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A COLLOCATION METHOD TO THE SOLUTION OF
NONLINEAR FREDHOLM-HAMMERSTEIN INTEGRAL
AND INTEGRO-DIFFERENTIAL EQUATIONS

FARSHID MIRZAEE * AND ELHAM HADADIYAN

ABSTRACT. This paper presents a computational technique for the
solution of the nonlinear Fredholm-Hammerstein integral and integro-
differential equations. A hybrid of block-pulse functions and the
second kind Chebyshev polynomials (hereafter called as HBC) is
used to approximate the nonlinear Fredholm-Hammerstein integral
and integro-differential equations. The main properties of HBC
are presented. Also, the operational matrix of integration together
with the Newton-Cotes nodes are applied to reduce the computa-
tion of the nonlinear Fredholm-Hammerstein integral and integro-
differential equations into some algebraic equations. The efficiency
and accuracy of the proposed method have been shown by three
numerical examples.
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1. INTRODUCTION

Integral equations play an important role in many branches of
linear and nonlinear functional analysis and their applications in elas-
ticity, engineering, mathematical physics and contact mixed problems
[2, 13, 17, 23]. Several methods for solving such equations are avail-
able. Typical examples include spectral [I8], 21] and transform methods
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[3, 25] as well as other methods [9] (14} 19, 26]. Many methods such as
variational iteration [27], homotopy perturbation [8,22], domain decom-
position [5, 12], RBF [10} 11], wavelets [16] 29| [31] and others [I] have
been developed and improved to obtain numerical solutions.

In the present paper, we consider application of HBC to obtain the nu-
merical solution of the nonlinear Fredholm-Hammerstein integral equa-
tion:

1
(L1 y() = 2(t) + )\/ k() F(y(s))ds, 0<t<1 |
0
and the nonlinear Fredholm-Hammerstein integro-differential equation:
¥ (8) = 2(t) + Xy k(t 5)F(y(s))ds

y(0) = yo, 0<t<1,

(1.2)

where A and gy are constants and x(¢) and k(¢,s) are assumed to be
in Lo[0,1) and L2([0,1) x [0,1)), respectively. We assume that Egs.
(1.1) and (1.2) have a unique solution y(¢) as a linear combination of
the HBC with some unknown coefficients [15]. The properties of HBC
together with the Newton-Cotes nodes [24] are then applied to evaluate
the unknown coefficients and find an approximate solution to Eqs. (1.1)
and (1.2).

This paper is organized as follows: In Section 2, we describe the basic
formulation of HBC required for our subsequent development. Sections
3 and 4 are devoted to the solution of Egs. (1.1-1.2) by using HBC. In
Section 5, we report our numerical results and demonstrate the accuracy
of the proposed scheme by considering the numerical examples.

2. PROPERTIES oF HBC

2.1. HBC Definition. A set of block-pulse functions ¢, (t),n = 1,2,
..., N, on interval [0,1) is defined as (see [21]):

1, l<icn
— NS N
(2.1) on(t) { 0, otherwise

where N is an arbitrary positive integer.
The mth second kind Chebyshev polynomial in interval [—1,1] is de-
fined as follows (see [25]):

9

sin((m + 1) arccos(t))

V1—t2

(2.2) Sm(t) =



74 F. Mirzaee and E. Hadadiyan

Also, we can, obtain the second kind Chebyshev polynomials by the
following recursive formulas:

So(t) =1,  Si(t) = 2t,
(2.3) { Si+1(t) _ 22557;(,5) —Spmo1(t), m=1,2,...

Further, HBC Hyp,(t),n = 1,2,...,N,m = 0,1,...,M — 1, on the
interval [0,1) are defined as:

(2.4) Hpym (t) = ¢n(t)Sm (2Nt — 2n + 1).

