has at least
three components.

(v) There exists x; € R such that P; =1 :p x; for eachi=1,--- n.
Furthermore, either P; C P; or P; C P; for eachi,j =1,---,n
with 1 £ k,s and j # k, s.

Proof. (i) By assumptions PN P’' = N, P; thus there is 1 < k < n such
that P = Py since P is a minimal prime ideal of I. By a same argument
there is 1 < s < n with k # s such that P’ = P;.

(ii) Assume that a € ﬂ;‘zl’i#in \ Qk. Then I :p a = Qi :g a. If
a € Py, then a € /I and so by [3, Theorem 2.6], I :g a is a prime ideal
of R containing P = P}, and P’ = P,. On the other hand, Q. :g ais a P-
primary ideal of R so that P, = I :r a = Q :r athus P’ = P, C P = P,
which is a contradiction. Hence, a ¢ P; and so a € vI. Now, in
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view of [0, Theorem 2.1(iii)] and [7, Lemma 4.14(iii)], it follows that
P.=1:gra=Qk:ra= Q.

(iii) The proof is similar to that of (ii).

(iv) Assume that I has a primary decomposition with only two com-
ponents. Then by (ii) and (iii) it follows that I = v/T which is a contra-
diction.

(v) Assume that 1 <i,j < n are such that i # k,s and j # k, s and
assume that a € ﬁ?zl,#i@t \Qi;. Thus I :r a = Q; :r a also i # k,s
implies that a € P, N Ps; which means that I :p a = @); :p a is a prime
ideal of R containing Py and P, see [3, Theorem 2.6]. On the other
hand, Q; :r a is a P;-primary ideal of R so that P, =1 :g a = Q; :r a.
With a similar argument one can show that I :g a = Q; :r a = P; for
a € Mg ,.;Qt \ Q;. Hence, using [3, Theorem 2.6] again shows that
P; C Pj or P; C P; that is claimed. O

Corollary 2.6. Let I be a 2-absorbing ideal of R such that VI =
PN P, where P,P' are the only distinct prime ideals of R that are
minimal over I. Then ass(I) is union of two totally ordered sets such
as ass(I) = {Pyy U{P1, -+, Py_1,Piy1,- - , P} or ass(I) = {Ps} U
{Pi,--- ,Ps_1,Psy1, -, Py}

Proof. This is immediate from Theorem O

Remark 2.7. Let I be a 2-absorbing ideal of R such that VIi=Pn P,
where P, P’ are the only distinct prime ideals of R that are minimal
over I. In the rest of this paper, we suppose that Pj,--- , P, have been
numbered ( renumbered if necessary ) such that P = P, P’ = P, and
PPCPsC---CP,, PhLCP3C---CP,.

Theorem 2.8. Let the situation be as in Remark[2.7. Then the follow-
g statements are true.

(i) Miej 1@ € Py for each j with 1 < j < n—1 also N_3Q; &

PLUP,. ‘
(ii) There exists a; € R such that N)_1Q; = I :g a;j for each j with
1<j<n-—1.

(iii) For each x € R either I :r x = Pj or [ :p x = ﬂ{lei for some
jwith1<j<n.
(iv) There exist ag, -+ ,a, and x1,--- ,xy, in R such that
I'Ra,=N"1Q; C Iigan1=0M7]QC-Cligar=QiNQs
C P=lgx1CP3s=1:paxsC---CP,=1:px,.
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Proof. (i) It is obvious by arrangements that we made in Remark
(ii) For 7 = 1 it is immediate by Theorem (ii). Assume that
as € m?ngi \ PiUP,. Thus I :gas = ﬂ?lei ‘R Qg = 022:1(@1' ‘R aj) =
N?_,Q;. Now, assume that a; € ﬁ?:jHQi\Pj and 3 < j < n—1. In this
case a; ¢ P; for alli =1,---,j. Thus Lemma 4.14(ii) in [7] shows that

I:ga;=N1Qi ik aj =M_1(Qi :r aj) = N]_,Qi.

(iii) If z € Py N Py, then I :g z is a prime ideal of R by Theorem 2.6
in [3] also I :g « is an associated prime ideal of I so that I :gp x = P;
for some 1 < j < n. Now, suppose that x € P; \ P,. Then Theorem
2.1(iii) in [5] shows that I :p x = Py also I :g « = P; for z € P, \ P.
By a similar argument to that of Theorem [2.4(iii) we reach the desired

conclusion for each z & Py U Ps.
(iv) It is obvious by (ii). O

3. ZERO DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO
DIVISORS

Recall that R is a commutative ring. The following are some basic
facts about zero divisor graph of equivalence classes of zero divisors in
a commutative ring R. Let Z*(R) denote the zero divisors of R and
Z(R) = Z*(R) U {0}. For z,y € Z*(R) we say that x ~ y if and
only if ann(z) = ann(y). As noted in [§], ~ is an equivalence relation.
Furthermore, if 1 ~ z9 and z1y = 0, then y € ann(x;) = ann(z9)
and hence, xoy = 0. It follows that multiplication is well defined on
the equivalence classes of ~; that is if [x] denotes the class of z, then
the product [z][y] = [zy] makes sense. Note that [0] = {0} and [1] =
R\ Z(R); the other equivalence classes form a partition of Z*(R).

Definition 3.1. The graph of equivalence classes of zero divisors of a
ring R, denoted I'gp(R), is the graph associated to R whose vertices are
the classes of elements in Z*(R), and with each pair of distinct classes
[z], [y] joined by an edge if and only if [z][y] = [0].

