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BOLZA TYPE PROBLEMS IN INFINITE

DIMENSIONAL DISCRETE TIME

RAHMA SAHRAOUI

Abstract. In this paper we study a discrete time version of deter-
ministic models in optimization in infinite dimensional. The func-
tionals are assumed to be merely lower semi continuous. We obtain
optimality conditions which are always necessary and which are also
sufficient in the convex case whenever the given problem satisfies a
qualification condition.
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1. Introduction

Our aim here is to treat optimization problems of Bolza type in
the context of infinite dimensional Banach spaces which can’t be con-
sequences of the results in the finite dimensional cases (see Sahraoui-
Thibault (2008)). Let X a Banach space and l : X ×X → R ∪ {+∞},
Lt : X ×X → R ∪ {+∞}, for all t = 1, · · · , T which is supposed to be
lower semi continuous (briefly, l.s.c). For each vector x = (x0, · · · , xT ) ∈
XT+1, we associate the differences ∆xt = xt−xt−1 and also the problem
which consist to minimize the function

j(x) = l(x0, x1) +

T∑
t=1

Lt(xt−1,∆xt)
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over the space of all the vectors x ∈ XT+1. We note that the function
j is l.s.c over XT+1. This is the problem of Bolza type on the Banach
space X and at discrete time.

In this problem of Bolza type, which is noted (Pdet), the constraints
are implicit in the inequality j(x) <∞. Consider now a closed subset C
of X ×X and, for all t = 1, · · · , T , let Ft : X ⇒ X be a multifunction
with a closed graph. For the functions l and Lt with finite values and
locally Lipschitzian, we consider the problem with explicit constraints
PC,F (l, L) described above but satisfying the constraints

(1.1) (x0, xT ) ∈ C and ∆xt ∈ Ft(xt−1), ∀ t = 1, · · · , T.
Implicitly in the dynamic constraint ∆xt ∈ Ft(xt−1) is the state con-
straint xt−1 ∈ Zt for all t = 1, · · · , T or Zt = {zt ∈ Rn|Ft(Zt) 6= ∅}.
We will establish the optimality necessary conditions of those problems
in two contexts, the first one is when the Banach space X is an Asplund
space, and in the second context X is an arbitrary Banach space. We
have already remind the concept of the limiting subdifferential and a
tot of basic elements in the context of Asplund space (see Sahraoui and
Thibault (2008)). Outside the Asplund spaces, the limiting subdiffer-
ential, for all locally Lipschitzian functions, also can be empty at all
point of the domain. For the spaces which are not Asplund spaces, the
limiting subdifferential has not the calculus rules. So in this case we will
use the Clarke subdifferential.

2. Definitions and preliminaries

To introduce the concept of Clarke’s subdifferential, firstly we need
to define the concept of tangent cone of Clarke. In all the rest X is a
real Banach space. Let C be a nonempty closed subset of X and x̄ a
point of C. We say that a vector v ∈ X is in the tangent cone of Clarke
to C at the point x̄ see Clarke, Stern and Wolenski(1995), and we write

v ∈ Tc(C, x̄), when there exist some sequences tn ↓ 0, xn
C−→ x̄ and

vn → v such that, for all n ∈ N, we have xn + tnvn ∈ C. The normal
cone of Clarke to C at the point x̄ ∈ C is given by the negative polar
cone of tangent cone, which means

Nc(C, x̄) = (Tc(C, x̄))o = {x∗ ∈ X∗ | 〈x∗, v〉 ≤ 0, ∀v ∈ Tc(C, x̄)}.
Let now f : X → R∪{+∞} be a l.s.c function and x̄ a point where f

is finite. considering the normal cone to the epigraph epi f of f we can
define the Clarke subdifferential of f at x̄ by
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∂cf(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ Nc(epi f, (x̄, f(x̄)))}.