2.2. Function approximation. A function f(t) € L2[0,1) may be ex-
panded as

N M-1
(2.5) FORY D famHum(t),
n=1 m=0
where
2 (1 t+2n—1
(2.6) fom = — /_1 f(T)Sm(t)\/l — t2dt.
We can rewrite f(t) as
N
(2.7) f(t) = FyHy(t) = FH(t),
n=1
where
(28) Fn:[fn()a"'afn(]\/[—l)]? F:[Fla"'vFN]a
and
(2.9)

Hn(t) = [Hn()(t)v R Hn(Mfl)(t)]Tv H(t) = [HlT(t)v s 7H17\;(t)]T'

2.3. The operational matrix of integration. The integral part in
Eq. (2.9) is given by:

t
(2.10) / H(r)dr ~ PH(1),

0
where

N-1N- - 57 )
(2.11) P= —I@P Z_: Z N n) @ Z mE@n—l)l’

n=1
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M—-1
5_ (M) 3 L
012 P=s? - 2a0+ (Y e, - 3 nt, )
M
(=D)""
by g
n=3

Where EZ(]m) is the m x m matrix with entry 1 at (4,7) and zeros
elsewhere and [%] is the greatest integer part of %
For more details, see [30].
In Eq. (2.11), notation ® denotes Kronecker product which defined

as:

auB algB e alpB

ang G,QQB ce ang
An><p ® Bqu = . . .

am B aneB ... appB

nmxpq

2.4. Expression of producing functions. Let g(¢), f(¢t) € L3[0,1),
then the expressions of g(¢) and f(t) are defined as:

N M-1 N M-1
213) g =D gumHum(t), O~ Y D" famHum (1)
n=1 m=0 n=1 m=0
Then
N M—-1M-1
(2.14) g(t) f(t) ~ Z Gni frg Hni(t) Hpj(t).
n=1 i=0 j=0
From
M-1
(2.15) Hyi(t) Hj(t) = Y d50) Ho (1),
m=0
where
. 2 [l
(2.16) did) — 2 / SH(8)S,(6)Som(t)v/1 — L2dt,
™ J-1
we have:
(2.17)
N M-1 (M-1M-1 N M-1
g(t)f(t) ~ Z dgf;rjz)gnzfn] nm Z Z gnm nm

n=1 m=0 =0 j5=0 n=1m=0



76 F. Mirzaee and E. Hadadiyan

whereas
(2.18)
M-1M-1
d%#z)gmfn] = f?annT7 Fn = [fn07 ceey fn(Mfl)]v
i=0 ;=0
and

(2.19) Gnm = Z A0 ... Z dGM=1) g,

Therefore, using Eq. (2.5), it may be assumed that:

N M-1_
(2.20) k(t, s)w(s) = > ) ko (t)Hum(s),
n=1 m=0
where
(2.21) w(s) ~ WH{(s),

W = [Wi,...,Wn] and H(s) are given in Eq. (2.8) and Eq. (2.9),
respectively, and

(2.22) Em (8) = Fnm ()W,
M-1
(2.23) [Z d@O, Cy dGM=DE sy |
=0
1 _
224) k()= > / ke, 20 6 ) /T = sds.
™ -1 2N
Let
1 N M-1
(2.25) u(t) = / k(t, s)w(s)ds & Y > Vnm Hpm(t),
0 n=1 m=0
R N MflA 4
(2.26) Fm (8) =YY RSV H (1),
j=1 1=0
where

(2.27) [Z AR Zd“M DG
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. 1 s
(2.28) kG~ 2 / km(%)sl(t)\/l—tzdt.
TJ-1

By Egs. (2.20) and (2.22) we have:

N M-1 N M—lA' %
(229)  w(t)~ ) kD ( . Hnm(t)dt) Wi Hj(t).

j=1 1=0 n=1 m=0 N
Hence
5] N N . ) o
_ 7 T
(2.30) V= 21 Z{)E}EU ® Fan 12V
n=1 =0 j=
where
~(4) _ [27(,0) ~r@i,M-1)1T
(2.31) B o) = [kj(gn_Q),...,kj(Qn_Q) } .
Therefore
1
(2.32) v(t) = / k(t, s)w(s)ds ~ WVTH(t),
0
where
Ml
(2.33) V= ZZEJ ® —m—k

