A TOPOLOGY ON BCK-MODULES VIA PRIME SUB-BCK-MODULES

T. ROUDBARI* AND N. MOTAHARI

ABSTRACT. In this paper, by considering the notion of prime BCK-sub-modules of BCK-modules, we introduce a topology on prime BCK-sub-modules of BCK-modules. Moreover, the notion of top BCK-modules, semi-prime sub -BCK-modules and extraordinary sub- BCK-modules are introduced. Finally the relationships between them are studied.

Key Words: *BCK*-algebra, *BCK*-modules, Top *BCK*-modules. **2010 Mathematics Subject Classification:** Primary: 06D99; Secondary: 06F35, 08A30.

1. Introduction

Every module is an action of a ring on a certain group. This is, indeed, a source of motivation to study the action of certain algebraic structures on groups. A BCK-module is an action of a BCK-algebra on commutative group. In 1994, the notion of BCK-modules was introduced by M. Aslam, H. A.S.Abujabal and A.B. Taheem [2]. They established isomorphism theorems and studied other properties of BCK-modules. The theory of BCK-modules was further developed by Z. Perveen and M. Aslam[10]. Now, in this paper we introduce the concept of a topology on prime BCK-sub-modules of BCK-modules, the notion of top BCK-modules, semi-prime sub -BCK-modules and extraordinary sub-BCK-modules. Also the relationships between them are studied.

Received: 28 November 2012, Accepted: 10 January 2013. Communicated by I. Cristea *Address correspondence to T. Roudbari; E-mail: taherehroodbarylor@yahoo.com © 2012 University of Mohaghegh Ardabili.

2. Preliminaries

Let us to begin this section with the definition of a BCK-algebra.

Definition 2.1.[8] Let X be a set with a binary operation * and a constant 0. Then (X, *, 0) is called a BCK- algebra if it satisfies the following axioms:

```
(BCK1)((x*y)*(x*z))*(z*y) = 0,
```

(BCK2) (x * (x * y)) * y = 0,

(BCK3) x * x = 0,

 $(BCK4) \ 0 * x = 0,$

(BCK5) x * y = y * x = 0 imply that x = y, for all $x, y, z \in X$.

If there is an element 1 of a BCK- algebra X, satisfying x*1=0, for all x in X, the element 1 is called unit of X. A BCK- algebra with unit is called to be bounded.

Definition 2.2.[8] A BCK- algebra (X, *, 0) is called implicative, if x = x * (y * x), for all x, y in X.

Definition 2.3.[1] Let (X, *, 0) be a BCK-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that

- (i) $(x \wedge y) \cdot m = x \cdot (y \cdot m)$,
- (ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$,
- (iii) $0 \cdot m = 0$,

for all $x, y \in X, m_1, m_2 \in M$, where $x \wedge y = y * (y * x)$.

The notion is defined by Definition 2.3., that is a left X-module (a left BCK-module on X).

If X is bounded, then the following additional condition holds:

(iv) $1 \cdot m = m$.

A right X-module can be defined similarly.

Example 2.4.[1] Let A be a non-empty set and X = P(A) be the power set of A. Then X is a bounded commutative BCK-algebra with $x \wedge y = x \cap y$, for all $x, y \in X$. Define $x + y = (x \cup y) \cap (x \cap y)'$, the symmetric difference. Then M = (X, +) is an abelian group with empty set \emptyset as an identity element and $x + x = \emptyset$. Define $x \cdot m = x \cap m$, for any $x, m \in X$. Then simple calculations show that:

- (i) $(x \wedge y) \cdot m = (x \cap y) \cap m = x \cap (y \cap m) = x \cdot (y \cdot m)$,
- (ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$,

- (iii) $0 \cdot m = \emptyset \cap m = \emptyset = 0$,
- (iv) $1 \cdot m = A \cap m = m$. Thus X itself is an X-module.

Lemma 2.5.[1] Let (X, *, 0) be a bounded implicative BCK- algebra and let $x + y = (x * y) \lor (y * x)$, then we have:

- (i) (X, +) forms a commutative group,
- (ii) Any ideal I of X consisting of two elements forms an X- module.

Definition 2.6.[9] Let M be a left BCK- module over X and N be a submodule of M. Then N is said to be prime sub-BCK-module of M, if $N \neq M$ and $x \cdot m \in N$, implies that $m \in N$ or $x.M \subseteq N$, for any x in X and any m in M.

Theorem 2.7.[9] Let M be a left BCK-module over X. Then P is a prime sub-BCK-module of M containing N if and only if $\frac{P}{N}$ is a prime BCK-submodule of X-module $\frac{M}{N}$.

Lemma 2.8.[9] Let P be a prime ideal of a lower semi-lattice X containing I. Then we have $\frac{P}{I}$ is a prime ideal of BCK- algebra $\frac{X}{I}$.

Example 2.9.[9] Assume X = P(A), where $A = \{1, 2\}$ i.e. $X = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$. consider $B = \{1\} \subseteq A$, then P(B) is a prime BCK- submodule of P(A).