Lemma 3.2. [8, Lemma 1.2] Let R be a commutative Noetherian ring.
Then any two distinct elements of Ass(R) are connected by an edge.
Furthermore, every vertex [v] of T'g(R) is either an associated prime or
adjacent to an associated prime mazimal in {ann(z) : 0 # z € R}.

The degree of a vertex v in a graph, denoted degwv, is the number of
edges incident to v. By a graph we mean that a simple graph in the
sense that there are no loops or double edges.
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Proposition 3.3. [8, Proposition 3.4] Let R be a commutative Noe-
therian ring. Let x1,--- ,x, be elements of R, with r > 2, and suppose
ann(zy) C --- C ann(x,) is a chain in Ass(R). If 3 < [T'g(R)| < oo,
then deglx] < --- < deg[z,].

Recall that I is a decomposable ideal of R, and I = Q1 N ---N
Q. with /Q, = P, for i = 1,---,n is a minimal primary decom-
position of I.

Corollary 3.4. If I is a 2-absorbing ideal of R, then the vertices set of
Tr(R/I) has at most 2n — 1 elements. Moreover, Q1N+ N Qp_1,Q1 N
o NQp2, -+ ,Q1,Pr1, -+, Py are all vertices of Tg(R/I).

Proof. 1t is clear by Theorems and O

We will slightly abuse terminology and refer to [a;+I] as Q1N+ --NQ;
for all ¢, with 1 < i < n — 1 and refer to [z; + I| as P; for all 4, with
1 < ¢ < n, where a; and x; are elements of R such as chosen in the

proofs of Theorems and

Theorem 3.5. Let the situations be as in Remark[2.3, Q1 # P and
n > 2. Then the following statements are true.
(i) [a;i+1][x1+1I] #[0] foralli=1,--- ,n—1, so that deg[x; + 1] =
n— 1.
(ii) [an—1+ I][xz;+I] = [0] if and only if i = n so that deg[z, + I] =
2n — 2.
(iii) deglz;+1I] =n+i—2 foralli=1,--- ,n, and degla;+1] =n—i
foralli=1,--- ,n—1.

Proof. (i) It is enough to show that [ay + I][x; + I] # 0 by Theorem
2.4(iv). In view of Theorems [2.1] and 2.4 there are 21 € N_,Q; \ Q1 and
a; € NI 5Q; \ P such that Q; = ann(a; + I) and P; = ann(z + I). If
a1x1 + 1 =0, then a1x1 € I and so a1z € ()1 which is a contradiction
since neither 1 € @1 nor a; € P;. Thus ajz1 + I # 0 therefore [a; +
Illz1 + 1] # [0] for all i = 1,--- ;n — 1. The last assertion follows by
Lemma 3.2

(ii) (=) The vertex [an—1+ ] is adjacent to [z, +I] in view of Lemma
3.2 so that [an—1 + ][z + I] = [0].

(<) Assume that [a,—1 + I][x; + I] = [0] for some i with 1 < i < n.
Then a;jz; +1 = 0 and also xjz; +1 = 0 for all j > 1, see Theorem
2.4(iv). Thus deg[z; + I] > 2n — 2. Now, Proposition implies that
i=n.
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(iii) We have deg[z1 + I] = n — 1 and deg[z,, + I| = 2n — 2 by (i) and
(ii). Thus Proposition shows that deg[x; + I] = n + i — 2. Using (i)
again the last assertion follows. O

Corollary 3.6. If Q1 = Py, then any primary decomposition of I has
at most two components, so that n = 2.

Proof. We have deglz1 + I] = n — 1 and deg[z,, + I] = 2n — 3 in view
of Theorem [3.5(i) and Lemma On the other hand, if n > 3, then
Proposition [3.3|shows that deg[x,, +I] > 2n —2 which is a contradiction.
So that n < 2 and any primary decomposition of I has at most two
components. O

Theorem 3.7. Let the situations be as in Remark [2.7]. Then the fol-
lowing statements are true.

(i) [a; + I][z1 + I] # [0] and [a; + I][za + I] # [0] for each i =
2,---,n—1, so that deg[z1 + I]| = deg[za + ] =n—1
(ii) [an—1+1][z;+I] = [0] if and only if i = n. So that deg[z,, + 1] =

2n — 3.
(iii) deglzi+1I] =n+i—3 for eachi=3,--- ,n, so that degla; +1] =
n—itforalli=2,--- ,n—1.

Proof. (i) It is enough to show that [as + I][x1 + I] # 0, see Theorem
2.8(iv). In view of Theorems and there are z1 € NI,Q; \ Q1
and az € NI’ ,Q; \ P1 U Py such that Q1 N Q2 = ann(ag + I) and P, =
ann(zy + I). If agzy + I = 0, then aszy € I and so agr; € Q1 which is
a contradiction since neither xy € @1 nor as € P;. Thus agx1 +1 # 0
therefore [a; + I][x1 + I] # [0] for all ¢ = 2,--- ,n — 1. By a similar
argument one can show that [a; + I|[zo+I] # [0] forall i =2,--- ;n—1.
The last assertion follows by Lemma [3.2

(ii) It is similar to that of (ii) in Theorem [3.3

(iii) We have deg[z1+1] = deg[zo+1] = n—1 and deglx, +1] = 2n—3
by (i) and (ii). Now, Proposition [3.3implies that deg[z; +I] =n+i—3,
for all i = 3,--- ,n. Using (i) again the last assertion follows. O
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