N(2n — 1) 9@2n=2)

3. NONLINEAR FREDHOLM-HAMMERSTEIN INTEGRAL EQUATION

In this section we consider the Fredholm-Hammerstein integral Eq.
(1.1). To solve this equation, we first consider the approximation:

(3.1) w(t) = Fy®), 0<t<1,

and then substitute it in Eq. (1.1).
From Eq. (1.1) we get

1
(3.2) w(t)=F <x(t) + )\/ k(t, s)w(s)ds> .
0
By some manipulations as before, we have:
(3.3) WH(t) = F(x(t) + \WVTH(t)).
Now, using Newton-Cotes nodes as
21 —1

t.
" ONM’

i=1,2,...,NM,
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we have
(34)  WH(t;) = F(z(t;) + \WVTH(t)), i=1,2,...,NM.

By solving this system of nonlinear equations, we find unknown vector
W which has NM components. Substituting Eq. (3.1) into Eq. (1.1),
yields:

1
(3.5) y(t) = z(t) + )\/0 k(t, s)w(s)ds,
and applying Eq. (2.32) to Eq. (3.5),we get
(3.6) y(t) = z(t) + AWVTH(2).

In other words, we could find the unknown function y(t).

4. NONLINEAR FREDHOLM-HAMMERSTEIN INTEGRO-DIFFERENTIAL
EQUATION

Here, the Fredholm-Hammerstein integro-differential Eq. (1.2) is
considered.
In order to solve this equation, we suppose that:

(4.1) w(t)=F(y)), 0<t<l,
when Eq. (4.1) implies that:

t
(12) v = v+ [ v()ar
We approximate x(7) by Eq. (2.7) as follows:

(4.3) x(1) = XH(T),

where X and H(7) are given in Eq. (2.8) and Eq. (2.9), respectively.
Consequently, we have:

t t el
(4.4) y(t) —y(0)+/0 x(T)dT—i-)\/O /0 k(r, s)w(s)dsdr

~ y(0) + XPH(t) + \WVT PH(t),
and

(4.5) WH(t) = F(y(0) + XPH(t) + \WVTPH(t)).
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In order to construct the appropriate approximations for w(t), we
collocate Eq. (4.5) in NM points. Now, using Newton-Cotes nodes, we
have:

(4.6)
WH(t;) = F(y(0) + XPH(t;) + \WVTPH(t;)), i=1,2,...,NM.

Finally, W is obtained by solving Eq. (4.6).

5. NUMERICAL EXAMPLES

To demonstrate the efficiency of our scheme, some numerical ex-
amples are presented in this section. The computations associated with
the examples were performed by Matlab software on a personal com-
puter.

Example 1. Consider the following nonlinear Fredholm integral equa-
tion [20]:

1
y(t) = cos(t) — 0.4958t +/ tstan(y(s))ds, 0<t<1.
0

Taking N = 1, M = 2, we obtain the following approximate solution:
yn,Mm(t) = y1,2(t) = cos(t)—0.4958t+.278886658 H1¢(t)+0.13944333 H11 (2),
and for N = 2, M = 4, we obtain the approximate solution as:

yn(t) = yo.a(t) ~ cos(t)—0.4958t+0.12394656 Hyo(t)+0.06197328 Hy (t)

+0.037183967 Hao(t) + 0.06197328 Hoy (t).

Taking N =1, M =2 and N = 2, M = 4 the solutions are compared
with the exact solution y(t) = cos(t) as presented in Table 1 and depicted
graphically in Figure 1.

The 2—norm errors for the proposed method are in agreement with
those of the methods of Babolian et al. [6] and of Maleknejad et al. [20]
as seen in Table 2.