We define also the singular subdifferential of Clarke by

∂∞c f(x̄) := {x∗ ∈ X∗ | (x∗, 0) ∈ Nc(epi f, (x̄, f(x̄)))}.
As usual, we put ∂cf(x̄) = ∅ = ∂∞c f(x̄) when f(x̄) is not finite. Con-
trary to limiting subdifferential, the Clarke subdifferential can be found
through its suport function see Rockafellar(1980) and Clarke(1983). For
each vector v ∈ X and x̄ ∈ dom f , we consider the general directional
derivative of Rockafellar at the direction v defined by

d↑(x̄; v) := lim sup
x→f x̄

inf
v′→v

t−1[f(x+ tv′)− f(x)],

with

lim sup
x→f x̄

inf
v′→v

ψ(x, v′) = inf
ε>0

sup
η>0

inf
‖x− x̄‖ < ε

|f(x)− f(x̄)| < ε

sup
‖v′−v‖<η

ψ(x, v′).

Rockafellar(1979) had proved that this directional derivative is a func-
tion of v which is sublinear and l.s.c and it was also proved that the
Clarke subdifferential is characterize by

∂cf(x̄) = {x∗ ∈ X∗ | 〈x∗, v〉 ≤ d↑f(x̄; v) ∀v ∈ X}.
Concerning the calculus rules, we start by considering the case of the
composition with a linear continuous surjective mapping. Let A : Z →
X a linear continuous surjective mapping and z ∈ Z with Az ∈ dom f .
Then

(2.1) ∂c(f ◦A)(z) = A∗∂cf(Az).

2.1. Around the Borwein property. We need also to remind the
Borwein property for the closed sets of a Banach space. So the closed
subset C satisfies the Borwein property at x̄ ∈ C (see Borwein(1982))
when there exist two reals numbers r, s ∈]0,+∞[, a closed convex subset
W which the polar W o is weakly locally compact and a vector v ∈ X
such that

C ∩B(x̄, r) + [0, s](v +W ) ⊂ C,
when W o := {x∗ ∈ X∗ | 〈x∗, x〉 ≤ 0, ∀x ∈ W}. If the dimension of X
is finite, obviously all closed subset has the Borwein property at each
its point. Although if C has the Borwein property at x ∈ C, then C is
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compactly epi-Lipschitzian at x see Borwein(1987). Thus, and if X is
an Asplund space and if the set C has the Borwein property at x, then
this later is normally compact at the point x.

We can extended this notion for the functions by using their epigraph.
A function l.s.c f : X → R is said to have the Borwein property at a
point x̄ when f(x̄) is finite if its epigraph epi f has the Borwein property
at the point (x̄, f(x̄)). This can be also translated by the fact that there
exist three reals β ∈ R and r, s ∈]0,+∞[, a closed convex subset W with
the polar W o is weakly locally compact and a vector v ∈ X such that

sup
w∈W

t−1[f(x+ tv + tw)− f(x)] ≤ β,

for all t ∈]0, s] et x ∈ B(x̄, r) with |f(x)− f(x̄)| < r.

3. Necessary optimality conditions

Through the functions satisfying the Borwein property we can state
the following result of Jourani and Thibault (1996).

Theorem 3.1. Let X be an arbitrary Banach space and let fi be l.s.c
functions around a point x̄ where they are all finite, for i = 1, · · · , n.
We suppose that all these functions satisfy the Borwein property at x̄
possibly excepted one of them and assume that we have the following
qualification condition
(3.1)
[x∗i ∈ ∂∞c fi, i = 1, · · · , n / x∗1 + . . . + x∗n = 0]⇒ x∗1 = . . . = x∗n = 0.

Then

(3.2) ∂c(f1 + . . . + fn)(x̄) ⊂ (∂c f1 + . . . + ∂cfn)(x̄).

We can now start the study of the problem of Bolza type in infinite
dimensional. Firstly, we establish the following fundamental result.

3.1. Basic theorem.

Theorem 3.2. Let X be an Asplund space and let x̄ ∈ XT+1 be a solu-
tion of (Pdet) with l and Lt l.s.c. Assume that the function l is normally
compact at (x̄0, x̄T ) and that Lt is normally compact at (x̄t−1,∆x̄t) for
all t ∈ 1, · · · , T . We also suppose that the following qualification condi-
tion
Q(x̄) holds:
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The only vector y∗ = (y∗0, · · · , y∗T ) ∈ (X∗)T+1 for which (y∗0,−y∗T ) ∈
∂∞l(x̄0, x̄T ) and (∆y∗t , y

∗
t ) ∈ ∂∞Lt(x̄t−1,∆x̄t), ∀ t = 1, · · · , T is the zero

vector in (X∗)T+1.