Let M be a left BCK-module over X. Spec(M) denote the collection of all prime BCK- sub-modules K of M .

3. Top BCK-module

Definition 3.1. Let M be a BCK-module on X. If N is a sub-BCK-module of M, then we define $V(N) = \{K \in Spec(M) | N \subseteq K\}$ and define $\tau(M) = \{V(N) | N \text{ is a sub-}BCK$ -module of $M\}$.

Example 3.2. Let M be a BCK-module on X. Then it is easy to see that $V(M) = \emptyset$, $V(\{0\}) = Spec(M)$.

Theorem 3.3. Let M be a BCK-module on X and N_i , for $i \in I$,

be sub-BCK-modules of M. Then $\bigcap_{i \in I} V(N_i) = V(\sum_{i \in I} N_i)$.

Proof. Let $K \in \bigcap_{i \in I} V(N_i)$. Then $N_i \subseteq K$, for all $i \in I$. Hence

$$\sum_{i \in I} N_i \subseteq K. \text{ So } K \in V(\sum_{i \in I} N_i). \text{ Therefore } \bigcap_{i \in I} V(N_i) \subseteq V(\sum_{i \in I} N_i).$$

Now let $K \in V(\sum_{i \in I} N_i)$. Then $\sum_{i \in I} N_i \subseteq K$. Since $N_i \subseteq \sum_{i \in I} N_i$, for

 $i \in I$, hence $N_i \subseteq K$, for $i \in I$. Then $K \in V(N_i)$, for $i \in I$. So $K \in \bigcap_{i \in I} V(N_i)$. Therefore $V(\sum_{i \in I} N_i) \subseteq \bigcap_{i \in I} V(N_i)$.

Remark 3.4. By Example 3.2 we see that $\emptyset \in \tau(M)$ and $Spec(M) \in \tau(M)$ and by Theorem 3.3 $\tau(M)$ is closed under arbitrary intersection of its elements ,but it could happen that $V(N_{i_k}) \in \tau(M)$, for k = 1, ..., s and $\bigcup V(N_{i_k}) \notin \tau(M)$. So in generally $\tau(M)$ is not a topology on Spec(M).

Definition 3.5. If $\tau(M)$ is closed under finite union of its elements, then (M, +) is called a top X-module.

Example 3.6. Assume $A = \{1, 2\}$ and X = P(A). By some calculation we see that $Spec(M) = \{\{\emptyset, \{1\}\}, \{\emptyset, \{2\}\}\}\}$ and so X is a top X-module.

Theorem 3.7. Let X be a BCK-algebra, (M, +) be an abelian group and M be X-module. If N and K are sub-X-modules of M, then

- (i) $K \subseteq N$ implies that $V(N) \subseteq V(K)$,
- (ii) $V(N) \bigcup V(K) \subseteq V(N \cap K)$.

Proof. (i) Let $L \in V(N)$. Then $N \subseteq L$. Since $K \subseteq N$, therefore $L \in V(K)$.

(ii) Let $L \in V(N) \bigcup V(K)$. Then $N \subseteq L$ or $K \subseteq L$. Hence $N \cap K \subseteq L$. Therefore $L \in V(N \cap K)$. So $V(N) \bigcup V(K) \subseteq V(N \cap K)$.

Definition 3.8. Let M be a BCK-module on X. A sub-BCK-module

N of M is called semi-prime if N is the intersection of prime sub-X-module of M.

Example 3.9. In Example 3.6 we see that $\emptyset = \{\emptyset, \{1\}\} \cap \{\emptyset, \{2\}\}$ is semi-prime.

Definition 3.10. Let M be a BCK-module on X. Then a prime sub-BCK-module K is extraordinary if for semi-prime sub-modules N and L of M, $N \cap L \subseteq K$ implies $N \subseteq K$ or $L \subseteq K$.

Example 3.11. Assume $A = \{1, 2\}$ and X = P(A). By some calculation we see that $P(\{1\})$ is an extraordinary sub-X-module.

Theorem 3.12. Let (M, +) be BCK-module on X and N be a sub-BCK-module of M. Then V(rad(N)) = V(N), where $rad(N) = \bigcap_{i \in I} N_i$,

 N_i is a prime sub-X-modules of M such that $N \subseteq N_i$.

Proof. Since $N \subseteq rad(N)$, then by Theorem 3.7 we get that $V(rad(N)) \subseteq V(N)$. Now let $K \in V(N)$. Then $N \subseteq K$. Since K is a prime sub-BCK-module, by definition of rad(N) we have $K \in V(rad(N))$, so $V(N) \subseteq V(rad(N))$. Therefore V(rad(N)) = V(N).

Theorem 3.13. Let X be a BCK-algebra and (M, +) be X-module. Then the following conditions are equivalent:

- (a) (M, +) is a top X-module,
- (b) every prime sub X-module of (M,+) is an extraordinary sub-X-module ,
- (c) for semi-prime sub-modules N and L of $M,V(N) \cup V(L) = V(N \cap L)$.