Table 1: Numerical results of Example 1 with HBC
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Nodes t Approximate HBC for Error HBC for Approximate HBC for Error HBC for
N =1and M =2 N =1and M =2 N =2and M =4 N =2and M =4

t=0.0 1.00000000e-0 0.00000000e-0 1.00000000e-0 0.00000000e-0
t=0.1 1.00120150e-0 6.19733165e-3 9.95002788e-1 1.37700726e-6
t =02 9.92461241e-1 1.23946633e-2 9.80063824e-1 2.75401453e-6
t=0.3 9.73928484e-1 1.85919950e-2 9.55332358e-1 4.13102179e-6
t=04 9.45850321e-1 2.47893266e-2 9.21055486e-1 5.50802905e-6
t=0.5 9.08569220e-1 3.09866583e-2 8.77575677e-1 6.88503632¢-6
t=0.6 8.62519605e-1 3.71839899e-2 8.25327353e-1 8.26204358e-6
t=0.7 8.08223509e-1 4.33813216e-2 7.64832548e-1 9.63905084e-6
t=0.8 7.46285363e-1 4.95786532e-3 6.96695693e-1 1.10160581e-5
t=0.9 6.77385953e-1 5.57759849e-3 6.21597575e-1 1.23930654e-5

log | Error |

Table 2: Approximate norm-2 of absolute error for Example 1

Methods ly(@) =y ()]l
Method of [6]
m=2 2.27187e-1
m=3 1.34023e-1
m=4 1.07511e-1
Method of [20)]
Ju=3 3.54072e-5
Gy =4 5.61248¢-6
Ju=5 7.83725e-7
Present method
N=1,M=2 7.11353e-2
N=2 M=4 2.31441e-5
N=3,M=4 6.84629¢-8

Figure 1. log | Error | for Example 1
0 T T

-4 —e— log | Error | for HBC (N=1 and M=2)
—¥— log | Error | for HBC (N=2 and M=4)
; :

0 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9
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Example 2. Consider the following nonlinear Fredholm integro-differential
equation [4]:

1 1
y'(t)=1- it +/ tsy?(s)ds, y(0) = 0.
0
Taking N = 1, M = 2, we obtain the following approximate solution:
yn,Mm(t) = y12(t) = 0.494193699H1(t) + 0.245354959H1 (¢),
and for N = 2, M = 4, we obtain the approximate solution as:
yn . (t) = yo.a(t) = 0.25Ho(t) + 0.125H1; () — 0.888595270e > Hyo(t)

+0.75Hzo(t) + 0.125Ho1 (t) — 0.888595270e 3! Hoo ().

The obtained solutions for N =1, M =2 and for N =2, M =4 are
comparable with the exact solution y(t) = ¢ as have shown in Table 3
and Figure 2.

The 2—norm errors of the proposed method are in a good agreement
with those of the methods of Babolian et al. [6] and of Saeedi et al. [2§]
as seen in Table 4.

Table 3: Numerical results of Example 2 with HBC

Nodes t Approximate HBC for Error HBC for Error HBC for
N =1and M =2 N=1land M =2 N =2and M =4
t = 0.0 3.48378083e-3 3.48378083¢e-3 0.00000000e-00
t =0.1 1.01625764e-1 1.62576438¢e-3 5.68700973e-32
t=0.2 1.99767748e-1 2.32252056e-4 2.27480389e-31
t=0.3 2.97909731e-1 2.09026850e-3 5.11830876e-31
t =04 3.96051715e-1 3.94828495e-3 9.09921557e-31
t=0.5 4.94193699¢-1 5.80630139¢-3 1.42175243e-30
t = 0.6 5.92335682e-1 7.66431784e-3 2.04732350e-30
t=0.7 6.90477666e-1 9.52233428e-3 2.78663477e-30
t=0.8 7.88619649e-1 1.13803507e-2 3.63968623e-30
t=0.9 8.86761633e-1 1.32383672e-2 4.60647788e-30

Figure 2. log | Error | for Example 2
0 T T T T T

log | Error |
Lo
8
T
|

_30l-
’35/% —e— log | Error | for HBC (N=1 and M=2)
—%*—log | Error | for HBC (N=2 and M=4)
T T