Then there exists a vector p∗ = (p∗0, · · · , p∗T ) ∈ (X∗)T+1 such that:

a) (p∗0,−p∗T ) ∈ ∂l(x̄0, x̄T )
b) (∆p∗t , p

∗
t ) ∈ ∂Lt(x̄t−1,∆x̄t) for all t = 1, · · · , T .

Proof. We follow the same procedures of the finite dimensional case as
in Sahraoui-Thibault (2008) introducing good number of modifications
and some new arguments. We will also make call at new results.

Step 1. Consider the function ϕ : XT+1 −→ R̄

x 7→ ϕ(x) := l(x0, xT ) +

T∑
t=1

Lt(xt−1,∆xt),

and put
ϕ0(x) := l(x0, xt) = (l ◦A0)(x),

and

ϕt(x) := Lt(xt−1,∆xt) = (Lt ◦At)(x), for t = 1, · · · , T,
where A0, At : XT+1 −→ X2 are the linear continuous and surjective
mappings defined by:

A0x := (x0, xT ) and Atx := (xt−1,∆xt) for all t = 1, · · · , T.
As x̄ is a solution of the minimization problem (Pdet), the point x̄ is a
minimum of the function ϕ and so

0 ∈ ∂ϕ(x̄) = ∂(ϕ0 +
T∑
t=1

ϕt)(x̄).

Step 2. Prove now the qualification condition in terms of singular
subdifferentials holds for the functions ϕ0, ϕ1, . . . , ϕT .
In effect we will prove that, for all y∗ = (y∗0, . . . , y

∗
T ) ∈ (X∗)T+1, such

that
T∑
t=0

y∗t = 0 with y∗t ∈ ∂∞ϕt(x̄) for all t = 0, · · · , T,

we have necessary y∗ = 0.
First we fix an arbitrary y∗. As the linear continuous mappings At

are surjective for all t = 0, · · · , T , we have

y∗0 ∈ ∂∞ϕ0(x̄) = ∂∞(l ◦A0)(x̄) ⊂ A∗0∂∞l(A0x̄),
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and

y∗t ∈ ∂∞ϕt(x̄) = ∂∞(Lt ◦At)(x̄) ⊂ A∗t∂∞Lt(Atx̄), ∀ t = 1, · · · , T,
so there exists some:

(3.3) z∗0 = (z1
0 , z

2
0) ∈ ∂∞l(x̄0, x̄T ) such that y∗0 = A∗0z

∗
0

and some
(3.4)
z∗t = (z1

t , z
2
T ) ∈ ∂∞Lt(x̄t−1,∆x̄t) such that y∗t = A∗t z

∗
t for t = 1, · · · , T.

Now we must calculate A∗0 et A∗t for all t = 1, · · · , T.
We have A∗t : (X∗)2 −→ (X∗)T+1, t = 1, · · · , T and

〈A∗0(z∗1 , z
∗
2), h〉(X∗)T+1 = 〈(z∗1 , z∗2), A0h〉(X∗)2 = 〈(z∗1 , z∗2), (h0, hT )〉(X∗)2

= 〈(z∗1 , 0, . . . , 0, z∗2), (h0, h1, · · · , hT )〉(X∗)T+1 .

Then

A∗0(z∗1 , z
∗
2) = (z∗1 , 0, · · · , 0, z∗2) for all (z∗1 , z

∗
2) ∈ (X∗)2

Following the same procedures for A∗1 we have

〈A∗1(z∗1 , z
∗
2), h〉(X∗)T+1 = 〈(z∗1 , z∗2), A1h〉(X∗)2 = 〈(z∗1 , z∗2), (h0, h1 − h0)〉(X∗)2

= 〈(z∗1 − z∗2 , z∗2 , 0, · · · , 0), (h0, h1, · · · , hT )〉(X∗)T+1 ,

so

A∗1(z∗1 , z
∗
2) = (z∗1 − z∗2 , z∗2 , 0, · · · , 0) for all (z∗1 , z

∗
2) ∈ (X∗)2.