Proof.($\mathbf{a} \to \mathbf{b}$). If $spec(M) = \emptyset$, then it is obvious . If $spec(M) \neq \emptyset$, we show that every prime sub-X-module K of M is an extraordinary. Let N and L be semi-prime sub -X-module of M such that $N \cap L \subseteq K$. Since M is top X-module, there exists sub-X-module T of M such that $V(N) \cup V(L) = V(T)$. Since N is a semi-prime sub-X-module, then we have a family $\{K_i \mid i \in I\}$ of prime X-modules of M such that $N = \bigcap_{i \in I} K_i$. Therefore $K_i \in V(N)$, for $i \in I$, so $T \subseteq \bigcap_{i \in I} K_i = N$. Similarly $T \subseteq L$. Therefore $T \subseteq L \cap N$. By Theorem 3.7 $V(N) \cup V(L) \subseteq I$

 $V(N \cap L) \subseteq V(T) = V(N) \bigcup V(L)$. Hence, $V(N) \bigcup V(L) = V(N \cap L)$. Then $K \in V(N)$ or $K \in V(L)$. Therefore $N \subseteq K$ or $L \subseteq K$.

 $(\mathbf{b} \to \mathbf{c})$. Let N and L be semi- prime of submodules of an X-module M. By Theorem 3.7, $V(N) \bigcup V(L) \subseteq V(N \cap L)$. Now we show that $V(N \cap L) \subseteq V(N) \bigcup V(L)$. If $K \in V(N \cap L)$, then $(N \cap L) \subseteq K$. Since K is an extraordinary, then $N \subseteq K$ or $L \subseteq K$. Hence $K \in V(N)$ or $K \in V(L)$. Therefore $K \in V(N) \bigcup V(L)$.

 $(\mathbf{c} \to \mathbf{a})$. Let S and T be arbitrary sub-X-modules of M. If $V(S) = \emptyset$ or $V(T) = \emptyset$, then $V(S) \bigcup V(T) = V(T)$ or $V(S) \bigcup V(T) = V(S)$, respectively. If $V(S) \neq \emptyset$ and $V(T) \neq \emptyset$, then by Theorem 3.14 we get that $V(S) \bigcup V(T) = V(rad(S)) \bigcup V(rad(T)) = V(rad(S) \bigcap rad(T))$. Hence (M, +) is a top X-module.

Theorem 3.14. Let X be a bounded implicative BCK-algebra , (M,+) be a top X-module and N be a sub-X-module of M. Then $\frac{M}{N}$ is a top X-module. In particular every homomorphic image of a top X-module is a top X-module.

Proof. Let $\frac{K}{N}$ be a prime sub-X-module of $\frac{M}{N}$, $\frac{S}{N}$ and $\frac{S'}{N}$ be sub-semi prime modules of $\frac{M}{N}$ such that $\frac{S}{N} \cap \frac{S'}{N} \subseteq \frac{K}{N}$. Then $S \cap S' \subseteq K$. By Theorem 3.13 $S \subseteq K$ or $S' \subseteq K$. Therefore $\frac{S}{N} \subseteq \frac{K}{N}$ or $\frac{S'}{N} \subseteq \frac{K}{N}$. So $\frac{K}{N}$ is an extraordinary . By Theorem 3.14 $\frac{M}{N}$ is a top X-module.

In particular let $\Phi: M \to M'$ be an epimorphism and M be a top X-module. By above, $\frac{M}{ker(\Phi)}$ is a top X-module. Then $M' \simeq \frac{M}{ker(\Phi)}$ is a top X-module.

Acknowledgments

The authors would like to thank the chief editor and the referee for his/her careful reading of this paper and many valuable suggestions.

References

[1] H. A. S. Abujabal, M. A. Obaid, Jeddab and A. B. Thaheem, *On annihilators of BCK-algebras*, Czechoslovak Math. J., **120** (1995).

- [2] H. A.S. Abujabal, M. Aslam, A. B. Thaheem, On actions of BCK- algebras on groups, Panamer. Math. J., 4 (1994).
- [3] A. Dvurecenskij, P. De Lucia and E. Pap, On a decomposition theorem and its application, Mathematica Japonica 44 (1996), 145-164.
- [4] O. Heubo-Kwegna, A global local principle for BCK-modules, Int. J. Algebra, 14 (2011)691-702.
- [5] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22.
- [6] B. Imran and M. Aslam, On certain BCK- modules, Southeast Asian Bull. Math., 34(2010), 1-10.
- [7] K. Iseki, An algebraic related with a propositional calculus, Proc. Japan Academy, 42(1966).
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co, Korea, 1994.
- [9] N. Motahari and T. Roudbari, $Prime\ BCK$ -submodules of BCK-modules , submitted.
- [10] Z. Perveen, M. Aslam and A. B. Thaheem, On BCK- module, Southeast Asian Bulletin of Mathematics, 30, (2006), 317-329

T. Roudbari

Department of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran E-mail: TaherehRoodbarylor@yahoo.com

N. Motahari

Department of Mathematics, Sciences and Research University, Kerman Branch, Kerman, Iran

E-mail: narges.motahari@yahoo.com