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MULTIPLICATION IDEALS IN I'-RINGS
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ABSTRACT. In this paper we introduce the notion of multiplication
ideals in I'-rings and we obtain some characterizations for multipli-
cation ideals in I'-rings.
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1. INTRODUCTION

We shall call an R-module M a multiplication module if every sub-
module of M is of the form IM, for some ideal I of R. Multiplication
modules and ideals have been investigated in A. Barnard (1981), El-
Bast and Smith (1988), P. F. Smith (1988) and others. For results on
multiplication modules, the reader is referred to [I, 2l 5] 8, [12].

Nobusawa [9] developed the notion of a I'-ring which is more general
than a ring. After his research, Barnes studied I'-rings in more details
in [3]. But Barnes approached to I'-rings in a different way than that of
Nobusawa and he defined the concept of I'-ring and related definitions.
After these two papers were published, many mathematicians made good
works on I'-ring in the sense of Barnes and Nobusawa, which are parallel
to the results in the ring theory (for example [1, 4, [10,[12]). In this paper,
we introduce the concepts of multiplication ideals in I'-rings.
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2. PRELIMINARIES OF I'-RINGS

In the remainder of the paper we use some notation and results from
the theory of I'-rings. We present a few basic definitions here.

Let M and I' be additive abelian groups. If we have a map from
M xT'x M to M such that for all z,y,z € M, a,8 €T

(1) (z+y)az = zaz + yaz, x(a+ p)z = vaz + 20z, za(y + z) =
ray + raz,

(2) (zay)Bz = za(yBz),

then M is called a I'-ring in the sense of Barnes [3]. Note that any ring
R, can be regarded as an R-ring. A I'-ring M is called commutative,
if for any z,y € M and v € I', we have zyy = yyx. M is called
a [-ring with unit, if there exist elements 1 € M and 9 € I' such
that for any m € M, 1lygm = m = m~yyl. Throughout this paper,
M stands for a nonempty commutative I'-ring with unit. If A and
B are subsets of the I'-ring M and © C I', we denote by A©B the
subset of M consisting of all finite sums of the form ) a;vy;b; where
(ai,vi,b;) € Ax©Ox B. For singletone subsets we abbreviate this notation
for example, {a}©B = a©®B. An ideal of a I'-ring M is an additive
subgroup I of M such that ITM = MT'I C I. We denote an ideal [ in
M by I<4M. Anideal I <M is called a proper ideal, if [ ; M. For each
subset S of the I'-ring M, the smallest ideal containing S is denoted by
< S > and is called the ideal generated by S. If S is finite, < S > is
called finitely generated.

A proper ideal P in the I'-ring M is called a prime ideal, if for any
ideals A,B< M, AT'B C P implies A C P or B C P. A proper ideal N
in the I'-ring M is called maximal ideal, if for any ideals J in M such
that N C J C M, we have N = J or J = M. It is easy to show that any
maximal ideal is prime. We denote by Max(M ), the set of all maximal
ideals in the I'-ring M.

A subset S of the I'-ring M is an m-system in M, if S = @ or if
a,b € S implies that < a > T < b > NS # 0. An ideal P in M is
prime if and only if its complement P¢ is an m-system, see [3]. The
prime radical P(A) of the ideal A in the I'-ring M, is the set consisting
of those elements r of M with the property that every m-system in M
which contains r meet A (that is, has nonempty intersection with A).
An ideal @ in the I'-ring M is said to be semi-prime ideal if and only if
it has the following property: if A is an ideal in M such that AT'A C Q,
then A C Q. It is clear that a prime ideal is semi-prime. More over the
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intersection of any set of semi-prime ideals is a semi-prime ideal, see [6].
It follows easy by induction that if () is a semi-prime ideal, A is an ideal
and (AT)"A C @ for an arbitrary positive integer n, then A C @, see
[6].
Theorem 2.1. If Q) is an ideal in the I'-ring M, the following conditions
are equivalent.

(1) Q is a semi-prime ideal.

(2) if a € M such that <a>T <a>CQ, then a € Q.