And we can write:

A∗t (z
∗
1 , z
∗
2) = (0, · · · , 0, z∗1 − z∗2 , z∗2 , 0, · · · , 0) for all t = 1, · · · , T.

Consequently, by the relations (3.3) and (3.4) we have

y∗0 = (z∗0,1, 0, · · · , 0, z∗0,2)

y∗1 = (z∗1,1 − z∗1,2, z∗1,2, 0, · · · , 0)

...

y∗t = (0, · · · , 0, z∗t,1 − z∗t,2, z∗t,2, 0, · · · , 0)

y∗T = (0, · · · , 0, z∗T,1 − z∗T,2, z∗T,2).

As
∑T

t=0 y
∗
t = 0, we obtain

(a) z∗0, 1 + z∗1,1 − z∗1,2 = 0

(b) z∗t−1,2 + z∗t,1 − z∗t,2 = 0 for t = 2, · · · , T − 1

(c) z∗0,2 + z∗T,2 = 0.
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We put: q∗0 = z∗0,1 and q∗t = z∗t,2 for all t = 1, · · · , T. Then for all
t = 2, · · · , T − 1 we have ∆q∗t = q∗t − q∗t−1 = z∗t,2 − z∗t−1,2 and so from

the equality (b) we have ∆q∗t = z∗t,1, from the equality (a) we have

∆q∗1 = q∗1 − q∗0 = z∗1,2− z∗0,1 = z∗1,1 and from the equality (c) we also have

q∗T = z∗T,2 = −z∗0,2. If we substitute in the relations (3.3) and (3.4), we
obtain

(q∗0,−q∗T ) ∈ ∂∞l(x̄0, x̄T ) and (∆q∗t , q
∗
t ) ∈ ∂∞Lt(x̄t−1,∆x̄t), ∀t = 1, · · · , T.

According to the qualification conditions Q(x̄) that we have assumed,
we see that q∗0 = q∗1 = · · · = q∗T = 0, and then 0 = q∗0 = z∗0,1; 0 = q∗t =
z∗t,2; 0 = ∆q∗t = z∗t,1 for all t = 1, · · · , T ; 0 = q∗T = −z∗0,2. This yields
z∗0,1 = z∗0,2 = z∗t,1 = z∗t,2 = 0 for all t = 1, · · · , T and hence

y∗0 = A∗z∗0 = 0 and y∗t = A∗z∗t = 0 for all t = 1, · · · , T,

which means

y∗ = (y∗0, y
∗
1, · · · , y∗T ) = 0.

Etape 3 Through the surjectively of the linear continuous mapping
At and the normally compact property of l and Lt, we verify that the
functions ϕt are normally compact at x̄. As these functions are l.s.c over
the Asplund space XT+1 for all t = 0, · · · , T and as the qualification
condition of the Step 2 above holds, we have by the calculus rules of
subdifferential of sum as in Mordukhovich-Shao (1996) and Sahraoui-
Thibault (2008)

∂(ϕ0 +
T∑
t=1

ϕt)(x̄) ⊂ ∂ϕ0(x̄) +
T∑
t=1

∂ϕt(x̄),

which gives

0 ∈ ∂(l ◦A0)(x̄) +
T∑
t=1

∂(Lt ◦At)(x̄).

This ensures the existence of ξ0 ∈ ∂(l ◦ A0)(x̄) and ξt ∈ ∂(Lt ◦ At)(x̄)

for all t = 1, · · · , T such that
∑T

t=0 ξt = 0. As the linear mappings
At are continuous and surjective and that the functions l and Lt are
l.s.c for all t = 1, · · · , T , according to the calculus rule of subdifferential
of composition function as in Mordukhovich-Shao (1996) and Sahraoui-
Thibault (2008) we have

∂(l◦A0)(x̄) ⊂ A∗0∂l(A0x̄) and ∂(Lt◦At)(x̄) ⊂ A∗t∂Lt(Atx̄), ∀t = 1, · · · , T.
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Then ξ0 ∈ A∗0∂l(x̄0, x̄T ) and ξt ∈ A∗t∂l(x̄t−1,∆x̄t) for all t = 1, · · · , T ,
which ensures the existence of some u∗0 ∈ ∂l(x̄0, x̄T ) such that ξ0 = A∗0u

∗
0

and some u∗t ∈ ∂Lt(x̄t−1,∆x̄t) such that ξt = A∗tu
∗
t for all t = 1, · · · , T .