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
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Table 4: Approximate norm-2 of absolute error for Example 2

Methods ly(@) —y* @)l

Method of [6]

m=2 4.7434e-01

m=3 3.0732e-01

m =4 2.3717e-01
Method of [28]
K=2,M=1 2.7133e-03
K=3,M=1 6.8179¢-04
K=4,M=1 1.6745e-05
Present method
N=1,M=2 2.2862e-02
N=2 M=4 7.0420e-30
N=3, M=4 3.4729¢-38

Example 3. Consider the nonlinear Fredholm integro-differential equa-
tion [7]:

1 1
y'(t) =2t + g(—w +log(4)) + / sarctan(y(s))ds, y(0)=0.
0
Taking N = 1, M = 2, we obtain the following approximate solution:
yn,Mm(t) = y1,2(t) = 0.299583352H1¢(t) + 0.243516761H11(t),

and for N = 2, M = 4, we obtain the following approximate solution:

yn,M(t) = y2,4(t) ~ 0.078131491H(t)+0.062503245H11(t)+0.015625H (1)

+0.578144472 Hog(t) + 0.187503245 Hyy () — 0.015625 Haa(t).

The exact solution of this example is y(t) = t>. As we can see from
Table 5 errors for N =1, M = 2 and N = 2, M = 4 are acceptable.
Also, Figure 3 has a good agreement with the exact solution.

The 2—norm errors of the proposed method are in a good agreement
with those of the methods of Babolian et al. [6] and of Berenguer et al.
[7] as seen in Table 6.
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Table 5: Numerical results of Example 3 with HBC

Nodes t Approximate HBC for Error HBC for Approximate HBC for Error HBC for

N =1and M =2 N =1and M =2 N=2and M =4 N =2and M =4

L o

= 0.0 1.87500000e-1 1.87500000e-1 0.00000000e-0 0.00000000e-0
= 0.1 9.00833296e-2 1.00083330e-1 1.00025963e-2 2.59632768e-6
= 0.2 7.33334086¢-2 3.26666591e-2 4.00051927e-2 5.19265536e-6
= 0.3 1.04750011e-1 1.47500113e-2 9.00077890e-2 7.78898304e-6
= 0.4 2.02121667e-1 4.21666817e-2 1.60010385e-1 1.03853107e-5
= 0.5 2.99583352¢-1 4.95833521e-2 2.50012982e-1 1.29816384e-5
= 0.6 3.97000023e-1 3.70000226e-2 3.60015578e-1 1.55779661e-5
= 0.7 4.94416693e-1 4.41669301e-3 4.90018174e-1 1.81742938e-5
= 0.8 5.91833363e-1 4.81666366e-2 6.40020771e-1 2.07706214e-5
= 0.9 6.89250034e-1 1.20749966e-1 8.10023367e-1 2.33669491e-5

log | Error |

Table 6: Approximate norm-2 of absolute error for Example 3

Methods ly(@) —y* ()]l
Method of [6]
m =2 3.40827-1
m=3 2.43755e-1
Method of [7]
j=9,h=6 5.42945e-3
j=17,h=6 1.53327e-3
Present method
N=1,M=2 2.62647e-1
N=2 M=14 4.38311e-5

Figure 3. log | Error | for Example 3
T T

—e—log | Error | for HBC (N=1 and M=2)
—¥— log | Error | for HBC (N=2 and M=4)
T T

0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9
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6. CONCLUSION

In this paper, HBC method has successfully applied to compute
the approximate solution of certain nonlinear Fredholm-Hammerstein
integral and integro-differential equations. The accuracy and applicabil-
ity of the method were investigated through some numerical examples.
The numerical results showed that the accuracy of the obtained solu-
tions was satisfactory. Furthermore, the current method can be used by
increasing N and M until the results reach an appropriate accuracy.

This method can be easily extended and applied to a system of nonlin-
ear Fredholm-Hammerstein integral and integro-differential equations.
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