Proof. See Theorem 3.2 in [7]. O

Proposition 2.2. If Q is an ideal in the I'-ring M, then P(Q) is the
smallest semi-prime ideal in M which contains @, i.e.

P@Q) =P

where P runs over all semi-prime ideals of M such that Q C P.
Proof. See Corollary 3.5 in [7]. O

The reader is referred to [0l [7, [§] for undefined terms and notations.

3. MULTIPLICATION IDEALS

In this section we give some important properties of multiplication
ideals, starting with the following definition.

Definition 3.1. An ideal I in the I'-ring M is called multiplication
ideal, if for every ideal J contained in I, there exists ideal G in M such
that J = GT'I.

Let I and J be ideals in the I-ring M. [I : J] is the set of all m € M
such that mI'J C I. [I : J] is called the residual of I by J. The
annihilator of I is denoted by ann(I) and equals to [0 : I]. An ideal I
in M is called faithful if ann(I) = 0. We say that I divides J, denoted
by I|J, if there exists an ideal G in M such that ITG = J.

Proposition 3.2. Let I be a multiplication ideal in the T'-ring M and
J be an arbitrary ideal in M. I|J if and only if J C 1.

Proof. The proof is evident. O

Definition 3.3. Let M be a I'-ring and N an ideal in M and P €
Maz(M). N is called P-cyclic if there exist p € P and n € N such that
(1 —p)yN € MTI'n and also, it is clear that (1 — p)yN = (1 — p)I'N.
Define TpN as the set of all n € N such that (1 — p)yon = 0 for some
p e P.
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Lemma 3.4. Let M be aT'-ring and N an ideal in M and P € Max(M).
Then TpN is an ideal in M.

Proof. 1t is straightforward. O

Proposition 3.5. Let N be an ideal in the I'-ring M. N is multiplica-
tion ideal if and only if for any ideal P € Max(M), either N =TpN or
N is P-cyclic.

Proof. Let N be a multiplication ideal and P € Max(M). First suppose
that N = PI'N. Since N is multiplication ideal, we conclude that for
every n € N, there exists an ideal A in M such that < n >= AI'N.
Hence < n >= PI' < n >. So there exists p € P such that (1 —p)yon =
0, it follows that n € TpN and then N = TpN.

Now suppose that N # PI'N and x € N\ PI'N. Then there exists an
ideal B in M such that < x >= BI'N and P+ B = M. Obviously, if we
assume that p € P, then (1 — p)yN C MT'z. Therefore N is P-cyclic.

Conversely, suppose that J is an ideal in M and J C N. Define [ as
the set of all m € M, where myon € J for any n € N. Clearly [ is an
ideal in M and ITN C J. Let y € J. Define K as the set of all m € M,
where myoy € ITN. We claim K = M. Assume that K G M. Then,
by Zorn’s Lemma, there exists @ € Maxz(M) such that K C Q C M.
By hypothesis N = TgN or N is Q-cyclic. If N = TN, then there
exists s € @ such that (1 — s)yy = 0. Hence (1 —s) € K C @, it
follows that 1 € @), a contradiction. If N is @-cyclic then there exist
t € @ and z € N such that (1 —¢)yN C MI'z =< z >. Define L as
the set of all m € M such that myz € (1 —t)yJ. Clearly L is an
ideal in M and Lypz C (1 — t)vyJ. Since J C N, we conclude that
(1 —t)y0J €< z >. Hence (1 —t)yJ C Lvyz. So (1 —t)yJ = Loz,
it follows that (1 — t)y0LyN C (1 — t)yJ C J and (1 — t)yL C I.
Therefore (1 —t)yo(1 —t)yoJ € ITM. Hence (1 —t)y(1—t) € K C Q.
Thus (1 —t) € Q, it follows that 1 € @, a contradiction. Hence K = M
and y € I'N. Thus N is a multiplication ideal. 0

Proposition 3.6. Let N be a faithful ideal in the I'-ring M. N is
multiplication ideal if and only if
(1) For any nonempty collection {I\}rep of ideals in M,

ﬂ (I\I'N) = (ﬂ )TN

AEA AEA
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(2) For any ideal K in M which K C N and any ideal A in M
with K C AN, there exists ideal B in M such that B C A and
K C BI'N.