This can be translated in the form

(3.5) u∗0 = (u∗0,1, u
∗
0,2) ∈ ∂l(x̄0, x̄T ) and ξ0 = (u∗0,1, 0, · · · , 0, u∗0,2)

and for all t = 1, · · · , T
(3.6)
u∗t = (u∗t,1, u

∗
t,2) ∈ ∂Lt(x̄t−1,∆x̄t) and ξt = (0, · · · , 0, u∗t,1 − u∗t,2, u∗t,2, 0, · · · , 0).

Putting p∗0 = u∗0,1 and p∗t = u∗t,2 for all t = 1, · · · , T . We see that

0 =
∑T

t=0 ξt = ( u∗0,1 + u∗1,1 − u∗1,2, u∗1,2 + u∗2,1 − u∗2,2, · · · ,
u∗t−1,2 + u∗t,1 − u∗t,2, · · · , u∗T−1,2 + u∗T,1 − u∗T,2, u

∗
0,2 + u∗T,2),

which gives u∗0,1 + u∗1,1 − u∗1,2 = 0 for the first component, t = 2, · · · , T
and u∗t−1,2 + u∗t,1 − u∗t,2 = 0, finally u∗0,2 + u∗T,2 = 0. Then

∆p∗t = p∗t − p∗t−1 = u∗t,2 − u∗t−1,2 = u∗t,1, ∀t = 2, · · · , T

and for t = 1 we have ∆p∗1 = p∗1 − p∗0 = u∗1,2 − u∗0,1 = u∗1,1. Also we

have p∗T = u2
T = −u∗0,2, then u∗0,2 = −p∗T . Finally, if we replace in (3.5)

and (3.6) we obtain the existence of some vector p∗ = (p∗0, p
∗
1, · · · , p∗T ) ∈

(X∗)T+1 such that (p∗0,−p∗T ) ∈ ∂l(x̄0, x̄T ) and

(∆p∗t , p
∗
t ) ∈ ∂LT (x̄t−1,∆x̄t), ∀ t = 1, · · · , T.

This completes the proof of the theorem. �

In the case of an arbitrary Banach space, using the results recalled
above for the subdifferential of Clarke and take again the appropriate
modifications in the procedure of the above theorem, we have the fol-
lowing result.

Theorem 3.3. Let X be an arbitrary Banach space and let x̄ ∈ XT+1

be a solution of (Pdet) with l and Lt l.s.c.. Assume that l satisfy the
Borwein property at (x̄0, x̄T ) and that Lt satisfy the Borwein property
at (x̄t−1,∆x̄t) for all t ∈ 1, · · · , T . Also we suppose that the following
qualification condition
Q(x̄) holds:

The only vector y∗ = (y∗0, · · · , y∗T ) ∈ (X∗)T+1 for which (y∗0,−y∗T ) ∈
∂∞c l(x̄0, x̄T ) and (∆y∗t , y

∗
t ) ∈ ∂∞c Lt(x̄t−1,∆x̄t), ∀ t = 1, · · · , T is the zero

vector in (X∗)T+1.
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Then there exists some vector p∗ = (p∗0, · · · , p∗T ) ∈ (X∗)T+1 such that:

a) (p∗0,−p∗T ) ∈ ∂cl(x̄0, x̄T )
b) (∆p∗t , p

∗
t ) ∈ ∂cLt(x̄t−1,∆x̄t) for all t = 1, · · · , T .

Now we take again the discrete (PC,F (l, L)) which consist to suppose
that the functions l and Lt are locally Lipschitzian and to minimise the
above function j under the explicit constraints

(xO, xT ) ∈ C and ∆xt ∈ Ft(xt−1), ∀ t = 1, · · · , T,

where C is a nonempty closed subset of X ×X and any Ft is a multi-
function of X into X has a closed graph of X ×X.