Proof. Suppose (1) and (2) hold. Let K be an ideal in M contained in
N and
S={[: Iisanideal of M and K C IT'N}.

Clearly M € S. Since the statement (1) is correct, by Zorn’s Lemma,
S has a minimal member, A say. Since K C AI'N and A is minimal
element of S, we can then conclude from (2) that K = AT'N. It follows
that N is a multiplication ideal.

Conversely, suppose that NV is a multiplication ideal in M. Let {I)}xea
be a nonempty collection of ideals in M and I = ([ cp 1»). Clearly
ITN C (yea(IAI'N). Let € (,ca(U\I'N) € N and we put L = {m €
M : mypz € ITN}. We claim L = M. Assume that L G M. By Zorn’s
Lemma, there exists P € Max(M) such that L C P. It is clear that
z & TpN. Hence TpN # N and by Proposition[3.5, N is P-cyclic. Hence
there exist n € N and p € P such that (1 — p)yoN C MI'n =< n >.
Thus (1—p)vz € (yep (Iav0n) and so for any A € A, (1—p)yox € Ixyon.
It is clear that (1 — p)y(l —p) € L C P, in view of the fact that N
is faithful. Hence 1 € P, a contradiction. Therefore L = M, it follows
that © = 1y € II'N and (1) holds. Now suppose K is an ideal in
M with K € N and A is an ideal in M with K € AI'N. Since N is
multiplication ideal, there exists an ideal C' in M such that K = CT'N.
Let B=ANC. Clearly, B C A and by the statement (1), K C BI'N.
This proves the statement (2). O

Let P be a proper ideal in the I'-ring M. It is clear that the following
conditions are equivallent.
(1) P is semi-prime.
(2) For any a € M, if aypa € P then a € P.
(3) For any a € M and n € N, if (ay9)"a € P then a € P.

Proposition 3.7. Let C be an ideal in I'-ring M and A be the set of all
x € M such that (zv0)"x € C for some n € NU{0}, where (z70)’x = .
Then A = P(C).

Proof. Suppose that z € A. So (z7y)"z € C for some n € NU {0}.
Let P be a semi-prime ideal in M containing C'. So « € P. It follows
from Proposition that = € P(C). Thus A C P(C). Now suppose
x € A. Let ¥ be the set of all ideals I in M such that C C I and



Multiplication Ideals in I'-rings 35

(xy0)"x & I for any n € NU{0}. By Zorn’s Lemma, ¥ has maximal
element P. Suppose that z,y ¢ P. Then there exists m € N U {0}
such that (zy9)™x € P+ < zvyy >. Hence P+ < zyy >¢ ¥ and so
zyv0y € P. Now if z = y, by the above argument z ¢ P implies that
zv0z € P. So P is semi-prime and = ¢ P. Hence, by Proposition
x ¢ P(C). Thus = ¢ A implies that =z ¢ P(C), whence P(C) C A. O

Proposition 3.8. Let J be a faithful multiplication ideal in the I'-ring
M and A, B be two ideals in M. Then, AT'J C BTUJ if and only if either
ACBorJ=[B:AllJ.

Proof. Let A ¢ B. Note that [B: A] = ,cx[B :< a >] where X is the
set of all elements a € A with a ¢ B. By Proposition [3.6