Corollary 3.4. Let x̄ ∈ XT+1 be a solution of the problem (PC,F (l, L).
We assume that the functions l and Lt are Lipschitzian respectively
around (x̄0, x̄T ) and (x̄t−1,∆x̄t) for all t = 1, · · · , T , that the subsets
C and gphFt are closed in X ×X, and that the following qualification
condition Q̃(x̄) holds:

The only vector y∗ = (y∗0, · · · , y∗T ) ∈ (X∗)T+1 for which (y∗0,−y∗T ) ∈
NC(x̄0, x̄T ) and (∆y∗t , y

∗
t ) ∈ NgphFt(x̄t−1,∆x̄t), ∀ t = 1, · · · , T is the zero

vector in (X∗)T+1.

Then there exists some vector p∗ = (p∗0, · · · , p∗T ) ∈ (X∗)T+1 such that:
a)(p∗0,−p∗T ) ∈ ∂l(x̄0, x̄T ) +Nc(x̄0, x̄T )
b)(∆p∗t , p

∗
t ) ∈ ∂Lt(x̄t−1,∆x̄t) +NgphFt(x̄t−1,∆x̄t) for all t = 1, · · · , T .

Proof. Putting St = gphFt, ∀ t = 1, · · · , T , we consider the functions

l̃(x0, xT ) = l(x0 xT ) + δC(x0, xT )

and

L̃t(xt−1 ∆xt) = Lt(xt−1 ∆xt) + δSt(xt−1,∆xt),

where St := gphFt for all t = 1, · · · , T , and we remark that they are l.s.c.
Also we can verify that, by our hypothesis, they are normally compact
at (x̄0, x̄T ) and (x̄t−1,∆x̄t) respectively.

Now we show that the following qualification condition Q(x̄) of the

Theorem 3.2 holds for the functions l̃ et L̃t for all t = 1, · · · , T . So let a
vector y∗ ∈ (X∗)T+1 such that

(y∗0,−y∗T ) ∈ ∂∞ l̃(x̄0, x̄T ) and (∆y∗t , y
∗
t ) ∈ ∂∞L̃t(x̄t−1,∆x̄t), ∀ t = 1, · · · , T.
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As l and Lt are locally Lipschitzian around (x̄0, x̄T ) and (x̄t−1,∆x̄t)
for all t = 1, · · · , T , we have on the one hand

(y∗0,−y∗T ) ∈ ∂∞ l̃(x̄0, x̄T ) ⊂ ∂∞δC(x̄0, x̄T )

and on the other hand

(∆y∗t , y
∗
t ) ∈ ∂∞L̃t(x̄t−1,∆x̄t) ⊂ ∂∞δgphFt(x̄t−1,∆x̄t), ∀ t = 1, · · · , T.

By the qualification condition Q̃(x̄) we have y∗0 = y∗1 = · · · = y∗T = 0.

As l̃ et L̃t are l.s.c. for all t = 1, · · · , T and normally compact at the
necessary points and as the qualification condition Q(x̄) relative at the
problem associated with l and Lt holds, we may apply Theorem 3.2 to
obtain some vector p∗ = (p∗0, · · · , p∗T ) ∈ (X∗)T+1 such that

(p∗0,−p∗T ) ∈ ∂l̃(x̄0, x̄T ) and (∆p∗t , p
∗
t ) ∈ ∂L̃t(x̄t−1,∆x̄t), ∀ t = 1, · · · , T.

As l, Lt are locally Lipschitzian functions satisfying the above property
for all t = 1, · · · , T , and according to the calculus rule of subdifferential
of sum functions see Mordukhovich-Shao (1996) and Sahraoui-Thibault
(2008).

∂l̃(x̄0, x̄T ) ⊂ ∂l(x̄0, x̄T ) + ∂δC(x̄0, x̄T )

and

∂L̃t( ¯xt−1,∆x̄t) ⊂ ∂Lt( ¯xt−1,∆x̄t) + ∂δSt( ¯xt−1,∆x̄t), ∀ t = 1, · · · , T.
So we conclude that
a) (p∗0,−p∗T ) ∈ ∂l(x̄0, x̄T ) +NC(x̄0, x̄T ) and
b) (∆p∗t , p

∗
t ) ∈ ∂Lt(x̄t−1,∆x̄t) +NgphFt(x̄t−1,∆x̄t), ∀ t = 1, · · · , T . �

Remark 3.5. A similar corollary has also place in the context of an
arbitrary Banach space. We leave the care to the reader to formulate it.