[B:ATJ = () ([B:<a>]lJ)
a€eX

If for every a € X, J = [B :< a >|I'J, then J = [B : A|l'J, which
finishes the proof. Let a € X and C = [B :< a >]. It is clear that
C # M. Let Q denote the collection of all semi-prime ideals P in M
containing C'. Suppose that there exists P € () such that J # PI'J
and x € J\ PI'J. Since J is a multiplication ideal in the I'-ring M, we
conclude that there the exists an ideal D in M such that < x >= JI'D
and D ¢ P. Thus ¢I'J C< x > for some ¢ € D\ P. Now we have
cl’'al'J C BT < o >. It is easily to show that for any v € I, there
exist 71 € I' and b € B such that (cya — 1y1b)y9z = 0, it follows that
(cya — 191b)T'el’J = 0. Hence ¢yc € [B :< a >] = C. Since P is a
semi-prime ideal containing C', we conclude that ¢ € P, a contradiction.
Therefore for every P € Q, J = PI'J and, by Propositions [2.2] and [3.6]
J=P(C)'J. Let j € J. It is easily to show that < 7 >= P(C)I' < j >.
Then there exists s € P(C') such that for every n € N, j = (s79)"j. By
Proposition there exists t € NU{0} such that (sy0)'s € C, it follows
that 7 = (sy0)tsyj € CI'J, ie.,, J C CT'J. Hence CTJ = J. The
converse is evident. g

Let M be a I'-ring and let Mat,,«, (M) be the set of all n x n matrices
over M.

Definition 3.9. Let M be a I'-ring and A = (a;j) € Maty,xn(M). If o
is a permutation on {1,2,...,n}, let sign(c) =1 if o is an even permu-
tation, and sign(c) = —1 if o is an odd permutation. The determinant
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is defined by
detp(A) = Z szgn(a)alﬁ(l)'yoaQ’U(Q)’yo 0, -
all o

Let M; ; be the determinant of the (n — 1) X (n — 1) matrix obtained
by removing row i and column j from A. Let C;; = (=1)" M, ;. M, ;
and C; ; are called the (4, j) minor and cofactor of A.

Proposition 3.10. For any 1 <i < n, detr(A) = ai17Ci,1+ai270Ci 2+
cee 4 am’)/ocim. For any1 < j <mn, detp(A) = alﬂoCLj + a2j’}/002,j +
w4 0Cn,j -

Let M be a I'-ring and {a;|i € N,,} C M. It is clear that
n
<A1, ...,0p >= {meyoai]w € N,(m; € M}.
i=1
Also, if I is an ideal of the I'-ring M and J =< a1,...,a, >, then
ITJ = {x1y0a1 + ... + zpyoan|z; € I, for all 1 <i < n}.

Proposition 3.11. Let M be a I'-ring, I an ideal in M, J an ideal
generated by n elements, and x an element of M satisfying xI'J C IT'J.
Then there exists y € I such that ((zy0)" o + y)v0J = 0.

Proof. If J =< aq,...,a, >, then there exist y;1, ..., yn € I such that

TV = Z Yijvoa;-

JEN,
Now we put
T—yn —Yiz2 - —Yin
B = : : : :
—Ynl “Yn2 0 T~ Ynn

It is clear that there exists y € I such that det(B) = ((z70)" 'z) +¥)
and also, for every 1 < i < n, (detB)yoa; = 0. Therefore ((zyo)" ‘o +
y)v0J = 0. O

We denote by Sr, the set of all finitely generated faithful multiplica-
tion ideals in the I'-ring M.

Proposition 3.12. Let I be an ideal of the I'-ring M. If ITJ = J for
some J € Sr, then there exists i € I such that (1 —i)yoJ = 0.
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Proof. We know that 1I'J = J. Now for x = 1 in Proposition there
exists n € N such that ((179)"1 4+ y)voJ = 0 and by setting i = —y the
proof will be completed. O

Corollary 3.13. Let A, B be two ideals of the I'-ring M and J € Sr.
Then A C B if and only if AT'J C BT'J.

Proof. Assume that AT'J C BT'J, then by Proposition AC Bor
J =[B: A]l'J. Suppose that J = [B : A]l'J. By Proposition there
exists r € [B : A] such that (1 — r)y9J = 0. Since J € Sp, we conclude

that r =1 and so A = 1I'"'A C B. The converse is evident. O
Lemma 3.14. Let I be a multiplication ideal of the I'-ring M and I C J.
Then

J=1IT[J: 1.

Proof. Since I is a multiplication ideal of M, then J = IT'G for some
ideal G of M, and G C [J : I]. Therefore J C IT'[J : I]. On the other
hand we can see easily that IT'[J : I] C J. So J = IT'[J : I]. O

Definition 3.15. Let M be a I'-ring. A left Mp-module is an additive
abelian group A together with a mapping - : M xI' x A — A ( the
image of (m,~,a) is denoted by m~ya), such that for all a,a;,a2 € A,
¥, 71,72 € I' , and m, m1, ms € M the following hold:

(1) my(a1 + a2) = mya; +mryag and (m1 +ma)ya = myya+ maya,

(2) mimi(meyza) = (M1y1me)y2a,

(3) 1va = a.

A right Mr-module is defined in a similar way.

Definition 3.16. If A is a left Mp-module and S is the set of all Mrp-
submodules B of A such that B # A, then S is partially ordered by
set-theoretic inclusion. B is a maximal Mp-submodule if and only if B
is a maximal element in the partially ordered set S.

Proposition 3.17. If A is a non-zero finitely generated left Mr-module,
then the following statements hold.

(1) If K is a proper My-submodule of A, then there exists a mazximal
Mr-submodule of A which contains K.
(2) A has a mazimal My-submodule.

Proof. (1) Let A = (a,...,a,| and
S={L:K CL and L is a proper Mp-submodule of A}.



38 A. A. Estaji, A. Saghafi Khorasani and S. Baghdari

S is partially ordered by inclusion and note that S # 0, since K € S.
If {Lx}xen is a chain in S, then L = [J,cp Ly is a Mp-submodule of A.
We show that L # A. If L = A, then for every 1 < i < n, there exists
Ai € A such that a; € Ly,. Since {Ly}xen is a chain in S, we conclude
that there exists 1 < j < n such that ay,...,a, € Ly,. Therefore
A = Ly, € S which contradicts the fact that A ¢ S. It follows easily
that L is an upper bound for {Ly}xea in S. By Zorn’s Lemma, there
exists a proper Mp-submodule B of A that is maximal in §. It is a clear
that B a maximal Mp-submodule of A containing K.

(2) By part (1), it suffices to we put K = (0). O

Proposition 3.18. Let J be a finitely generated ideal of the I'-ring M

I
contained in multiplication ideal I. If A = ann(J), then Vivi 18 finitely

generated.

Proof. Suppse that B = A+ _;[< = >: I]. If B # M then, by
Proposition there exists a maximal ideal P of the I'-ring M such
that B C P. By Lemma < & >= [< x > Il C PI'I for
any x € I, it follows that I C PI'I. Since PI'I C I, we conclude
that I = PI'I. By hypothesis, there exists mq,...,mp € J such that
J =< myq,...,mp >. Since I is a multiplication ideal, we can then
conclude from Lemma that for each 1 < i < k, < m; >= [<
m; >: I = [< m; >: I[l’PTT =< m; > I'P. Therefore, there exists
p; € P such that (1 — p;)yom; = 0, for each 1 < i €< k. If we put
p=1—(1—=pi1)v...7%(1 —pg), then p € P and (1 — p)I'J = 0. Hence
(1—-p) € Ann(J) € B C P, it follows that 1 € P, a contradiction.
Thus B = M and there exists x1,x2,...2, € I such that 1 € [< z1 >:
I+ -+ [<zy > I]+ A. Therefore I =< x; > +---+ <z, > +Al'L.

I I .
On the other hand, Vivi =< x + AI'l,... x, + AI'l >, then i IDS

finitely generated.
Proposition 3.19. Let I be a multiplication ideal of the I'-ring M. I
is finitely generated if and only if ann(I) = ann(J) for some finitely
generated ideal J contained in 1.

Proof. Suppose that ann(I) = ann(J) for some finitely generated ideal
I

J contained in I. By Proposition [3.18, ————— is finitely generated.
ann(J)I'I
1

ann(J)T'T - ann(IT'T
generated ideal of M. For the converse it’s enough to we put J =1. [

On the other hand

> J. Hence [ is a finitely
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