Now we study the case where the function l can be dissociated in a
locally Lipschitzian function of xT only through a constraint on x0. So
we consider a nonempty closed subset C0 of X and the minimization
problem (PC0,F (g, L)) where the objective is to minimize the function

x 7→ g(xT ) +
T∑
t=1

Lt(xt−1,∆xt)

under the initial constraint x0 ∈ C0 and the inclusion constraints ∆xt ∈
Ft(xt−1) for t = 1, · · · , T .
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Corollary 3.6. Let X be an Asplund space and let x̄ ∈ XT+1 be a
solution of the problem (PC0,F (g, L)). We assume that the functions g
and Lt are locally Lipschitzian around x̄0 and (x̄t−1,∆x̄t) respectively
for all t = 1, · · · , T , that the subset C0 is closed in X, normally compact
at x̄0 and that the subsets gphFt are closed in X × X and normally
compacts at (x̄t−1,∆x̄t). We also suppose that the following qualification

condition Q̂(x̄) holds:
The only vector y∗ = (y∗0, · · · , y∗T ) ∈ (X∗)T+1 for which y∗0 ∈ NC0(x̄0),

y∗T = 0 and (∆y∗t , y
∗
t ) ∈ NgphFt(x̄t−1,∆x̄t) ∀ t = 1, · · · , T is the zero vector

in (X∗)T+1.

Then there exists a vector p∗ = (p∗0, · · · , p∗T ) ∈ (X∗)T+1 such that:
a) p∗0 ∈ NC0(x̄0), p∗T ∈ ∂g(x̄T )
b) (∆p∗t , p

∗
t ∈ ∂Lt(x̄t−1,∆x̄t) +NgphFt(x̄t−1,∆x̄t) for all t = 1, · · · , T .

Proof. Put l(x0, xT ) := g(xT ) and C := C0×X. Then the normal cone to
C is given by NC(x̄0, x̄T ) = NC0(x̄0)×{0} and the function l is obviously
Lipschitzian around (x̄0, x̄T ) with the equality ∂l(x̄0, x̄T ) = {0}×∂g(x̄T ).
Further, it is easy to see that the qualification condition Q(x̄) holds.
Thus, the result is a consequence of the precedent corollary. �

We also can take again the frame work relative at the case when
the images of the set-valued mappings Ft are prox regular which is not
studied in this paper because we estimate that the methods used in
the proofs above are made the reader to know the changes which are
introduce by the arguments evoked in the context of finite dimensional.
We restrict our study to the problems with convex data.

Corollary 3.7. Let X be an arbitrary Banach space. Assume that the
functions l and Lt are convex (non necessarily l.s.c.) for all i = 1, · · · , T
and assume also that there exists some vector z = (z0, · · · , zT ) ∈ XT+1

such that (z0, zT ) ∈ dom l and such that the functions Lt are contin-
uous at (zt−1,∆zt) for all t ∈ {1, . . . , T}. Then a point x̄ ∈ XT+1

is a solution of the problem (Pdet) if and only if there exists a vector
p∗ = (p∗0, · · · , p∗T ) ∈ (X∗)T+1 satisfying the two relations (a) and (b) of
Theorem 3.2.

Proof. Assume that x̄ is a minimum of the problem (Pdet) and consider
the linear mappings A0, At and the functions ϕ0, ϕt of the first step
of the proof of Theorem 3.2. We see that these linear mappings are
continuous and surjective and that the functions ϕt, for t = 0, 1, · · · , T ,
are convex. Since x̄ is a minimum, we have
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0 ∈ ∂(ϕ0 +
T∑
t=1

ϕt)(x̄).

Following the procedure used in the finite case as in Sahraoui and
Thibault(2008), we obtain that

domϕ0 ∩ (∩Tt=1contϕt) 6= ∅,

such that contϕt means the set of point of XT+1 when the function ϕt
is continuous.

This ensures that the subdifferential of the above sum is equal to the
sum of subdifferential and so we can follow in the proof of the finite
dimensional see Sahraoui and Thibault (2008). �
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